metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m571-m572

Rubidium 2,4,6-trioxo-1,3-diazinan-5-ide–1,3-diazinane-2,4,6-trione–water (1/1/1)

aFaculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
*Correspondence e-mail: gryl@chemia.uj.edu.pl

(Received 21 March 2011; accepted 5 April 2011; online 13 April 2011)

The asymmetric unit of the title compound, Rb+·C4H3N2O3·C4H4N2O3·H2O, consists of one rubidium cation, a barbituric acid mol­ecule, a barbiturate anion and one water mol­ecule. The rubidium ion has seven close-contact inter­actions with O atoms, with Rb⋯O distances ranging from 2.8594 (16) to 3.2641 (14) Å. These seven O atoms together with an eighth O atom at 3.492 (2) Å away from Rb form a distorted polyhedron with shape inter­mediate between an anti­prism and a dodeca­hedron. The Rb+ ions connect layers built of organic components and water mol­ecules linked via N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the crystal structures of selected barbiturates, see: Xiong et al. (2003[Xiong, Y., He, C., An, T.-C., Cha, C.-H., Zhu, X.-H. & Jiang, S. (2003). Transition Met. Chem. 28, 69-73.]); Gryl et al. (2008[Gryl, M., Krawczuk, A. & Stadnicka, K. (2008). Acta Cryst. B64, 623-632.], 2011[Gryl, M., Krawczuk-Pantula, A. & Stadnicka, K. (2011). Acta Cryst. B67, 144-154.]); Braga et al. (2010[Braga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715-7717.]); Garcia et al. (2010[Garcia, H. C., Diniz, R., Yoshida, M. I. & Oliveira, L. F. C. (2010). J. Mol. Struct. 978, 79-85.]); Ivanova & Spiteller (2010[Ivanova, B. B. & Spiteller, M. (2010). Cryst. Growth Des. 10, 2470-2474.]) and for those of rubidium salts, see: Clegg & Liddle (2004[Clegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1492-m1494.]); Yıldırım et al. (2008[Yıldırım, S. Ö., McKee, V., Khardli, F.-Z., Mimouni, M. & Hadda, T. B. (2008). Acta Cryst. E64, m154-m155.]). For classification of hydrogen-bond systems according to graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • Rb+·C4H3N2O3·C4H4N2O3·H2O

  • Mr = 358.66

  • Monoclinic, P 21 /c

  • a = 9.8810 (1) Å

  • b = 19.6790 (5) Å

  • c = 6.4530 (3) Å

  • β = 108.26 (2)°

  • V = 1191.59 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.20 mm−1

  • T = 293 K

  • 0.43 × 0.23 × 0.21 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.266, Tmax = 0.473

  • 17623 measured reflections

  • 2555 independent reflections

  • 2239 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.03

  • 2555 reflections

  • 199 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O6Bi 0.88 (1) 1.90 (1) 2.769 (2) 172 (2)
N3A—H3A⋯O4B 0.86 (1) 1.84 (1) 2.694 (2) 175 (2)
N1B—H1B⋯O2Aii 0.88 (1) 1.94 (1) 2.820 (2) 175 (2)
N3B—H3B⋯O4A 0.87 (1) 2.12 (1) 2.975 (2) 169 (2)
O1W—H1W⋯O6Biii 0.84 (1) 1.87 (1) 2.700 (2) 171 (2)
O1W—H2W⋯O4Aiv 0.83 (1) 2.08 (1) 2.898 (2) 170 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z; (iv) -x+1, -y, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently we have reported structures for three polymorphic forms of barbituric acid and urea addition compounds (Gryl et al., 2008) for two of which a charge density analysis was also performed (Gryl et al., 2011). Barbituric acid appeared as a valuable component in designing new, functional materials and in particular polar materials (Xiong, et al., 2003). However many attempts to design and obtain polar barbiturates failed (see for example Ivanova & Spiteller, 2010). Herein we report the structure of the title addition compound (I), the asymmetric unit of which is comprised of a rubidium cation, barbiturate anion, barbituric acid molecule and one water molecule (Fig. 1). Unfortunately, like for many barbiturates, the structure is centrosymmetric (space group P21/c). Each Rb1 cation is surrounded by seven oxygen atoms and bridged by O6a (x - 1, y, z) and O2b (-x + 1, y + 1/2, -z + 1/2) to Rb1 (x, -y+1/2, z + 1/2) and by O2b (x, -y + 1/2, z - 1/2) and O6a (x-1, -y + 1/2, z - 1/2) to Rb1 (x, -y + 1/2, z - 1/2) (Fig. 2).

All barbiturate NH groups and water molecules act as hydrogen bond donors. The hydrogen bond geometry is given in Table 1. There are considerable differences in the accepting properties of the carbonyl oxygen atoms. In the barbituric acid molecule, only atom O4a is a hydrogen bond acceptor from O1W, whereas atoms O2a and O6a interact with Rb ions. A different situation is observed in the barbituriate ion: atom O6b is an acceptor of two hydrogen bonds from O1W and N1a whereas atoms O2b and O4b are both involved in interactions with rubidium ions. The structure is comprised of layers built of barbituric acid molecules and barbiturate anions connected by hydrogen bonds (Fig. 3). Graph-set descriptors R22(8) and R86(28) were assigned to the hydrogen bonds according to Bernstein et al., (1995). The two ring systems of R22(8) are formed between barbiturate anions and barbituric acid molecules by crystallographically different hydrogen bonds. In the R86(28) ring formation additionally two water molecules act as hydrogen bond donors. The layers, parallel to ab, are joined together into a three dimensional structure due to interactions of Rb1 cations with oxygen atoms from barbiturate anions, barbituric acid molecules and water molecules (Fig. 4).

Related literature top

For the crystal structures of selected barbiturates, see: Xiong et al. (2003); Gryl et al. (2008, 2011); Braga et al. (2010); Garcia et al. (2010); Ivanova & Spiteller (2010) and for those of rubidium salts, see: Clegg & Liddle (2004); Yıldırım et al. (2008). For classification of hydrogen-bond systems according to graph-set theory see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by mixing aqueous solutions of barbituric acid and rubidium carbonate prepared at 323 K using a water bath. Single crystals suitable for X-ray diffraction were obtained from ethanol solution by slow evaporation at ambient conditions.

Refinement top

All hydrogen atoms of N—H and O—H groups were found in difference Fourier maps and refined in a riding model assuming N—H = 0.88 (1) Å, O—H = 0.84 (1) Å and Uiso = 1.2Ueq of the parent atom. Hydrogen atoms of CH and CH2 groups were found in difference Fourier maps and refined from geometrical positions assuming C—H = 0.97 Å for CH and C—H = 0.93 Å for CH2 groups and using riding model with Uiso=1.2Ueq (C5A and C5B, respectively).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title addition compound showing displacement ellipsoids drawn at the 50% probability level (H atoms are shown as spheres of arbitrary radii). The atoms of barbituric acid molecule are marked by the letter a, whereas those of barbiturate anion with the letter b.
[Figure 2] Fig. 2. Rubidium polyhedra of Rb1v, Rb1 and Rb1viii joined by edges O6aii, O2bix and O2bvii, O6aiv with Rb—Rb distance of 4.1988 (3) Å. Symmetry codes: (i) x - 1, -y + 1/2, z + 1/2; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) x - 1, -y + 1/2, z - 1/2; (v) x, -y + 1/2, z + 1/2; (vi) x - 1, y, z - 1; (vii) -x + 1, -y, -z; (viii) x, -y + 1/2, z - 1/2; (ix) -x + 1, y + 1/2, -z + 1/2; (x) -x + 1, y + 1/2, -z - 1/2.
[Figure 3] Fig. 3. Hydrogen bond scheme in the organic layer parallel to ab at z = 0.25. Hydrogen bond graph-set descriptors R22(8) (two kinds) and R86(28) are given according to Bernstein et al., (1995).
[Figure 4] Fig. 4. View of the packing along [100] showing the Rb cations in between the layers of organic components and water molecules.
Rubidium 2,4,6-trioxo-1,3-diazinan-5-ide–1,3-diazinane-2,4,6-trione–water (1/1/1) top
Crystal data top
Rb+·C4H4N2O3·C4H5N2O3·H2OF(000) = 712
Mr = 358.66Dx = 1.999 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3522 reflections
a = 9.8810 (1) Åθ = 1.0–30.0°
b = 19.6790 (5) ŵ = 4.20 mm1
c = 6.4530 (3) ÅT = 293 K
β = 108.26 (2)°Block, colorless
V = 1191.59 (15) Å30.43 × 0.23 × 0.21 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2555 independent reflections
Radiation source: fine-focus sealed tube2239 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.037
Detector resolution: 9 pixels mm-1θmax = 27.0°, θmin = 3.5°
ϕ and ω scans to fill Ewald sphereh = 1211
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 025
Tmin = 0.266, Tmax = 0.473l = 08
17623 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.3427P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2555 reflectionsΔρmax = 0.27 e Å3
199 parametersΔρmin = 0.30 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
0 constraintsExtinction coefficient: 0
Primary atom site location: difference Fourier map
Crystal data top
Rb+·C4H4N2O3·C4H5N2O3·H2OV = 1191.59 (15) Å3
Mr = 358.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8810 (1) ŵ = 4.20 mm1
b = 19.6790 (5) ÅT = 293 K
c = 6.4530 (3) Å0.43 × 0.23 × 0.21 mm
β = 108.26 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2555 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
2239 reflections with I > 2σ(I)
Tmin = 0.266, Tmax = 0.473Rint = 0.037
17623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
2555 reflectionsΔρmin = 0.30 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.291837 (19)0.181732 (10)0.12045 (3)0.03861 (8)
N1A0.83901 (16)0.22220 (7)0.3062 (2)0.0284 (3)
H1A0.830 (2)0.2666 (5)0.295 (3)0.034*
C2A0.71713 (19)0.18635 (8)0.2905 (3)0.0262 (4)
O2A0.60363 (14)0.21479 (6)0.2672 (2)0.0390 (3)
N3A0.72641 (16)0.11731 (7)0.2984 (2)0.0267 (3)
H3A0.6475 (14)0.0959 (9)0.281 (3)0.032*
C4A0.84786 (19)0.08055 (9)0.3319 (3)0.0269 (4)
O4A0.84464 (14)0.01867 (6)0.3376 (2)0.0368 (3)
C5A0.98315 (19)0.11930 (9)0.3628 (3)0.0310 (4)
H5A11.04420.11230.51150.037*
H5A21.03140.09990.26700.037*
C6A0.96859 (19)0.19423 (9)0.3212 (3)0.0272 (4)
O6A1.06609 (14)0.22942 (7)0.3061 (2)0.0375 (3)
N1B0.42573 (15)0.14265 (7)0.2580 (2)0.0289 (3)
H1B0.417 (2)0.1870 (5)0.259 (3)0.035*
C2B0.55857 (18)0.11709 (8)0.2913 (3)0.0280 (4)
O2B0.66394 (15)0.15406 (7)0.3276 (3)0.0447 (4)
N3B0.56512 (15)0.04808 (7)0.2804 (2)0.0267 (3)
H3B0.6520 (12)0.0339 (10)0.304 (3)0.032*
C4B0.44849 (18)0.00466 (8)0.2415 (3)0.0246 (3)
O4B0.47093 (14)0.05801 (6)0.2357 (2)0.0325 (3)
C5B0.31602 (18)0.03460 (8)0.2126 (3)0.0266 (4)
H5B0.23580.00730.18930.032*
C6B0.30235 (18)0.10459 (9)0.2180 (3)0.0256 (3)
O6B0.18751 (13)0.13782 (6)0.1870 (2)0.0378 (3)
O1W0.07639 (16)0.08325 (8)0.0724 (3)0.0478 (4)
H1W0.0078 (14)0.0973 (12)0.120 (4)0.057*
H2W0.090 (3)0.0514 (9)0.147 (4)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.02804 (11)0.03333 (12)0.05520 (14)0.00282 (7)0.01410 (9)0.00032 (8)
N1A0.0278 (8)0.0187 (7)0.0413 (8)0.0023 (6)0.0148 (6)0.0005 (6)
C2A0.0261 (9)0.0205 (8)0.0338 (9)0.0004 (6)0.0120 (7)0.0006 (7)
O2A0.0269 (7)0.0209 (6)0.0718 (9)0.0017 (5)0.0194 (6)0.0009 (6)
N3A0.0232 (7)0.0176 (7)0.0412 (8)0.0019 (6)0.0127 (6)0.0002 (6)
C4A0.0291 (9)0.0251 (8)0.0274 (8)0.0020 (7)0.0102 (7)0.0018 (7)
O4A0.0335 (7)0.0198 (6)0.0569 (8)0.0035 (5)0.0138 (6)0.0021 (6)
C5A0.0260 (9)0.0284 (9)0.0394 (9)0.0028 (7)0.0115 (7)0.0047 (7)
C6A0.0253 (9)0.0282 (9)0.0289 (8)0.0017 (7)0.0098 (7)0.0009 (7)
O6A0.0288 (7)0.0344 (7)0.0528 (8)0.0062 (6)0.0177 (6)0.0006 (6)
N1B0.0239 (7)0.0164 (7)0.0452 (8)0.0016 (6)0.0093 (6)0.0015 (6)
C2B0.0240 (9)0.0223 (8)0.0376 (9)0.0012 (7)0.0095 (7)0.0010 (7)
O2B0.0271 (7)0.0270 (7)0.0791 (10)0.0074 (6)0.0152 (7)0.0045 (7)
N3B0.0218 (7)0.0217 (7)0.0373 (8)0.0005 (6)0.0102 (6)0.0007 (6)
C4B0.0276 (9)0.0208 (8)0.0245 (8)0.0013 (6)0.0071 (6)0.0010 (6)
O4B0.0317 (7)0.0185 (6)0.0468 (7)0.0007 (5)0.0115 (6)0.0031 (5)
C5B0.0232 (8)0.0205 (8)0.0342 (9)0.0042 (6)0.0061 (7)0.0004 (7)
C6B0.0229 (8)0.0223 (8)0.0293 (8)0.0005 (6)0.0050 (6)0.0011 (7)
O6B0.0221 (6)0.0215 (6)0.0661 (9)0.0010 (5)0.0085 (6)0.0024 (6)
O1W0.0315 (8)0.0473 (9)0.0610 (10)0.0102 (7)0.0094 (7)0.0118 (7)
Geometric parameters (Å, º) top
Rb1—O1W2.8594 (16)O6A—Rb1v2.9942 (13)
Rb1—O4B2.9645 (12)O6A—Rb1vi3.0517 (13)
Rb1—O6Ai2.9942 (13)N1B—C2B1.358 (2)
Rb1—O2A2.9972 (13)N1B—C6B1.384 (2)
Rb1—O6Aii3.0517 (13)N1B—H1B0.878 (9)
Rb1—O2Biii3.1049 (16)C2B—O2B1.231 (2)
Rb1—O2Biv3.2641 (14)C2B—N3B1.363 (2)
N1A—C6A1.369 (2)O2B—Rb1iii3.1049 (16)
N1A—C2A1.372 (2)O2B—Rb1vii3.2641 (14)
N1A—H1A0.879 (9)O2B—Rb1viii3.4923 (16)
C2A—O2A1.220 (2)N3B—C4B1.393 (2)
C2A—N3A1.362 (2)N3B—H3B0.870 (9)
N3A—C4A1.359 (2)C4B—O4B1.256 (2)
N3A—H3A0.862 (9)C4B—C5B1.394 (2)
C4A—O4A1.219 (2)C5B—C6B1.386 (2)
C4A—C5A1.497 (2)C5B—H5B0.9300
C5A—C6A1.498 (2)C6B—O6B1.270 (2)
C5A—H5A10.9700O1W—H1W0.839 (10)
C5A—H5A20.9700O1W—H2W0.828 (10)
C6A—O6A1.215 (2)
O1W—Rb1—O4B81.78 (4)C6A—N1A—H1A118.1 (14)
O1W—Rb1—O6Ai80.80 (4)C2A—N1A—H1A116.4 (14)
O4B—Rb1—O6Ai128.17 (4)O2A—C2A—N3A120.73 (16)
O1W—Rb1—O2A146.72 (4)O2A—C2A—N1A121.67 (15)
O4B—Rb1—O2A68.00 (3)N3A—C2A—N1A117.59 (15)
O6Ai—Rb1—O2A128.79 (4)C2A—O2A—Rb1138.91 (11)
O1W—Rb1—O6Aii79.02 (4)C4A—N3A—C2A125.64 (15)
O4B—Rb1—O6Aii153.12 (4)C4A—N3A—H3A118.6 (14)
O6Ai—Rb1—O6Aii66.76 (3)C2A—N3A—H3A115.8 (14)
O2A—Rb1—O6Aii123.40 (4)O4A—C4A—N3A120.43 (16)
O1W—Rb1—O2Biii77.21 (4)O4A—C4A—C5A122.37 (16)
O4B—Rb1—O2Biii80.94 (4)N3A—C4A—C5A117.20 (15)
O6Ai—Rb1—O2Biii140.12 (4)C6A—C5A—C4A116.49 (15)
O2A—Rb1—O2Biii84.36 (4)C6A—C5A—H5A1108.2
O6Aii—Rb1—O2Biii76.60 (4)C4A—C5A—H5A1108.2
O1W—Rb1—O2Biv140.64 (4)C6A—C5A—H5A2108.2
O4B—Rb1—O2Biv137.49 (4)C4A—C5A—H5A2108.2
O6Ai—Rb1—O2Biv75.00 (4)H5A1—C5A—H5A2107.3
O2A—Rb1—O2Biv70.21 (3)O6A—C6A—N1A120.85 (16)
O6Aii—Rb1—O2Biv63.09 (4)O6A—C6A—C5A122.79 (16)
O2Biii—Rb1—O2Biv102.47 (4)N1A—C6A—C5A116.33 (15)
O1W—Rb1—O2Bviii100.15 (4)C6A—O6A—Rb1v124.21 (12)
O4B—Rb1—O2Bviii75.04 (3)C6A—O6A—Rb1vi134.92 (12)
O6Ai—Rb1—O2Bviii60.78 (3)Rb1v—O6A—Rb1vi87.97 (3)
O2A—Rb1—O2Bviii85.63 (4)C2B—N1B—C6B125.45 (15)
O6Aii—Rb1—O2Bviii126.81 (3)C2B—N1B—H1B117.6 (15)
O2Biii—Rb1—O2Bviii155.95 (5)C6B—N1B—H1B116.9 (15)
O2Biv—Rb1—O2Bviii94.58 (4)O2B—C2B—N1B121.94 (16)
O1W—Rb1—C2Biii82.13 (4)O2B—C2B—N3B123.22 (16)
O4B—Rb1—C2Biii63.29 (4)N1B—C2B—N3B114.84 (15)
O6Ai—Rb1—C2Biii157.33 (4)O2B—C2B—Rb1iii54.65 (10)
O2A—Rb1—C2Biii72.24 (4)N1B—C2B—Rb1iii110.33 (11)
O6Aii—Rb1—C2Biii95.40 (4)N3B—C2B—Rb1iii105.84 (11)
O2Biii—Rb1—C2Biii18.87 (4)C2B—O2B—Rb1iii106.49 (12)
O2Biv—Rb1—C2Biii110.36 (4)C2B—O2B—Rb1vii133.05 (12)
O2Bviii—Rb1—C2Biii137.58 (4)Rb1iii—O2B—Rb1vii82.45 (3)
O1W—Rb1—Rb1ix126.08 (3)C2B—O2B—Rb1viii96.57 (11)
O4B—Rb1—Rb1ix118.45 (2)Rb1iii—O2B—Rb1viii155.95 (5)
O6Ai—Rb1—Rb1ix46.58 (3)Rb1vii—O2B—Rb1viii76.76 (3)
O2A—Rb1—Rb1ix82.29 (3)C2B—N3B—C4B124.81 (15)
O6Aii—Rb1—Rb1ix88.18 (3)C2B—N3B—H3B111.8 (14)
O2Biii—Rb1—Rb1ix149.52 (3)C4B—N3B—H3B123.4 (14)
O2Biv—Rb1—Rb1ix47.14 (3)O4B—C4B—N3B117.65 (15)
O2Bviii—Rb1—Rb1ix49.18 (2)O4B—C4B—C5B125.34 (16)
C2Biii—Rb1—Rb1ix151.63 (3)N3B—C4B—C5B117.01 (15)
O1W—Rb1—Rb1x106.17 (3)C4B—O4B—Rb1135.81 (11)
O4B—Rb1—Rb1x125.08 (2)C6B—C5B—C4B120.79 (15)
O6Ai—Rb1—Rb1x106.63 (3)C6B—C5B—H5B119.6
O2A—Rb1—Rb1x81.74 (3)C4B—C5B—H5B119.6
O6Aii—Rb1—Rb1x45.45 (3)O6B—C6B—C5B126.67 (16)
O2Biii—Rb1—Rb1x50.41 (3)O6B—C6B—N1B116.23 (15)
O2Biv—Rb1—Rb1x54.06 (3)C5B—C6B—N1B117.09 (15)
O2Bviii—Rb1—Rb1x148.58 (2)Rb1—O1W—H1W117.0 (18)
C2Biii—Rb1—Rb1x64.29 (3)Rb1—O1W—H2W122.1 (19)
Rb1ix—Rb1—Rb1x100.428 (8)H1W—O1W—H2W111 (3)
C6A—N1A—C2A125.34 (15)
C6A—N1A—C2A—O2A176.43 (17)C6B—N1B—C2B—O2B179.49 (17)
C6A—N1A—C2A—N3A2.6 (3)C6B—N1B—C2B—N3B0.8 (3)
O2A—C2A—N3A—C4A177.35 (17)O2B—C2B—N3B—C4B179.42 (17)
N1A—C2A—N3A—C4A3.6 (3)N1B—C2B—N3B—C4B0.8 (2)
C2A—N3A—C4A—O4A179.49 (17)C2B—N3B—C4B—O4B179.93 (16)
C2A—N3A—C4A—C5A0.0 (2)C2B—N3B—C4B—C5B0.2 (2)
O4A—C4A—C5A—C6A171.78 (16)O4B—C4B—C5B—C6B178.77 (16)
N3A—C4A—C5A—C6A8.7 (2)N3B—C4B—C5B—C6B1.4 (2)
C2A—N1A—C6A—O6A170.35 (17)C4B—C5B—C6B—O6B177.57 (17)
C2A—N1A—C6A—C5A11.3 (2)C4B—C5B—C6B—N1B1.4 (2)
C4A—C5A—C6A—O6A167.85 (17)C2B—N1B—C6B—O6B178.77 (17)
C4A—C5A—C6A—N1A13.8 (2)C2B—N1B—C6B—C5B0.3 (3)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y1/2, z+1/2; (viii) x+1, y, z+1; (ix) x, y+1/2, z+1/2; (x) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O6Biv0.88 (1)1.90 (1)2.769 (2)172 (2)
N3A—H3A···O4B0.86 (1)1.84 (1)2.694 (2)175 (2)
N1B—H1B···O2Avii0.88 (1)1.94 (1)2.820 (2)175 (2)
N3B—H3B···O4A0.87 (1)2.12 (1)2.975 (2)169 (2)
O1W—H1W···O6Bxi0.84 (1)1.87 (1)2.700 (2)171 (2)
O1W—H2W···O4Aiii0.83 (1)2.08 (1)2.898 (2)170 (3)
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (vii) x+1, y1/2, z+1/2; (xi) x, y, z.

Experimental details

Crystal data
Chemical formulaRb+·C4H4N2O3·C4H5N2O3·H2O
Mr358.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.8810 (1), 19.6790 (5), 6.4530 (3)
β (°) 108.26 (2)
V3)1191.59 (15)
Z4
Radiation typeMo Kα
µ (mm1)4.20
Crystal size (mm)0.43 × 0.23 × 0.21
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.266, 0.473
No. of measured, independent and
observed [I > 2σ(I)] reflections
17623, 2555, 2239
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.03
No. of reflections2555
No. of parameters199
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O6Bi0.88 (1)1.90 (1)2.769 (2)172 (2)
N3A—H3A···O4B0.86 (1)1.84 (1)2.694 (2)175 (2)
N1B—H1B···O2Aii0.88 (1)1.94 (1)2.820 (2)175 (2)
N3B—H3B···O4A0.87 (1)2.12 (1)2.975 (2)169 (2)
O1W—H1W···O6Biii0.84 (1)1.87 (1)2.700 (2)171 (2)
O1W—H2W···O4Aiv0.83 (1)2.08 (1)2.898 (2)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y, z; (iv) x+1, y, z.
 

Acknowledgements

The authors thank the X-ray Diffraction Laboratory. Faculty of Chemistry, Jagiellonian University, for making the Nonius KappaCCD diffractometer available. This work was partially supported by the Polish Ministry of Science and Higher Education: grant No. N N204 316537.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715–7717.  Web of Science CSD CrossRef CAS Google Scholar
First citationClegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1492–m1494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, H. C., Diniz, R., Yoshida, M. I. & Oliveira, L. F. C. (2010). J. Mol. Struct. 978, 79–85.  CrossRef CAS Google Scholar
First citationGryl, M., Krawczuk, A. & Stadnicka, K. (2008). Acta Cryst. B64, 623–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGryl, M., Krawczuk-Pantula, A. & Stadnicka, K. (2011). Acta Cryst. B67, 144–154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIvanova, B. B. & Spiteller, M. (2010). Cryst. Growth Des. 10, 2470–2474.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, Y., He, C., An, T.-C., Cha, C.-H., Zhu, X.-H. & Jiang, S. (2003). Transition Met. Chem. 28, 69–73.  CrossRef CAS Google Scholar
First citationYıldırım, S. Ö., McKee, V., Khardli, F.-Z., Mimouni, M. & Hadda, T. B. (2008). Acta Cryst. E64, m154–m155.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m571-m572
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds