metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(sulfato-κO)bis­­[2-(1,3-thia­zol-4-yl-κN)-1H-benzimidazole-κN3]iron(II)

aSouthwest Forestry University, Kunming 650224, People's Republic of China
*Correspondence e-mail: cfzhuang_2008@yahoo.com.cn

(Received 29 January 2011; accepted 14 April 2011; online 29 April 2011)

In the title compound, [Fe(SO4)(C10H7N3S)2(H2O)], the FeII cation is sixfold coordinated by four N atoms from two 2-(1,3-thia­zol-4-yl)-1H-benzimidazole ligands, one water O atom and one O atom of the sulfate dianion within a slightly distorted octa­hedral geometry. The cations and anions are connected by N—H⋯O and O—H⋯O hydrogen bonds into layers in the ab plane.

Related literature

For the spectroscopic properties of similar complexes, see: Devereux et al. (2007[Devereux, M., Shea, D. O., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.]). For the importance and applications of coordination polymers, see: Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2002). J. Am. Chem. Soc. 124, 376-377.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(SO4)(C10H7N3S)2(H2O)]

  • Mr = 572.32

  • Monoclinic, P 21 /c

  • a = 12.7401 (6) Å

  • b = 9.7095 (3) Å

  • c = 18.4622 (7) Å

  • β = 93.518 (2)°

  • V = 2279.47 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.805, Tmax = 0.846

  • 16163 measured reflections

  • 5632 independent reflections

  • 4071 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.03

  • 5632 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯O3i 0.75 2.01 2.742 (3) 163
O1—H1B⋯O4 0.83 1.90 2.688 (3) 157
N1—H1⋯O4ii 0.86 1.92 2.764 (3) 165
N6—H6⋯O5iii 0.86 1.90 2.712 (3) 156
Symmetry codes: (i) -x-1, -y+1, -z+2; (ii) x, y+1, z; (iii) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination compounds have been extensively studied because of their interesting topologies and potential applications (Eddaoudi et al., 2002). In our own investigations in this field we are interested in compounds based on Thiabendazole, (2-(4'-thiazolyl)-benzimidazole, TBZH) as ligand. Several complexes based on this ligand have been spectrsocopically characterized (Devereux et al., 2007) and only a few compounds have been structurally characterized.

In the crystal structure of the title compound the Fe cation is coordinated by one O atom of one sulfate dianion, one O atom of a coordinated water molecule and four N atoms of two symmetry equivalent TBZH ligands, within slightly distorted octahedra (Fig. 1). The Fe complex cations and the sulfate dianions are connected via O—H···N hydrogen bonding into layers that are located in the a-b-plane (Fig. 2 and Table 1). Additional hydrogen bonds are also found between the water H atoms and the O atoms of the anions as well as the S atoms of the anions.

Related literature top

For the spectroscopic properties of similar complexes, see: Devereux et al. (2007). For the importance and applications of coordination polymers, see: Eddaoudi et al. (2002).

Experimental top

FeSO47H2O (0.279 g, 1 mmol), thiabenzole (0.402 g, 2 mmol), and 16 ml water were mixed with stirring followed by adjusting the pH value to 6.5. Then the mixture was sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 433 K for 96 h to give brown crystals of the title complex after cooling which were dried in air (yield 17% based on Fe).

Refinement top

The H atoms of C— H and N—H were generated geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C,N). The O—H H atoms were located in difference map and were refined using a riding model with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the c-axis. Intermolecular hydrogen bonding is shown as dashed lines.
Aqua(sulfato-κO)bis[2-(1,3-thiazol-4-yl-κN)-1H- benzimidazole-κN3]iron(II) top
Crystal data top
[Fe(SO4)(C10H7N3S)2(H2O)]F(000) = 1168
Mr = 572.32Dx = 1.668 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7401 (6) ÅCell parameters from 102 reflections
b = 9.7095 (3) Åθ = 1.6–28.3°
c = 18.4622 (7) ŵ = 0.98 mm1
β = 93.518 (2)°T = 293 K
V = 2279.47 (15) Å3Block, brown
Z = 40.22 × 0.20 × 0.17 mm
Data collection top
Bruker SMART CCD
diffractometer
5632 independent reflections
Radiation source: fine-focus sealed tube4071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 168
Tmin = 0.805, Tmax = 0.846k = 1212
16163 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0542P)2]
where P = (Fo2 + 2Fc2)/3
5632 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Fe(SO4)(C10H7N3S)2(H2O)]V = 2279.47 (15) Å3
Mr = 572.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7401 (6) ŵ = 0.98 mm1
b = 9.7095 (3) ÅT = 293 K
c = 18.4622 (7) Å0.22 × 0.20 × 0.17 mm
β = 93.518 (2)°
Data collection top
Bruker SMART CCD
diffractometer
5632 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4071 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.846Rint = 0.072
16163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03Δρmax = 1.03 e Å3
5632 reflectionsΔρmin = 0.39 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.27374 (3)0.67914 (3)0.971295 (19)0.02687 (11)
S10.26985 (6)1.03885 (9)0.79174 (4)0.0472 (2)
S20.03061 (7)0.89657 (10)1.09472 (5)0.0591 (2)
S30.31328 (5)0.40356 (6)1.07142 (3)0.02818 (15)
O10.39228 (13)0.56116 (18)0.91389 (10)0.0349 (4)
H1C0.44890.58300.90900.052*
H1B0.39140.48300.93250.052*
O20.27394 (15)0.54526 (17)1.05838 (10)0.0397 (4)
O30.39695 (15)0.4079 (2)1.12180 (11)0.0492 (5)
O40.35366 (18)0.34317 (18)1.00124 (11)0.0490 (5)
O50.22550 (14)0.3195 (2)1.10114 (12)0.0458 (5)
N10.38151 (16)1.0682 (2)1.03371 (11)0.0305 (5)
H10.38521.15371.02160.037*
N20.35665 (16)0.8414 (2)1.02417 (11)0.0298 (4)
N30.28439 (17)0.8527 (2)0.88867 (11)0.0337 (5)
N40.14511 (15)0.5944 (2)0.91289 (11)0.0298 (4)
N50.12368 (16)0.7791 (2)1.02513 (12)0.0346 (5)
N60.02727 (17)0.5786 (2)0.89849 (12)0.0375 (5)
H60.09390.59060.90630.045*
C10.1013 (2)0.8664 (3)1.07716 (16)0.0457 (7)
H1A0.15270.90921.10290.055*
C20.0581 (2)0.7829 (3)1.02801 (16)0.0457 (7)
H20.12530.75981.01500.055*
C30.03296 (19)0.7310 (3)0.99672 (14)0.0317 (5)
C40.04923 (18)0.6333 (3)0.93656 (13)0.0302 (5)
C50.0219 (2)0.4992 (3)0.84436 (15)0.0380 (6)
C60.0172 (3)0.4221 (3)0.78838 (19)0.0600 (9)
H6A0.08900.41340.78310.072*
C70.0562 (3)0.3589 (4)0.7409 (2)0.0678 (11)
H70.03300.30740.70260.081*
C80.1629 (3)0.3702 (3)0.74911 (17)0.0589 (9)
H80.20970.32680.71590.071*
C90.2019 (2)0.4442 (3)0.80516 (16)0.0464 (7)
H9A0.27390.45030.81050.056*
C100.1300 (2)0.5095 (3)0.85353 (14)0.0316 (5)
C110.2584 (2)0.8733 (3)0.82185 (14)0.0387 (6)
H110.23520.80250.79290.046*
C120.3125 (2)1.0873 (3)0.87508 (14)0.0343 (6)
H120.32971.17650.88830.041*
C130.31676 (18)0.9747 (3)0.91818 (13)0.0294 (5)
C140.35200 (17)0.9640 (2)0.99176 (12)0.0247 (5)
C150.40529 (18)1.0130 (2)1.10036 (13)0.0291 (5)
C160.4362 (2)1.0730 (3)1.16334 (14)0.0370 (6)
H160.44461.16781.16750.044*
C170.4537 (2)0.9849 (3)1.21975 (14)0.0413 (7)
H170.47631.02061.26290.050*
C180.4386 (2)0.8451 (3)1.21381 (15)0.0445 (7)
H180.45010.79031.25390.053*
C190.4071 (2)0.7810 (3)1.15094 (14)0.0375 (6)
H190.39790.68621.14790.045*
C200.39029 (19)0.8695 (3)1.09280 (13)0.0300 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.02329 (18)0.02254 (18)0.0352 (2)0.00041 (13)0.00521 (14)0.00202 (15)
S10.0532 (5)0.0566 (5)0.0327 (4)0.0033 (4)0.0094 (3)0.0103 (3)
S20.0460 (5)0.0673 (6)0.0625 (5)0.0128 (4)0.0100 (4)0.0237 (5)
S30.0238 (3)0.0258 (3)0.0347 (3)0.0002 (2)0.0006 (2)0.0037 (3)
O10.0253 (9)0.0324 (9)0.0463 (10)0.0016 (7)0.0038 (8)0.0043 (8)
O20.0505 (12)0.0280 (9)0.0398 (10)0.0081 (8)0.0045 (9)0.0032 (8)
O30.0278 (10)0.0656 (14)0.0552 (12)0.0010 (9)0.0102 (9)0.0079 (11)
O40.0768 (15)0.0247 (9)0.0434 (11)0.0056 (9)0.0120 (10)0.0006 (9)
O50.0259 (10)0.0435 (11)0.0677 (13)0.0071 (8)0.0007 (9)0.0196 (10)
N10.0377 (12)0.0228 (10)0.0314 (11)0.0021 (8)0.0042 (9)0.0009 (9)
N20.0307 (11)0.0271 (10)0.0322 (11)0.0034 (8)0.0064 (9)0.0022 (9)
N30.0348 (12)0.0347 (11)0.0323 (11)0.0021 (9)0.0080 (9)0.0036 (9)
N40.0237 (10)0.0308 (11)0.0348 (11)0.0000 (8)0.0003 (8)0.0047 (9)
N50.0309 (12)0.0346 (11)0.0388 (12)0.0044 (9)0.0053 (9)0.0041 (10)
N60.0231 (11)0.0427 (12)0.0477 (13)0.0013 (9)0.0099 (9)0.0003 (11)
C10.0404 (16)0.0490 (17)0.0480 (17)0.0052 (13)0.0040 (13)0.0140 (14)
C20.0282 (14)0.0527 (17)0.0553 (17)0.0060 (12)0.0044 (12)0.0095 (15)
C30.0250 (12)0.0321 (13)0.0375 (13)0.0033 (10)0.0013 (10)0.0009 (11)
C40.0226 (12)0.0310 (12)0.0368 (13)0.0004 (10)0.0010 (10)0.0049 (11)
C50.0363 (15)0.0372 (14)0.0416 (15)0.0009 (12)0.0118 (12)0.0016 (12)
C60.058 (2)0.056 (2)0.069 (2)0.0000 (17)0.0328 (18)0.0159 (18)
C70.092 (3)0.060 (2)0.055 (2)0.003 (2)0.034 (2)0.0216 (18)
C80.078 (3)0.0530 (19)0.0449 (18)0.0011 (18)0.0009 (17)0.0169 (16)
C90.0439 (17)0.0463 (17)0.0484 (16)0.0010 (13)0.0025 (13)0.0115 (15)
C100.0341 (14)0.0290 (12)0.0321 (13)0.0023 (10)0.0045 (10)0.0007 (11)
C110.0436 (16)0.0431 (15)0.0304 (13)0.0062 (13)0.0117 (11)0.0060 (12)
C120.0349 (14)0.0326 (13)0.0356 (13)0.0005 (11)0.0039 (11)0.0018 (11)
C130.0262 (12)0.0314 (13)0.0307 (12)0.0019 (10)0.0022 (10)0.0022 (11)
C140.0229 (11)0.0234 (11)0.0279 (11)0.0009 (9)0.0041 (9)0.0002 (10)
C150.0247 (12)0.0298 (12)0.0332 (13)0.0012 (10)0.0039 (10)0.0026 (11)
C160.0416 (16)0.0363 (14)0.0336 (14)0.0033 (11)0.0060 (11)0.0051 (12)
C170.0417 (16)0.0536 (17)0.0291 (13)0.0006 (13)0.0060 (11)0.0020 (13)
C180.0463 (17)0.0546 (18)0.0330 (14)0.0092 (14)0.0061 (12)0.0028 (14)
C190.0425 (15)0.0320 (13)0.0388 (14)0.0010 (11)0.0102 (12)0.0069 (12)
C200.0275 (12)0.0345 (13)0.0282 (12)0.0019 (10)0.0043 (10)0.0006 (11)
Geometric parameters (Å, º) top
Fe—O22.0677 (18)N6—H60.8598
Fe—O12.1260 (17)C1—H1A0.9300
Fe—N22.163 (2)C2—C31.361 (4)
Fe—N42.178 (2)C2—H20.9300
Fe—N32.272 (2)C3—C41.466 (4)
Fe—N52.313 (2)C5—C61.393 (4)
S1—C111.704 (3)C5—C101.401 (4)
S1—C121.728 (3)C6—C71.384 (5)
S2—C21.706 (3)C6—H6A0.9300
S2—C11.717 (3)C7—C81.382 (5)
S3—O31.4577 (19)C7—H70.9300
S3—O51.4638 (18)C8—C91.377 (4)
S3—O41.485 (2)C8—H80.9300
S3—O21.4889 (18)C9—C101.393 (4)
O1—H1C0.7517C9—H9A0.9300
O1—H1B0.8330C11—H110.9300
N1—C141.342 (3)C12—C131.355 (3)
N1—C151.392 (3)C12—H120.9300
N1—H10.8604C13—C141.460 (3)
N2—C141.335 (3)C15—C161.380 (3)
N2—C201.389 (3)C15—C201.414 (3)
N3—C111.312 (3)C16—C171.377 (4)
N3—C131.377 (3)C16—H160.9300
N4—C41.327 (3)C17—C181.376 (4)
N4—C101.394 (3)C17—H170.9300
N5—C11.299 (3)C18—C191.398 (4)
N5—C31.380 (3)C18—H180.9300
N6—C41.345 (3)C19—C201.402 (3)
N6—C51.382 (4)C19—H190.9300
O2—Fe—O190.80 (7)N5—C3—C4115.1 (2)
O2—Fe—N294.77 (7)N4—C4—N6113.4 (2)
O1—Fe—N2105.42 (7)N4—C4—C3121.2 (2)
O2—Fe—N4100.63 (8)N6—C4—C3125.3 (2)
O1—Fe—N494.74 (7)N6—C5—C6132.1 (3)
N2—Fe—N4154.42 (8)N6—C5—C10106.1 (2)
O2—Fe—N3170.30 (7)C6—C5—C10121.8 (3)
O1—Fe—N393.08 (7)C7—C6—C5116.7 (3)
N2—Fe—N375.63 (7)C7—C6—H6A121.7
N4—Fe—N387.91 (8)C5—C6—H6A121.7
O2—Fe—N588.30 (8)C8—C7—C6121.7 (3)
O1—Fe—N5169.52 (7)C8—C7—H7119.1
N2—Fe—N585.06 (8)C6—C7—H7119.1
N4—Fe—N575.18 (7)C9—C8—C7121.8 (3)
N3—Fe—N589.47 (8)C9—C8—H8119.1
C11—S1—C1289.51 (12)C7—C8—H8119.1
C2—S2—C189.73 (14)C8—C9—C10117.7 (3)
O3—S3—O5110.41 (12)C8—C9—H9A121.1
O3—S3—O4109.90 (13)C10—C9—H9A121.1
O5—S3—O4108.83 (12)C9—C10—N4131.0 (2)
O3—S3—O2110.05 (12)C9—C10—C5120.2 (3)
O5—S3—O2108.60 (11)N4—C10—C5108.8 (2)
O4—S3—O2109.01 (11)N3—C11—S1115.4 (2)
Fe—O1—H1C123.7N3—C11—H11122.3
Fe—O1—H1B107.1S1—C11—H11122.3
H1C—O1—H1B107.1C13—C12—S1109.3 (2)
S3—O2—Fe136.32 (11)C13—C12—H12125.4
C14—N1—C15107.7 (2)S1—C12—H12125.4
C14—N1—H1126.1C12—C13—N3115.9 (2)
C15—N1—H1126.2C12—C13—C14129.0 (2)
C14—N2—C20105.0 (2)N3—C13—C14115.0 (2)
C14—N2—Fe114.26 (15)N2—C14—N1113.1 (2)
C20—N2—Fe137.82 (16)N2—C14—C13120.3 (2)
C11—N3—C13109.9 (2)N1—C14—C13126.6 (2)
C11—N3—Fe137.40 (19)C16—C15—N1132.1 (2)
C13—N3—Fe112.30 (15)C16—C15—C20123.2 (2)
C4—N4—C10105.0 (2)N1—C15—C20104.7 (2)
C4—N4—Fe115.79 (16)C17—C16—C15116.3 (2)
C10—N4—Fe139.21 (16)C17—C16—H16121.9
C1—N5—C3110.5 (2)C15—C16—H16121.9
C1—N5—Fe136.83 (19)C18—C17—C16121.5 (3)
C3—N5—Fe112.58 (16)C18—C17—H17119.2
C4—N6—C5106.7 (2)C16—C17—H17119.2
C4—N6—H6126.7C17—C18—C19123.7 (3)
C5—N6—H6126.6C17—C18—H18118.2
N5—C1—S2114.8 (2)C19—C18—H18118.2
N5—C1—H1A122.6C18—C19—C20115.3 (2)
S2—C1—H1A122.6C18—C19—H19122.3
C3—C2—S2109.8 (2)C20—C19—H19122.3
C3—C2—H2125.1N2—C20—C19130.4 (2)
S2—C2—H2125.1N2—C20—C15109.5 (2)
C2—C3—N5115.2 (2)C19—C20—C15120.0 (2)
C2—C3—C4129.7 (2)
O3—S3—O2—Fe114.18 (18)Fe—N4—C4—C32.1 (3)
O5—S3—O2—Fe124.86 (18)C5—N6—C4—N41.2 (3)
O4—S3—O2—Fe6.4 (2)C5—N6—C4—C3176.3 (2)
O1—Fe—O2—S316.14 (18)C2—C3—C4—N4179.7 (3)
N2—Fe—O2—S3121.68 (18)N5—C3—C4—N40.8 (3)
N4—Fe—O2—S378.84 (18)C2—C3—C4—N62.4 (4)
N3—Fe—O2—S3129.8 (4)N5—C3—C4—N6176.6 (2)
N5—Fe—O2—S3153.42 (18)C4—N6—C5—C6178.3 (3)
O2—Fe—N2—C14164.86 (17)C4—N6—C5—C100.6 (3)
O1—Fe—N2—C14102.98 (17)N6—C5—C6—C7177.1 (3)
N4—Fe—N2—C1437.8 (3)C10—C5—C6—C71.7 (5)
N3—Fe—N2—C1413.73 (16)C5—C6—C7—C80.7 (5)
N5—Fe—N2—C1476.99 (17)C6—C7—C8—C90.5 (6)
O2—Fe—N2—C208.0 (3)C7—C8—C9—C100.8 (5)
O1—Fe—N2—C20100.1 (2)C8—C9—C10—N4177.3 (3)
N4—Fe—N2—C20119.1 (3)C8—C9—C10—C50.1 (4)
N3—Fe—N2—C20170.6 (3)C4—N4—C10—C9176.6 (3)
N5—Fe—N2—C2079.9 (2)Fe—N4—C10—C91.3 (4)
O2—Fe—N3—C11174.9 (4)C4—N4—C10—C50.8 (3)
O1—Fe—N3—C1171.6 (3)Fe—N4—C10—C5178.70 (19)
N2—Fe—N3—C11176.7 (3)N6—C5—C10—C9177.6 (2)
N4—Fe—N3—C1123.0 (3)C6—C5—C10—C91.4 (4)
N5—Fe—N3—C1198.2 (3)N6—C5—C10—N40.1 (3)
O2—Fe—N3—C133.5 (6)C6—C5—C10—N4179.1 (3)
O1—Fe—N3—C13117.00 (17)C13—N3—C11—S10.7 (3)
N2—Fe—N3—C1311.86 (16)Fe—N3—C11—S1170.82 (15)
N4—Fe—N3—C13148.36 (17)C12—S1—C11—N30.3 (2)
N5—Fe—N3—C1373.18 (17)C11—S1—C12—C131.3 (2)
O2—Fe—N4—C482.69 (18)S1—C12—C13—N32.1 (3)
O1—Fe—N4—C4174.40 (17)S1—C12—C13—C14177.3 (2)
N2—Fe—N4—C443.3 (3)C11—N3—C13—C121.8 (3)
N3—Fe—N4—C492.68 (18)Fe—N3—C13—C12171.99 (18)
N5—Fe—N4—C42.67 (17)C11—N3—C13—C14177.6 (2)
O2—Fe—N4—C1099.6 (2)Fe—N3—C13—C148.6 (3)
O1—Fe—N4—C107.8 (2)C20—N2—C14—N11.0 (3)
N2—Fe—N4—C10134.4 (2)Fe—N2—C14—N1165.13 (16)
N3—Fe—N4—C1085.1 (2)C20—N2—C14—C13178.6 (2)
N5—Fe—N4—C10175.1 (3)Fe—N2—C14—C1314.5 (3)
O2—Fe—N5—C178.8 (3)C15—N1—C14—N21.7 (3)
O1—Fe—N5—C1164.0 (4)C15—N1—C14—C13177.8 (2)
N2—Fe—N5—C116.1 (3)C12—C13—C14—N2175.8 (3)
N4—Fe—N5—C1179.7 (3)N3—C13—C14—N23.6 (3)
N3—Fe—N5—C191.7 (3)C12—C13—C14—N14.7 (4)
O2—Fe—N5—C398.43 (18)N3—C13—C14—N1176.0 (2)
O1—Fe—N5—C313.2 (5)C14—N1—C15—C16177.8 (3)
N2—Fe—N5—C3166.64 (18)C14—N1—C15—C201.7 (3)
N4—Fe—N5—C33.04 (17)N1—C15—C16—C17179.7 (3)
N3—Fe—N5—C391.02 (18)C20—C15—C16—C170.9 (4)
C3—N5—C1—S20.3 (3)C15—C16—C17—C181.6 (4)
Fe—N5—C1—S2177.63 (15)C16—C17—C18—C191.4 (5)
C2—S2—C1—N50.5 (3)C17—C18—C19—C200.6 (4)
C1—S2—C2—C30.5 (2)C14—N2—C20—C19178.5 (3)
S2—C2—C3—N50.5 (3)Fe—N2—C20—C1920.2 (4)
S2—C2—C3—C4178.5 (2)C14—N2—C20—C150.2 (3)
C1—N5—C3—C20.1 (3)Fe—N2—C20—C15158.09 (19)
Fe—N5—C3—C2177.9 (2)C18—C19—C20—N2178.2 (3)
C1—N5—C3—C4179.0 (2)C18—C19—C20—C150.1 (4)
Fe—N5—C3—C43.0 (3)C16—C15—C20—N2178.4 (2)
C10—N4—C4—N61.2 (3)N1—C15—C20—N21.1 (3)
Fe—N4—C4—N6179.71 (17)C16—C15—C20—C190.1 (4)
C10—N4—C4—C3176.4 (2)N1—C15—C20—C19179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O3i0.752.012.742 (3)163
O1—H1B···O40.831.902.688 (3)157
O1—H1B···S30.832.803.3842 (18)129
N1—H1···O4ii0.861.922.764 (3)165
N1—H1···S3ii0.862.733.431 (2)139
N6—H6···O5iii0.861.902.712 (3)156
N6—H6···S3iii0.862.803.656 (2)173
Symmetry codes: (i) x1, y+1, z+2; (ii) x, y+1, z; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Fe(SO4)(C10H7N3S)2(H2O)]
Mr572.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.7401 (6), 9.7095 (3), 18.4622 (7)
β (°) 93.518 (2)
V3)2279.47 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.22 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.805, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
16163, 5632, 4071
Rint0.072
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.03
No. of reflections5632
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.39

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O3i0.752.012.742 (3)163
O1—H1B···O40.831.902.688 (3)157
O1—H1B···S30.832.803.3842 (18)129
N1—H1···O4ii0.861.922.764 (3)165
N1—H1···S3ii0.862.733.431 (2)139
N6—H6···O5iii0.861.902.712 (3)156
N6—H6···S3iii0.862.803.656 (2)173
Symmetry codes: (i) x1, y+1, z+2; (ii) x, y+1, z; (iii) x, y+1, z+2.
 

Acknowledgements

This work was supported by the Key Foundation of Southwest Forestry University (grant No. 111030).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M., Shea, D. O., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2002). J. Am. Chem. Soc. 124, 376–377.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds