organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1208

Bis(5-phenyl-1H-1,2,4-triazol-3-yl) di­sulfide dihydrate

aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, People's Republic of China, and bSchool of Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
*Correspondence e-mail: zaxchem@126.com

(Received 2 April 2011; accepted 19 April 2011; online 29 April 2011)

A crystallographic twofold axis passing through the centre of the disulfide linkage in the title compound, C16H12N6S2·2H2O, results in one-half of the mol­ecule and one uncoordinated water mol­ecule described in the asymmetric unit. In the mol­ecule, the mean planes of the benzene and triazole rings are close to being coplanar and are separated by a dihedral angle of 2.08 (15)°. The triazole rings are twisted by a dihedral angle of 37.67 (6)° from the disulfide linkage. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯N hydrogen bonds with the water mol­ecules, forming a three-dimensional supra­molecular network.

Related literature

For applications of 1,2,4-triazole and its derivatives in coordination chemistry, see: Zhang et al. (2005[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495-5506.]); Ouellette et al. (2007[Ouellette, W., Prosvirin, A. V., Valeich, J., Dunbar, K. R. & Zubieta, J. (2007). Inorg. Chem. 46, 9067-9082.]); Zhu et al. (2009[Zhu, A.-X., Lin, J.-B., Zhang, J.-P. & Chen, X.-M. (2009). Inorg. Chem. 48, 3882-3889.]). For the related structure of a 1,2,4-triazole-based disulfide compound, see: Jiang et al. (2007[Jiang, W.-Q., Liu, T.-B., Zou, J.-P. & Zhang, Y. (2007). Chin. J. Struct. Chem. 26, 445-449.]). For the previous synthesis of the title compound, see: El-Wareth & Sarhan (2000[El-Wareth, A. & Sarhan, A. O. (2000). Heteroat. Chem. 11, 399-402.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N6S2·2H2O

  • Mr = 388.47

  • Monoclinic, C 2/c

  • a = 12.3911 (13) Å

  • b = 14.7125 (16) Å

  • c = 10.2966 (11) Å

  • β = 104.125 (2)°

  • V = 1820.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 0.945

  • 7210 measured reflections

  • 1953 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.06

  • 1953 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N3 0.90 2.02 2.9210 (19) 178
N1—H1B⋯O1i 0.86 1.90 2.7077 (19) 156
O1—H1D⋯N2ii 0.84 2.07 2.909 (2) 171
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past few years, 1,2,4-triazole and its derivatives have attracted increasing attention as an N-heterocyclic aromatic ligand, since they can combine both imidazoles and pyrazoles in their coordination geometry. In addition, metal-triazolate frameworks can exhibit special luminescent, magnetic and favourable gas-adsorption abilities (Ouellette et al., 2007; Zhang et al., 2005; Zhu et al., 2009). 1,2,4-triazole based thiols and disulfides are important 1,2,4-triazole derivatives, and may exhibit a more diverse coordination geometry by combining heterocyclic nitrogen and sulfur donor atoms, and therefore affect biological activity behaviour. However, only one example of a crystallographic study on organic 1,2,4-triazole based disulfide compounds is found in the literature (Jiang et al. 2007). Although the synthesis of the compound 1,2-bis(5-phenyl-1H-1,2,4-triazol-3-yl)disulfide has been reported by El-Wareth & Sarhan (2000), no crystallographic study has been reported on the ligand and related metal coordination compounds. We reported herein another synthetic method and the crystal structure of the title compound.

A crystallographic 2-fold axis passing through the centroid of the disulfide linkage in the title compound, C16H12N6S2.2H2O, results in one-half of the molecule and one uncoordinated water molecule described in the asymmetric unit (Fig. 1). In the molecule, the mean planes of the benzene and triazole rings are close to coplanar, separated by a dihedral angle of 2.08 (15)°. The triazole rings are twisted by a dihedral angle of 37.67 (6)° from the disulfide linkage. Crystal packing is stabilized by intermolecular N—H···O and O—H···N hydrogen bonds with the water molecules forming a three-dimensional supramolecular network (Fig. 2).

Related literature top

For applications of 1,2,4-triazole and its derivatives in coordination chemistry, see: Zhang et al. (2005); Ouellette et al. (2007); Zhu et al. (2009). For the related structure of a 1,2,4-triazole-based disulfide compound, see: Jiang et al. (2007). For the previous synthesis of the title compound, see: El-Wareth & Sarhan (2000).

Experimental top

A mixture of iron dichloride tetrahydrate (40 mg, 0.2 mmol), 3-phenyl-1H-1,2,4-triazole-5(4H)-thione (35 mg, 0.2 mmol), 8 ml methanol and 4 ml acetonitrile was stirred for 10 min, then filtered and allowed to stand at room temperature for about two weeks. Yellow polyhedron crystals suitable for X-ray diffraction were obtained.

Refinement top

All H atoms were placed in idealized positions (O—H = 0.85 Å, N—H = 0.86 Å and C—H = 0.95 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. O—H···N and N—H···O hydrogen bonds with the water molecule are shown with dashed lines.
5-phenyl-3-[(5-phenyl-1H-1,2,4-triazol-3-yl)disulfanyl]-1H-1,2,4-triazole dihydrate top
Crystal data top
C16H12N6S2·2H2OF(000) = 808
Mr = 388.47Dx = 1.417 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3134 reflections
a = 12.3911 (13) Åθ = 2.7–26.4°
b = 14.7125 (16) ŵ = 0.32 mm1
c = 10.2966 (11) ÅT = 293 K
β = 104.125 (2)°Polyhedron, yellow
V = 1820.4 (3) Å30.40 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1953 independent reflections
Radiation source: fine-focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.884, Tmax = 0.945k = 1818
7210 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.5857P]
where P = (Fo2 + 2Fc2)/3
1953 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H12N6S2·2H2OV = 1820.4 (3) Å3
Mr = 388.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.3911 (13) ŵ = 0.32 mm1
b = 14.7125 (16) ÅT = 293 K
c = 10.2966 (11) Å0.40 × 0.20 × 0.18 mm
β = 104.125 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1953 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1679 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.945Rint = 0.023
7210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
1953 reflectionsΔρmin = 0.18 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43278 (4)0.48004 (3)0.16853 (5)0.0605 (2)
N10.26234 (13)0.68205 (9)0.22572 (14)0.0535 (4)
H1B0.23730.73660.21120.064*
N20.33478 (13)0.64316 (9)0.16425 (15)0.0554 (4)
N30.28640 (12)0.54543 (9)0.30878 (14)0.0501 (3)
C10.13764 (18)0.58140 (14)0.4862 (2)0.0673 (5)
H1A0.16980.52400.48970.081*
C20.0682 (2)0.60203 (17)0.5693 (2)0.0792 (6)
H2A0.05430.55860.62880.095*
C30.01979 (18)0.68669 (16)0.5640 (2)0.0729 (6)
H3A0.02840.69990.61800.087*
C40.0428 (2)0.75119 (16)0.4792 (2)0.0723 (6)
H4A0.01150.80880.47730.087*
C50.11194 (17)0.73153 (13)0.3963 (2)0.0615 (5)
H5A0.12700.77590.33880.074*
C60.15919 (13)0.64584 (11)0.39834 (16)0.0478 (4)
C70.23446 (14)0.62407 (11)0.31284 (16)0.0461 (4)
C80.34687 (14)0.56106 (11)0.21779 (17)0.0503 (4)
O10.27936 (14)0.35247 (9)0.37303 (13)0.0762 (5)
H1D0.30180.35010.45720.091*
H1C0.28330.41180.35330.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0728 (4)0.0462 (3)0.0721 (3)0.00574 (19)0.0364 (3)0.01332 (19)
N10.0701 (9)0.0405 (7)0.0563 (8)0.0046 (6)0.0276 (7)0.0048 (6)
N20.0731 (9)0.0448 (8)0.0561 (8)0.0012 (7)0.0305 (7)0.0014 (6)
N30.0584 (8)0.0412 (7)0.0564 (8)0.0014 (6)0.0248 (6)0.0027 (6)
C10.0780 (13)0.0589 (11)0.0745 (12)0.0101 (9)0.0371 (10)0.0135 (9)
C20.0917 (16)0.0835 (15)0.0757 (14)0.0031 (12)0.0463 (12)0.0154 (11)
C30.0697 (13)0.0864 (15)0.0716 (13)0.0043 (11)0.0347 (10)0.0062 (11)
C40.0757 (13)0.0681 (13)0.0813 (14)0.0161 (10)0.0347 (11)0.0006 (10)
C50.0693 (12)0.0539 (10)0.0671 (11)0.0098 (9)0.0278 (9)0.0082 (8)
C60.0478 (8)0.0494 (9)0.0477 (8)0.0011 (7)0.0142 (7)0.0003 (7)
C70.0517 (9)0.0405 (8)0.0476 (8)0.0031 (6)0.0150 (7)0.0014 (6)
C80.0596 (10)0.0420 (8)0.0543 (9)0.0052 (7)0.0233 (7)0.0033 (7)
O10.1323 (14)0.0421 (7)0.0576 (8)0.0052 (7)0.0300 (8)0.0033 (5)
Geometric parameters (Å, º) top
S1—C81.7536 (17)C2—C31.378 (3)
S1—S1i2.0556 (11)C2—H2A0.9300
N1—C71.343 (2)C3—C41.366 (3)
N1—N21.346 (2)C3—H3A0.9300
N1—H1B0.8600C4—C51.380 (3)
N2—C81.321 (2)C4—H4A0.9300
N3—C71.330 (2)C5—C61.388 (2)
N3—C81.355 (2)C5—H5A0.9300
C1—C61.381 (2)C6—C71.466 (2)
C1—C21.386 (3)O1—H1D0.8434
C1—H1A0.9300O1—H1C0.9007
C8—S1—S1i101.08 (6)C3—C4—H4A119.7
C7—N1—N2110.73 (14)C5—C4—H4A119.7
C7—N1—H1B124.6C4—C5—C6120.28 (19)
N2—N1—H1B124.6C4—C5—H5A119.9
C8—N2—N1102.31 (13)C6—C5—H5A119.9
C7—N3—C8103.16 (14)C1—C6—C5119.04 (17)
C6—C1—C2120.15 (19)C1—C6—C7119.78 (16)
C6—C1—H1A119.9C5—C6—C7121.14 (16)
C2—C1—H1A119.9N3—C7—N1109.05 (14)
C3—C2—C1120.2 (2)N3—C7—C6126.37 (15)
C3—C2—H2A119.9N1—C7—C6124.58 (15)
C1—C2—H2A119.9N2—C8—N3114.73 (15)
C4—C3—C2119.78 (19)N2—C8—S1121.06 (13)
C4—C3—H3A120.1N3—C8—S1124.19 (13)
C2—C3—H3A120.1H1D—O1—H1C104.4
C3—C4—C5120.5 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N30.902.022.9210 (19)178
N1—H1B···O1ii0.861.902.7077 (19)156
O1—H1D···N2iii0.842.072.909 (2)171
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12N6S2·2H2O
Mr388.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.3911 (13), 14.7125 (16), 10.2966 (11)
β (°) 104.125 (2)
V3)1820.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.40 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.884, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
7210, 1953, 1679
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.06
No. of reflections1953
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N30.902.022.9210 (19)178.0
N1—H1B···O1i0.861.902.7077 (19)155.6
O1—H1D···N2ii0.842.072.909 (2)170.9
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

The authors thank the Youth Foundation of Yunnan Normal University (grant No. 10QZ02), the Science Foundation of the Education Department of Yunnan Province (grant No. 2010Y004) and Henan University of Science and Technology for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.  Google Scholar
First citationEl-Wareth, A. & Sarhan, A. O. (2000). Heteroat. Chem. 11, 399–402.  CAS Google Scholar
First citationJiang, W.-Q., Liu, T.-B., Zou, J.-P. & Zhang, Y. (2007). Chin. J. Struct. Chem. 26, 445–449.  CAS Google Scholar
First citationOuellette, W., Prosvirin, A. V., Valeich, J., Dunbar, K. R. & Zubieta, J. (2007). Inorg. Chem. 46, 9067–9082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495–5506.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, A.-X., Lin, J.-B., Zhang, J.-P. & Chen, X.-M. (2009). Inorg. Chem. 48, 3882–3889.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1208
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds