metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(η5-cyclo­penta­dien­yl)hafnium(III)

aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation, and bLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

(Received 11 April 2011; accepted 18 April 2011; online 22 April 2011)

In the crystal structure of the title compound, [Hf(C5H5)3], three cyclo­penta­dienyl ligands surround the HfIII atom in a trigonal–planar geometry. The mol­ecule lies on a sixfold inversion axis.

Related literature

Isotypic (η5-C5H5)3Zr was described by Lukens & Andersen (1995[Lukens, W. W. Jr & Andersen, R. A. (1995). Organometallics, 14, 3435-3439.]). For (η5-C5H5)3M, M = Y: see Adam et al. (1991[Adam, M., Behrens, U. & Fischer, R. D. (1991). Acta Cryst. C47, 968-971.]); M = Nd: see Eggers et al. (1992a[Eggers, S., Hinrichs, W., Kopf, J., Fischer, R. D. & Xing-Fu, L. (1992a). Private communication (refcode SOVYAD). CCDC, Cambridge, England.]); M = Sm: see Wong et al. (1969[Wong, C.-H., Lee, T.-Y. & Lee, Y.-T. (1969). Acta Cryst. B25, 2580-2587.]), Bel'skii et al. (1991[Bel'skii, V. K., Gun'ko, Y. K., Soloveichik, G. D. & Bulychev, B. M. (1991). Metalloorg. Khim. (Russ.), 4, 577.]), Eggers et al. (1992b[Eggers, S., Hinrichs, W., Kopf, J., Fischer, R. D. & Xing-Fu, L. (1992b). Private communication (refcode CYPESM02). CCDC, Cambridge, England.]); M = Er, Tm: see Eggers et al. (1986[Eggers, S. H., Hinrichs, W., Kopf, J., Jahn, W. & Fischer, R. D. (1986). J. Organomet. Chem. 311, 313-323.]); M = Yb: see Eggers et al. (1987[Eggers, S. H., Kopf, J. & Fischer, R. D. (1987). Acta Cryst. C43, 2288-2290.]); M = Ce, Dy, Ho: see Baisch et al. (2006[Baisch, U., Pagano, S., Zeuner, M., Schmedt auf der Günne, J., Oeckler, O. & Schnick, W. (2006). Organometallics, 25, 3027-3033.]). Unit-cell dimensions of (η5-C5H5)3M (M = Pr, Pm, Sm, Gd, Tb, Tm, Cm, Bk, Cf) were determined by Laubereau & Burns (1970a[Laubereau, P. G. & Burns, J. H. (1970a). Inorg. Chem. 9, 1091-1095.],b[Laubereau, P. G. & Burns, J. H. (1970b). Inorg. Nucl. Chem. Lett. 6, 59-63.]).

[Scheme 1]

Experimental

Crystal data
  • [Hf(C5H5)3]

  • Mr = 373.76

  • Hexagonal, P 63 /m

  • a = 7.9772 (4) Å

  • c = 10.2975 (6) Å

  • V = 567.50 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.16 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.150, Tmax = 0.346

  • 7314 measured reflections

  • 362 independent reflections

  • 333 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.076

  • S = 1.22

  • 362 reflections

  • 27 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −3.40 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the reaction of (η5-C5H5)2Hf[—C(SiMe3)C(CCSiMe3)— C(SiMe3)C(CCSiMe3)—] with (i-Bu)2AlH single crystals of the title compound as lone product in very low yield were isolated. Isostructural compounds are known for M = Zr (Lukens et al., 1995), M = Y (Adam et al., 1991), M = Nd (Eggers et al., 1992a), M = Sm (Wong et al., 1969; Bel'skii et al., 1991; Eggers et al., 1992b), M = Er, Tm (Eggers et al., 1986), M = Yb (Eggers et al., 1987), M = Ce, Dy, Ho (Baisch et al., 2006). (η5-C5H5)3Hf crystallizes in the hexagonal space group P63/m with unit-cell dimensions isomorphous with the Zr analogue (Lukens et al., 1995). The Hf(III) center is surrounded by three η5-coordinated cyclopentadienyl ligands in a trigonal planar geometry. The Hf—C distances are with 2.547 (6) and 2.575 (6) Å in the expected range.

Related literature top

Isotypic (η5-C5H5)3Zr was described by Lukens et al. (1995). For (η5-C5H5)3M, M = Y: see Adam et al. (1991); M = Nd: see Eggers et al. (1992a); M = Sm: see Wong et al. (1969), Bel'skii et al. (1991), Eggers et al. (1992b); M = Er, Tm: see Eggers et al. (1986); M = Yb: see Eggers et al. (1987); M = Ce, Dy, Ho: see Baisch et al. (2006). Unit-cell dimensions of (η5-C5H5)3M (M = Pr, Pm, Sm, Gd, Tb, Tm, Cm, Bk, Cf) were determined by Laubereau & Burns (1970a,b).

Experimental top

An amount of 0.460 g (0.66 mmol) of the five membered metallacycle (η5-C5H5)2Hf[—C(SiMe3)C(CCSiMe3)—C(SiMe3) C(CCSiMe3)—] was dissolved in 20 ml of n-hexane under Ar, and 2.6 ml (2.6 mmol) of a 1.0 M solution of (i-Bu)2AlH in cyclohexane was added to the obtained yellow solution. After one day the obtained red-brown solution was filtered and allowed to stand in argon atmosphere at -40 °C. After 6 month the light-yellow crystals had formed which were separated from the mother liquor by decanting, washed with cooled n-hexane, and dried in vacuum to give (η5-C5H5)3Hf. Yield 9.3% (23 mg). M.p. 261–263 °C (dec. under Ar). MS (70 eV, m/z): 375 (M+), 310 (M+-C5H5).

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.95 Å and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C).

A numerical absorption correction was performed. Hence the largest peak of 0.95 (1.57 Å from Hf1) and the deepest hole of -3.40 e Å-3 (0.98 Å from Hf1) in the final difference Fourier map were obtained.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Tris(η5-cyclopentadienyl)hafnium(III) top
Crystal data top
[Hf(C5H5)3]Dx = 2.187 Mg m3
Mr = 373.76Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 4609 reflections
Hall symbol: -P 6cθ = 1.9–28.4°
a = 7.9772 (4) ŵ = 9.16 mm1
c = 10.2975 (6) ÅT = 150 K
V = 567.50 (5) Å3Prism, yellow
Z = 20.30 × 0.20 × 0.15 mm
F(000) = 354
Data collection top
Stoe IPDS II
diffractometer
362 independent reflections
Radiation source: fine-focus sealed tube333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 99
Tmin = 0.150, Tmax = 0.346k = 99
7314 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0163P)2 + 5.6136P]
where P = (Fo2 + 2Fc2)/3
362 reflections(Δ/σ)max < 0.001
27 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 3.40 e Å3
Crystal data top
[Hf(C5H5)3]Z = 2
Mr = 373.76Mo Kα radiation
Hexagonal, P63/mµ = 9.16 mm1
a = 7.9772 (4) ÅT = 150 K
c = 10.2975 (6) Å0.30 × 0.20 × 0.15 mm
V = 567.50 (5) Å3
Data collection top
Stoe IPDS II
diffractometer
362 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
333 reflections with I > 2σ(I)
Tmin = 0.150, Tmax = 0.346Rint = 0.097
7314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.22Δρmax = 0.95 e Å3
362 reflectionsΔρmin = 3.40 e Å3
27 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hf10.33330.66670.25000.0342 (3)
C10.4331 (9)0.4179 (9)0.1824 (6)0.0236 (13)
H10.54340.45920.12830.028*
C20.2408 (10)0.3460 (10)0.1393 (7)0.0300 (15)
H20.19920.33470.05170.036*
C30.1229 (14)0.2944 (13)0.25000.026 (2)
H30.01430.23440.25000.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf10.0126 (3)0.0126 (3)0.0772 (6)0.00632 (15)0.0000.000
C10.022 (3)0.019 (3)0.031 (3)0.011 (3)0.003 (3)0.002 (3)
C20.024 (3)0.027 (4)0.035 (4)0.010 (3)0.004 (3)0.001 (3)
C30.017 (4)0.014 (4)0.048 (6)0.008 (4)0.0000.000
Geometric parameters (Å, º) top
Hf1—C2i2.549 (7)Hf1—C12.576 (6)
Hf1—C2ii2.549 (7)Hf1—C1ii2.576 (6)
Hf1—C2iii2.549 (7)C1—C1ii1.392 (12)
Hf1—C2iv2.549 (7)C1—C21.414 (9)
Hf1—C22.549 (7)C1—H10.9500
Hf1—C2v2.549 (7)C2—C31.402 (9)
Hf1—C1i2.576 (6)C2—H20.9500
Hf1—C1iii2.576 (6)C3—C2ii1.402 (9)
Hf1—C1iv2.576 (6)C3—H30.9500
Hf1—C1v2.576 (6)
C2i—Hf1—C2ii101.55 (19)C1i—Hf1—C1v122.45 (4)
C2i—Hf1—C2iii53.1 (3)C1iii—Hf1—C1v112.98 (12)
C2ii—Hf1—C2iii126.86 (8)C1iv—Hf1—C1v31.4 (3)
C2i—Hf1—C2iv101.55 (19)C2i—Hf1—C1152.1 (2)
C2ii—Hf1—C2iv101.55 (19)C2ii—Hf1—C152.7 (2)
C2iii—Hf1—C2iv126.86 (8)C2iii—Hf1—C1130.0 (2)
C2i—Hf1—C2126.86 (8)C2iv—Hf1—C194.8 (2)
C2ii—Hf1—C253.1 (3)C2—Hf1—C132.0 (2)
C2iii—Hf1—C2101.55 (19)C2v—Hf1—C181.0 (2)
C2iv—Hf1—C2126.86 (8)C1i—Hf1—C1122.45 (4)
C2i—Hf1—C2v126.86 (8)C1iii—Hf1—C1112.98 (12)
C2ii—Hf1—C2v126.86 (8)C1iv—Hf1—C1122.45 (4)
C2iii—Hf1—C2v101.55 (19)C1v—Hf1—C1112.98 (12)
C2iv—Hf1—C2v53.1 (3)C2i—Hf1—C1ii130.0 (2)
C2—Hf1—C2v101.55 (19)C2ii—Hf1—C1ii32.0 (2)
C2i—Hf1—C1i32.0 (2)C2iii—Hf1—C1ii152.1 (2)
C2ii—Hf1—C1i81.0 (2)C2iv—Hf1—C1ii81.0 (2)
C2iii—Hf1—C1i52.7 (2)C2—Hf1—C1ii52.7 (2)
C2iv—Hf1—C1i130.0 (2)C2v—Hf1—C1ii94.8 (2)
C2—Hf1—C1i94.8 (2)C1i—Hf1—C1ii112.98 (12)
C2v—Hf1—C1i152.2 (2)C1iii—Hf1—C1ii122.45 (4)
C2i—Hf1—C1iii52.7 (2)C1iv—Hf1—C1ii112.98 (12)
C2ii—Hf1—C1iii94.8 (2)C1v—Hf1—C1ii122.45 (4)
C2iii—Hf1—C1iii32.0 (2)C1—Hf1—C1ii31.4 (3)
C2iv—Hf1—C1iii152.2 (2)C1ii—C1—C2108.3 (4)
C2—Hf1—C1iii81.0 (2)C1ii—C1—Hf174.32 (14)
C2v—Hf1—C1iii130.0 (2)C2—C1—Hf172.9 (4)
C1i—Hf1—C1iii31.4 (3)C1ii—C1—H1125.9
C2i—Hf1—C1iv81.0 (2)C2—C1—H1125.9
C2ii—Hf1—C1iv130.0 (2)Hf1—C1—H1118.7
C2iii—Hf1—C1iv94.8 (2)C3—C2—C1107.3 (6)
C2iv—Hf1—C1iv32.0 (2)C3—C2—Hf175.3 (5)
C2—Hf1—C1iv152.2 (2)C1—C2—Hf175.0 (4)
C2v—Hf1—C1iv52.7 (2)C3—C2—H2126.4
C1i—Hf1—C1iv112.98 (12)C1—C2—H2126.4
C1iii—Hf1—C1iv122.45 (4)Hf1—C2—H2115.6
C2i—Hf1—C1v94.8 (2)C2—C3—C2ii108.7 (8)
C2ii—Hf1—C1v152.2 (2)C2—C3—Hf173.0 (5)
C2iii—Hf1—C1v81.0 (2)C2ii—C3—Hf173.0 (5)
C2iv—Hf1—C1v52.7 (2)C2—C3—H3125.6
C2—Hf1—C1v130.0 (2)C2ii—C3—H3125.6
C2v—Hf1—C1v32.0 (2)Hf1—C3—H3120.2
Symmetry codes: (i) x+y, x+1, z+1/2; (ii) x, y, z+1/2; (iii) x+y, x+1, z; (iv) y+1, xy+1, z+1/2; (v) y+1, xy+1, z.

Experimental details

Crystal data
Chemical formula[Hf(C5H5)3]
Mr373.76
Crystal system, space groupHexagonal, P63/m
Temperature (K)150
a, c (Å)7.9772 (4), 10.2975 (6)
V3)567.50 (5)
Z2
Radiation typeMo Kα
µ (mm1)9.16
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.150, 0.346
No. of measured, independent and
observed [I > 2σ(I)] reflections
7314, 362, 333
Rint0.097
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 1.22
No. of reflections362
No. of parameters27
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 3.40

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the technical staff, in particular Regina Jesse, for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (GRK 1213), and the Russian Foundation for Basic Research (project No. 09-03-00503) is acknowledged.

References

First citationAdam, M., Behrens, U. & Fischer, R. D. (1991). Acta Cryst. C47, 968–971.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBaisch, U., Pagano, S., Zeuner, M., Schmedt auf der Günne, J., Oeckler, O. & Schnick, W. (2006). Organometallics, 25, 3027–3033.  CrossRef CAS Google Scholar
First citationBel'skii, V. K., Gun'ko, Y. K., Soloveichik, G. D. & Bulychev, B. M. (1991). Metalloorg. Khim. (Russ.), 4, 577.  Google Scholar
First citationEggers, S., Hinrichs, W., Kopf, J., Fischer, R. D. & Xing-Fu, L. (1992a). Private communication (refcode SOVYAD). CCDC, Cambridge, England.  Google Scholar
First citationEggers, S., Hinrichs, W., Kopf, J., Fischer, R. D. & Xing-Fu, L. (1992b). Private communication (refcode CYPESM02). CCDC, Cambridge, England.  Google Scholar
First citationEggers, S. H., Hinrichs, W., Kopf, J., Jahn, W. & Fischer, R. D. (1986). J. Organomet. Chem. 311, 313–323.  CrossRef CAS Google Scholar
First citationEggers, S. H., Kopf, J. & Fischer, R. D. (1987). Acta Cryst. C43, 2288–2290.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLaubereau, P. G. & Burns, J. H. (1970a). Inorg. Chem. 9, 1091–1095.  CrossRef CAS Google Scholar
First citationLaubereau, P. G. & Burns, J. H. (1970b). Inorg. Nucl. Chem. Lett. 6, 59–63.  CrossRef CAS Google Scholar
First citationLukens, W. W. Jr & Andersen, R. A. (1995). Organometallics, 14, 3435–3439.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWong, C.-H., Lee, T.-Y. & Lee, Y.-T. (1969). Acta Cryst. B25, 2580–2587.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds