organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4a,8-Di­methyl-1,2,3,4,4a,5,6,8a-octa­hydro­naphthalen-2-yl)-3-(4-methyl­phen­yl)prop-2-en-1-one

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390, Boulevard My Abdellah, 40000 Marrakech, Morocco, and cUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: mtebbaa@yahoo.com

(Received 17 April 2011; accepted 5 May 2011; online 11 May 2011)

The title compound, C22H28O, was isolated from the aerial part of Inula viscosa­ (L) Aiton [or Dittrichia viscosa­ (L) Greuter]. The cyclo­hexene ring has a half-chair conformation, whereas the cyclo­hexane ring displays a chair conformation being substituted at position 2 by a 3-(4-methyl­phen­yl)prop-2-enoyl group. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into chains in the [010] direction.

Related literature

For background to the medicinal inter­est in Inula viscosa­ (L) Aiton [or Dittrichia viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970[Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.]); Bohlmann & Gupta (1982[Bohlmann, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443-1445.]); Azoulay et al. (1986[Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345-352.]); Bohlmann et al. (1977[Bohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-1334.]); Ceccherelli et al. (1988[Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006-1009.]). For details of the synthesis, see: Kutney & Singh (1984[Kutney, J. P. & Singh, A. (1984). Can. J. Chem. 62, 1407-1409.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H28O

  • Mr = 308.44

  • Monoclinic, P 21

  • a = 7.1577 (2) Å

  • b = 10.3456 (2) Å

  • c = 12.3663 (3) Å

  • β = 95.557 (1)°

  • V = 911.43 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.37 × 0.16 × 0.16 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 8379 measured reflections

  • 1957 independent reflections

  • 1834 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.11

  • 1957 reflections

  • 212 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.51 3.383 (3) 156
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of medicinal plants and concerns Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Bohlmann & Gupta, 1982), which exhibits some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann et al., 1977) and sesquiterpene acids (Ceccherelli et al., 1988). The isocostic acid is a major constituent of the dichloromethane extract of the Inula viscosa (L). The literature does not report any results on the transformation of this acid. In order to prepare products with high added value, we studied the reactivity of this acid. Thus, from this acid, we have prepared by reaction of Curtius the 1 - (4a, 8dimethyl-1,2,3,4, 4a,5,6,8a-octahydronaphthalen-2-yl)-ethanone, which was synthesized by Kutney et al. (1984). The condensation of this ketone with para- methylbenzaldehyde in the presence of sodium hydroxide allowed us to obtain the title compound (I) with a good yield of 80%. The structure of this new derivative of isocostic acid was established by NMR spectral analysis of 1H, 13 C and mass spectroscopy and confirmed by its single-crystal X-ray structure.

The molecule of (I) is built up from two fused six-membered rings, substituted at position 2 by 4-methylphenylpropenoyl group The molecular structure of (I), Fig.1, shows the cyclohexane ring to adopt a chair conformation, as indicated by the total puckering amplitude QT = 0.5617 (17)Å and spherical polar angle θ =7.25 (17)° with ϕ = 260.6 (14)°. While the cyclohexene ring has a half chair conformation with QT = 0.5071 (18) Å, θ =49.7 (2)°, ϕ = 12.5 (6)° (Cremer & Pople, 1975). In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into chains in [010] (Fig. 2).

Related literature top

For background to the medicinal interest in Inula viscosa (L) Aiton [or Dittrichia viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Bohlmann & Gupta (1982); Azoulay et al. (1986); Bohlmann et al. (1977); Ceccherelli et al. (1988). For details of the synthesis, see: Kutney & Singh (1984). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

In a flask was introduced a mixture of 500 mg (2.42 mmol), of 1 - (4a, 8-dimethyl-1, 2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)-ethanone, 257 mg (2.42 mmol.) of para chlor-benzaldehyde, 30 ml of anhydrous ethanol and 1 ml of a solution of sodium hydroxide(2 N). The mixture was stirred for three hours at room temperature. After neutralization followed by extraction three time with 20 ml of dichloromethane, the organic phase is dried over sodium sulfate, then evaporated under vacuum. Chromatography on a column of silica gel with hexane-ethyl acetate (97/3) as eluent of the residue allowed us to obtain 3-(4-méthylphenyl)-1-(4a, 8-dimethyl-1,2,3,4,4a, 5,6,8a-octahydronaphthalen-2-yl)prop-2-en-1-one with a yield of 80%. The title compound is recrystallized in hexane-ethyl acetate (70/30).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å(aromatic), 0.96Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq (aromatic, methylene, methine) or Uiso(H) = 1.5Ueq (methyl). In the absence of significant anomalous scatterers, the absolute configuration could not be reliably determined, so 1566 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen-bonded (dashed lines) chains of the molecules. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-(4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)- 3-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C22H28OF(000) = 336
Mr = 308.44Dx = 1.124 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ybCell parameters from 8379 reflections
a = 7.1577 (2) Åθ = 3.2–26.4°
b = 10.3456 (2) ŵ = 0.07 mm1
c = 12.3663 (3) ÅT = 298 K
β = 95.557 (1)°Box, colourless
V = 911.43 (4) Å30.37 × 0.16 × 0.16 mm
Z = 2
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1834 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 26.4°, θmin = 3.2°
ϕ and ω scansh = 88
8379 measured reflectionsk = 1210
1957 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.0808P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1957 reflectionsΔρmax = 0.16 e Å3
212 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.114 (14)
Crystal data top
C22H28OV = 911.43 (4) Å3
Mr = 308.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.1577 (2) ŵ = 0.07 mm1
b = 10.3456 (2) ÅT = 298 K
c = 12.3663 (3) Å0.37 × 0.16 × 0.16 mm
β = 95.557 (1)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1834 reflections with I > 2σ(I)
8379 measured reflectionsRint = 0.020
1957 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.11Δρmax = 0.16 e Å3
1957 reflectionsΔρmin = 0.15 e Å3
212 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C8A0.4720 (3)0.6078 (2)0.69374 (15)0.0458 (4)
H10.42040.65930.75030.055*
C4A0.5857 (3)0.70276 (19)0.62901 (16)0.0479 (5)
C90.8915 (3)0.4685 (2)0.88054 (17)0.0492 (5)
C10.5998 (3)0.5063 (2)0.75326 (15)0.0452 (4)
H1B0.52500.45050.79510.054*
H1A0.65550.45310.70030.054*
C20.7557 (3)0.5682 (2)0.82916 (16)0.0471 (4)
H20.69630.61050.88800.057*
C121.3719 (3)0.4780 (2)1.04958 (14)0.0447 (4)
C80.3045 (3)0.5531 (2)0.62379 (16)0.0496 (5)
C101.0489 (3)0.5164 (2)0.95720 (16)0.0518 (5)
H101.04040.59710.98940.062*
C111.2020 (3)0.4446 (2)0.98015 (15)0.0493 (5)
H111.20070.36330.94800.059*
C40.7317 (4)0.7683 (2)0.70850 (19)0.0598 (6)
H4A0.66780.81920.75950.072*
H4B0.80560.82690.66870.072*
C151.7055 (3)0.5343 (2)1.18078 (17)0.0551 (5)
C190.6825 (3)0.6347 (2)0.53984 (17)0.0555 (5)
H19C0.75540.69620.50380.083*
H19A0.58940.59710.48810.083*
H19B0.76340.56790.57160.083*
C141.6908 (3)0.4253 (3)1.11618 (17)0.0579 (6)
H141.79300.36991.11580.069*
C131.5268 (3)0.3968 (2)1.05189 (16)0.0536 (5)
H131.52020.32221.00970.064*
C171.3856 (3)0.5877 (2)1.11495 (17)0.0523 (5)
H171.28360.64331.11550.063*
C180.2247 (3)0.4273 (3)0.65615 (18)0.0600 (6)
H18A0.11280.40860.60960.090*
H18C0.19510.43230.73010.090*
H18B0.31510.35980.64960.090*
C161.5503 (3)0.6143 (2)1.17911 (18)0.0595 (6)
H161.55690.68811.22230.071*
C70.2281 (3)0.6174 (3)0.5375 (2)0.0688 (7)
H70.12390.58060.49840.083*
C50.4492 (4)0.8042 (2)0.5771 (2)0.0683 (7)
H5B0.39120.84950.63380.082*
H5A0.51870.86700.53860.082*
C30.8631 (3)0.6731 (2)0.77156 (19)0.0602 (6)
H3B0.94450.72000.82530.072*
H3A0.94170.63190.72200.072*
C60.2963 (4)0.7440 (3)0.4981 (3)0.0849 (9)
H6A0.19130.80340.48740.102*
H6B0.34510.73130.42840.102*
C201.8842 (4)0.5651 (4)1.2517 (2)0.0800 (8)
H20A1.90960.65601.24820.120*
H20C1.98670.51761.22650.120*
H20B1.86970.54121.32540.120*
O10.8777 (2)0.35492 (17)0.85675 (15)0.0659 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C8A0.0479 (10)0.0461 (10)0.0443 (9)0.0035 (8)0.0090 (7)0.0006 (8)
C4A0.0543 (11)0.0386 (10)0.0515 (10)0.0026 (8)0.0083 (8)0.0041 (8)
C90.0482 (10)0.0496 (12)0.0498 (10)0.0066 (9)0.0054 (8)0.0017 (9)
C10.0476 (10)0.0413 (10)0.0461 (9)0.0071 (8)0.0016 (7)0.0033 (8)
C20.0484 (10)0.0463 (11)0.0461 (9)0.0050 (9)0.0020 (8)0.0024 (8)
C120.0469 (9)0.0465 (10)0.0408 (8)0.0001 (8)0.0049 (7)0.0069 (8)
C80.0400 (9)0.0596 (12)0.0498 (10)0.0045 (9)0.0070 (8)0.0004 (9)
C100.0505 (10)0.0529 (12)0.0511 (10)0.0025 (9)0.0006 (8)0.0003 (9)
C110.0531 (11)0.0491 (12)0.0459 (9)0.0033 (9)0.0053 (8)0.0019 (9)
C40.0737 (14)0.0397 (11)0.0655 (12)0.0098 (10)0.0052 (11)0.0006 (10)
C150.0493 (11)0.0641 (14)0.0510 (10)0.0016 (10)0.0004 (8)0.0092 (10)
C190.0603 (12)0.0529 (13)0.0552 (11)0.0008 (10)0.0150 (9)0.0040 (10)
C140.0507 (11)0.0678 (15)0.0560 (11)0.0154 (11)0.0089 (9)0.0068 (11)
C130.0592 (12)0.0517 (12)0.0509 (10)0.0087 (10)0.0102 (8)0.0020 (9)
C170.0513 (11)0.0448 (11)0.0595 (11)0.0079 (9)0.0010 (8)0.0000 (9)
C180.0480 (11)0.0705 (15)0.0607 (12)0.0073 (10)0.0009 (9)0.0006 (11)
C160.0622 (13)0.0526 (12)0.0614 (12)0.0019 (11)0.0054 (10)0.0058 (10)
C70.0499 (12)0.0862 (18)0.0685 (14)0.0054 (12)0.0034 (10)0.0105 (13)
C50.0746 (15)0.0512 (13)0.0798 (15)0.0151 (12)0.0116 (12)0.0171 (12)
C30.0608 (12)0.0517 (12)0.0655 (12)0.0199 (10)0.0073 (10)0.0052 (11)
C60.0705 (16)0.090 (2)0.0911 (19)0.0136 (16)0.0063 (14)0.0377 (17)
C200.0566 (13)0.098 (2)0.0809 (16)0.0032 (14)0.0141 (12)0.0002 (16)
O10.0613 (9)0.0470 (9)0.0866 (11)0.0043 (7)0.0080 (8)0.0008 (8)
Geometric parameters (Å, º) top
C8A—C81.518 (3)C15—C161.385 (3)
C8A—C11.534 (3)C15—C201.513 (3)
C8A—C4A1.547 (3)C19—H19C0.9600
C8A—H10.9800C19—H19A0.9600
C4A—C41.523 (3)C19—H19B0.9600
C4A—C191.530 (3)C14—C131.384 (3)
C4A—C51.532 (3)C14—H140.9300
C9—O11.213 (3)C13—H130.9300
C9—C101.485 (3)C17—C161.383 (3)
C9—C21.514 (3)C17—H170.9300
C1—C21.528 (3)C18—H18A0.9600
C1—H1B0.9700C18—H18C0.9600
C1—H1A0.9700C18—H18B0.9600
C2—C31.543 (3)C16—H160.9300
C2—H20.9800C7—C61.496 (5)
C12—C131.389 (3)C7—H70.9300
C12—C171.391 (3)C5—C61.528 (4)
C12—C111.460 (3)C5—H5B0.9700
C8—C71.329 (3)C5—H5A0.9700
C8—C181.492 (3)C3—H3B0.9700
C10—C111.332 (3)C3—H3A0.9700
C10—H100.9300C6—H6A0.9700
C11—H110.9300C6—H6B0.9700
C4—C31.523 (3)C20—H20A0.9600
C4—H4A0.9700C20—H20C0.9600
C4—H4B0.9700C20—H20B0.9600
C15—C141.380 (4)
C8—C8A—C1114.82 (17)H19C—C19—H19A109.5
C8—C8A—C4A111.57 (16)C4A—C19—H19B109.5
C1—C8A—C4A111.33 (16)H19C—C19—H19B109.5
C8—C8A—H1106.1H19A—C19—H19B109.5
C1—C8A—H1106.1C15—C14—C13121.3 (2)
C4A—C8A—H1106.1C15—C14—H14119.3
C4—C4A—C19109.86 (18)C13—C14—H14119.3
C4—C4A—C5109.59 (19)C14—C13—C12120.9 (2)
C19—C4A—C5109.17 (17)C14—C13—H13119.6
C4—C4A—C8A108.12 (16)C12—C13—H13119.6
C19—C4A—C8A112.23 (17)C16—C17—C12120.3 (2)
C5—C4A—C8A107.82 (17)C16—C17—H17119.9
O1—C9—C10121.1 (2)C12—C17—H17119.9
O1—C9—C2121.63 (19)C8—C18—H18A109.5
C10—C9—C2117.21 (19)C8—C18—H18C109.5
C2—C1—C8A111.96 (16)H18A—C18—H18C109.5
C2—C1—H1B109.2C8—C18—H18B109.5
C8A—C1—H1B109.2H18A—C18—H18B109.5
C2—C1—H1A109.2H18C—C18—H18B109.5
C8A—C1—H1A109.2C17—C16—C15121.8 (2)
H1B—C1—H1A107.9C17—C16—H16119.1
C9—C2—C1111.90 (17)C15—C16—H16119.1
C9—C2—C3110.14 (17)C8—C7—C6125.3 (3)
C1—C2—C3112.23 (15)C8—C7—H7117.4
C9—C2—H2107.4C6—C7—H7117.4
C1—C2—H2107.4C6—C5—C4A112.1 (2)
C3—C2—H2107.4C6—C5—H5B109.2
C13—C12—C17118.05 (19)C4A—C5—H5B109.2
C13—C12—C11119.1 (2)C6—C5—H5A109.2
C17—C12—C11122.84 (19)C4A—C5—H5A109.2
C7—C8—C18120.9 (2)H5B—C5—H5A107.9
C7—C8—C8A120.8 (2)C4—C3—C2112.33 (19)
C18—C8—C8A118.30 (18)C4—C3—H3B109.1
C11—C10—C9120.5 (2)C2—C3—H3B109.1
C11—C10—H10119.7C4—C3—H3A109.1
C9—C10—H10119.7C2—C3—H3A109.1
C10—C11—C12127.9 (2)H3B—C3—H3A107.9
C10—C11—H11116.0C7—C6—C5112.6 (2)
C12—C11—H11116.0C7—C6—H6A109.1
C4A—C4—C3113.21 (18)C5—C6—H6A109.1
C4A—C4—H4A108.9C7—C6—H6B109.1
C3—C4—H4A108.9C5—C6—H6B109.1
C4A—C4—H4B108.9H6A—C6—H6B107.8
C3—C4—H4B108.9C15—C20—H20A109.5
H4A—C4—H4B107.7C15—C20—H20C109.5
C14—C15—C16117.64 (19)H20A—C20—H20C109.5
C14—C15—C20121.4 (2)C15—C20—H20B109.5
C16—C15—C20121.0 (2)H20A—C20—H20B109.5
C4A—C19—H19C109.5H20C—C20—H20B109.5
C4A—C19—H19A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.513.383 (3)156
Symmetry code: (i) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC22H28O
Mr308.44
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.1577 (2), 10.3456 (2), 12.3663 (3)
β (°) 95.557 (1)
V3)911.43 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.37 × 0.16 × 0.16
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8379, 1957, 1834
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.11
No. of reflections1957
No. of parameters212
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.513.383 (3)156
Symmetry code: (i) x+2, y+1/2, z+2.
 

Acknowledgements

The authors thank the National Centre of Scientific and Technological Research (CNRST) for support.

References

First citationAzoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352.  CAS PubMed Web of Science Google Scholar
First citationBohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.  CrossRef CAS Web of Science Google Scholar
First citationBohlmann, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443–1445.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCeccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKutney, J. P. & Singh, A. (1984). Can. J. Chem. 62, 1407–1409.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds