metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m702-m703

catena-Poly[[[tetra­kis­(cyanido-κC)tungstate(IV)]-di-μ-cyanido-κ4C:N-bis­­[di­aqua­(2,2′-bi­pyridyl-κ2N,N′)manganese(II)]-di-μ-cyanido-κ4N:C] hexa­hydrate]

aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp

(Received 26 March 2011; accepted 4 April 2011; online 7 May 2011)

The polymeric title compound, {[MnII2WIV(CN)8(C10H8N2)2(H2O)4]·6H2O}n, has a one-dimensional cyanide-bridged MnII–WIV bimetallic assembly. The coordination geometry of the WIV atom is eight-coordinate square-anti­prismatic and that of each of the MnII atoms is six-coordinate distorted octa­hedral. Two pairs of CN ligands of W(CN)8 are bridged to two MnII atoms, the remaining CN ligands being terminal. Each MnII atom is additionally coordinated by a bidentate 2,2′-bipyridyl ligand and two water mol­ecules. The crystal structure is stabilized by O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For general background to octa­cyanido­tungstates as magnetic materials, see: Ohkoshi et al. (2007[Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084-3085.], 2008[Ohkoshi, S., Hamada, Y., Matsuda, T., Tsunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048-3054.]); Sieklucka et al. (2009[Sieklucka, B., Podgajny, R., Pinkowicz, D., Nowicka, B., Korzeniak, T., Bałanda, M., Wasiutyński, T., Pełka, R., Makarewicz, M., Czapla, M., Rams, M., Gaweł, B. & Łasocha, W. (2009). CrystEngComm, 11, 2032-2039.]). For related octa­cyanido­tungstate structures, see: Herrera et al. (2003[Herrera, J. M., Armentano, D., Munno, G., Lloret, F., Julve, M. & Verdaguer, M. (2003). New J. Chem. 27, 128-133.]); Leipoldt et al. (1994[Leipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241-322.]); Sieklucka et al. (2000[Sieklucka, B., Szklarzewicz, J., Kemp, T. J. & Errington, W. (2000). Inorg. Chem. 39, 5156-5158.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2W(CN)8(C10H8N2)2(H2O)4]·6H2O

  • Mr = 992.40

  • Monoclinic, P 21 /n

  • a = 11.6673 (3) Å

  • b = 15.5511 (4) Å

  • c = 21.4339 (7) Å

  • β = 99.213 (1)°

  • V = 3838.78 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.70 mm−1

  • T = 90 K

  • 0.90 × 0.20 × 0.02 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.135, Tmax = 0.930

  • 33108 measured reflections

  • 8606 independent reflections

  • 7342 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.079

  • S = 1.03

  • 8606 reflections

  • 533 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.47 e Å−3

  • Δρmin = −1.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O10i 0.84 (2) 2.02 (2) 2.822 (5) 162 (5)
O1—H2⋯O9ii 0.84 (2) 2.04 (3) 2.834 (4) 156 (5)
O2—H3⋯O6iii 0.83 (2) 1.87 (2) 2.703 (4) 173 (5)
O2—H4⋯N6i 0.82 (2) 2.25 (2) 3.052 (4) 165 (5)
O3—H6⋯O6iv 0.83 (2) 1.92 (2) 2.744 (4) 176 (5)
O3—H5⋯N5iv 0.82 (2) 2.48 (3) 3.238 (4) 153 (4)
O4—H8⋯O5iv 0.83 (2) 2.12 (2) 2.907 (5) 159 (4)
O4—H7⋯O9v 0.84 (2) 1.89 (2) 2.722 (4) 174 (4)
O5—H30⋯N6vi 0.84 (2) 2.13 (2) 2.946 (5) 164 (5)
O5—H29⋯O1i 0.84 (2) 2.32 (3) 3.111 (4) 157 (5)
O6—H32⋯O7 0.83 (2) 1.97 (2) 2.773 (4) 162 (5)
O6—H31⋯O5 0.83 (2) 1.97 (3) 2.753 (4) 157 (4)
O7—H34⋯N8i 0.82 (2) 2.02 (2) 2.810 (5) 159 (4)
O7—H33⋯N5 0.83 (2) 2.09 (2) 2.915 (5) 175 (4)
O8—H35⋯N7vii 0.83 (2) 2.03 (2) 2.840 (5) 165 (5)
O8—H36⋯O7 0.83 (2) 2.03 (2) 2.854 (4) 174 (5)
O9—H38⋯N6vii 0.84 (2) 2.66 (3) 3.372 (5) 143 (4)
O9—H37⋯O8 0.83 (2) 1.91 (2) 2.715 (5) 161 (5)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+2, -z; (vi) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+2, -y+2, -z.

Data collection: PROCESS-AUTO (Rigaku, 2007[Rigaku (2007). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2007[Molecular Structure Corporation & Rigaku (2007). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and VESTA (Momma & Izumi, 2006[Momma, K. & Izumi, F. (2006). IUCr Commission on Crystallographic Computing Newsletter, 130, 106-119.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the field of molecular-based magnets, octacyanotungstate [W(CN)8]-based magnetic materials are intensively studied due to their functionalities, e.g. high Curie temperature (Sieklucka et al., 2009), photo-magnetism (Ohkoshi et al., 2008), and chemically sensitive magnetism (Ohkoshi et al., 2007). Octacyanotungstates of [W(CN)8], which can adopt different configurations depending on the coordinating ligands (Leipoldt et al., 1994), also display various structures and dimensionalities. For example, in MnII—WIV cyano-bridged systems, zero-dimensional MnII4[WIV(CN)8]2(2,2'-bipyridyl)8.14H2O (Sieklucka et al., 2000) and three-dimensional MnII2[WIV(CN)8](2,2'-bipyrimidine).2H2O (Herrera, et al., 2003) have been reported. In this work, we report a one-dimensional cyano-bridged MnII—WIV bimetallic assembly with a bidentate ligand of 2,2'-bipyridyl, [MnII2(C10H8N2)2(OH2)4][WIV(CN)8](C10H8N2)2.6H2O, (I).

Fig. 1 shows the asymmetric unit of (I). W1 has an eight-coordinated square-anti-prismatic geometry, where four CN groups of [W(CN)8] are bridged to Mn1 and Mn2, and the other four CN groups being non-bridging. The coordination geometries of Mn1 and Mn2 are a six-coordinated distorted octahedral. Each Mn atom is coordinated to two nitrogen atoms derived from two CN groups, two nitrogen atoms from 2,2'-bipyridyl, and two oxygen atoms from two water molecules. The asymmetric unit has six zeolitic water molecules. Fig. 2 shows the polymeric structure of (I). The successive connections between WIV and MnII ions result in the formation of a one-dimensional structure along the b axis.

The product of the molar magnetic susceptibility (χM) and temperature (T), χMT, at room temperature was determined to be 8.6 cm3 K mol-1. This value nearly agrees with the expected value of 8.8 cm3 K mol-1 due to two MnII (S = 5/2, g = 2). The χMT value gradually decreased below 10 K. This behaviour indicates that the MnII centres antiferromagnetically interact with each other.

Related literature top

For general background to octacyanotungstates as magnetic materials, see: Ohkoshi et al. (2007, 2008); Sieklucka et al. (2009). For related octacyanotungstate structures, see: Herrera et al. (2003); Leipoldt et al. (1994); Sieklucka et al. (2000).

Experimental top

Single crystals of the target compound were prepared by diffusion of aqueous solutions of MnIICl24H2O (3 ml, 0.12 mmol) with 2,2'-bipyridyl (0.13 mmol) and KI4[WIV(CN)8]2H2O (3 ml, 0.051 mmol) in a test tube. The tube was left in the dark at room temperature, and the yellow platelets grew after several days. Inductively coupled plasma atomic emission spectrometry and CHN elemental analysis confirmed that the formula as (I) less two water molecules. Calculated: C 34.94, H 3.74, N 17.47, Mn 11.43, W 19.13%; found C 34.94, H 3.65, N 17.31, Mn 11.37 W 18.99%. The difference in the number zeolitic water molecules between the elemental analysis and the crystallographic formulation arises as zeolitic water molecules are easy lost from the crystals during the drying process. The CN stretching peaks for MnII—NC—WIV were observed at 2161, 2146, 2134, 2128, 2124, 2110, 2103 and 2081 cm-1 in the IR spectrum. In the UV-vis diffuse reflectance spectrum, a broad absorption band was observed with a maximum at 430 nm, which was assigned to the metal-metal charge transfer (MMCT) band of WIV—CN—MnII.

Refinement top

The H atoms of the 2,2'-bipyridyl molecules were placed in calculated positions, with C—H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The water hydrogen atom positions were refined with O—H distance restraints of 0.84±0.02 Å, and with Uiso(H) = 1.2Ueq(O); the H atoms for the O10 water molecule were not located. The maximum and minimum residual electron density peaks of 2.47 and -1.92 e Å-3, respectively, were located 0.89 Å and 0.80 Å from the W1 atom, respectively.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2007); cell refinement: PROCESS-AUTO (Rigaku, 2007); data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and VESTA (Momma & Izumi, 2006); software used to prepare material for publication: CrystalStructure (Molecular Structure Corporation & Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in (I). Displacement ellipsoids are drawn at the 50% probability level. The H atoms for the lattice water molecule, O10, were not located in the study.
[Figure 2] Fig. 2. The polymeric structure of (I). Blue, purple, gray, light blue, and green represent W, Mn, C, N and O atoms,respectively. Hydrogen atoms and lattice water molecules are omitted for clarity.
catena-Poly[[[tetrakis(cyanido-κC)tungstate(IV)]-di-µ-cyanido- κ4C:N-bis[diaqua(2,2'-bipyridyl- κ2N,N')manganese(II)]-di-µ-cyanido-κ4N:C] hexahydrate] top
Crystal data top
[Mn2W(CN)8(C10H8N2)2(H2O)4]·6H2OF(000) = 1960
Mr = 992.40Dx = 1.717 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 28294 reflections
a = 11.6673 (3) Åθ = 3.1–27.5°
b = 15.5511 (4) ŵ = 3.70 mm1
c = 21.4339 (7) ÅT = 90 K
β = 99.213 (1)°Platelet, yellow
V = 3838.78 (18) Å30.90 × 0.20 × 0.02 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8606 independent reflections
Radiation source: fine-focus sealed tube7342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1819
Tmin = 0.135, Tmax = 0.930l = 2727
33108 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0278P)2 + 5.0172P]
where P = (Fo2 + 2Fc2)/3
8606 reflections(Δ/σ)max = 0.002
533 parametersΔρmax = 2.47 e Å3
18 restraintsΔρmin = 1.92 e Å3
Crystal data top
[Mn2W(CN)8(C10H8N2)2(H2O)4]·6H2OV = 3838.78 (18) Å3
Mr = 992.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6673 (3) ŵ = 3.70 mm1
b = 15.5511 (4) ÅT = 90 K
c = 21.4339 (7) Å0.90 × 0.20 × 0.02 mm
β = 99.213 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8606 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
7342 reflections with I > 2σ(I)
Tmin = 0.135, Tmax = 0.930Rint = 0.062
33108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03618 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 2.47 e Å3
8606 reflectionsΔρmin = 1.92 e Å3
533 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Bond lengths and angles

W1 - Distance Angles C2 2.1424 (0.0041) C4 2.1437 (0.0038) 107.63 (0.14) C3 2.1494 (0.0039) 76.34 (0.14) 142.60 (0.13) C1 2.1498 (0.0038) 142.96 (0.14) 84.20 (0.13) 73.85 (0.14) C7 2.1591 (0.0039) 84.55 (0.15) 145.08 (0.14) 71.42 (0.14) 105.89 (0.14) C8 2.1700 (0.0040) 73.08 (0.15) 71.85 (0.14) 74.17 (0.14) 78.01 (0.14) 142.45 (0.15) C6 2.1858 (0.0040) 70.17 (0.14) 75.29 (0.14) 136.71 (0.14) 146.11 (0.14) 78.73 (0.14) 119.10 (0.14) C5 2.1872 (0.0040) 143.73 (0.14) 75.60 (0.13) 123.59 (0.13) 72.70 (0.14) 75.84 (0.14) 137.85 (0.14) 76.19 (0.13) W1 - C2 C4 C3 C1 C7 C8 C6

Mn1 - Distance Angles N2_$1 2.1508 (0.0033) N1 2.1762 (0.0033) 96.57 (0.13) O2 2.2209 (0.0030) 82.20 (0.12) 169.50 (0.12) N10 2.2339 (0.0032) 93.95 (0.12) 89.84 (0.12) 100.64 (0.12) O1 2.2440 (0.0029) 92.57 (0.12) 81.90 (0.12) 87.73 (0.12) 170.02 (0.12) N9 2.2542 (0.0029) 159.83 (0.12) 99.14 (0.12) 84.59 (0.11) 73.59 (0.11) 102.08 (0.11) Mn1 - N2_$1 N1 O2 N10 O1

Mn2 - Distance Angles N3 2.1504 (0.0032) N4_$4 2.2012 (0.0032) 92.55 (0.12) O4 2.2194 (0.0030) 83.38 (0.12) 165.86 (0.11) O3 2.2289 (0.0030) 100.21 (0.12) 83.18 (0.11) 84.22 (0.11) N12 2.2482 (0.0030) 93.06 (0.12) 91.00 (0.11) 102.71 (0.11) 165.71 (0.12) N11 2.2493 (0.0032) 162.59 (0.12) 98.25 (0.12) 89.14 (0.11) 94.61 (0.12) 73.24 (0.12) Mn2 - N3 N4_$4 O4 O3 N12

O1 - Distance Angles Mn1 2.2440 (0.0029) H1 0.8363 (0.0190) 108.96 (3.32) H2 0.8417 (0.0190) 110.06 (3.33) 105.52 (4.66) O1 - Mn1 H1

O2 - Distance Angles Mn1 2.2209 (0.0030) H3 0.8337 (0.0190) 132.79 (3.41) H4 0.8222 (0.0191) 120.69 (3.30) 105.61 (4.59) O2 - Mn1 H3

O3 - Distance Angles Mn2 2.2289 (0.0030) H5 0.8240 (0.0190) 109.88 (3.40) H6 0.8286 (0.0191) 118.44 (3.40) 104.60 (4.67) O3 - Mn2 H5

O4 - Distance Angles Mn2 2.2194 (0.0030) H7 0.8366 (0.0189) 120.24 (3.34) H8 0.8296 (0.0189) 114.26 (3.19) 104.47 (4.45) O4 - Mn2 H7

O5 - Distance Angles H29 0.8350 (0.0192) H30 0.8362 (0.0193) 107.18 (4.93) O5 - H29

O6 - Distance Angles H31 0.8332 (0.0191) H32 0.8267 (0.0188) 113.94 (4.49) O6 - H31

O7 - Distance Angles H33 0.8258 (0.0190) H34 0.8236 (0.0189) 104.31 (4.54) O7 - H33

O8 - Distance Angles H36 0.8307 (0.0193) H35 0.8285 (0.0194) 113.61 (5.07) O8 - H36

O9 - Distance Angles H37 0.8344 (0.0189) H38 0.8390 (0.0192) 111.00 (4.58) O9 - H37

N1 - Distance Angles C1 1.1627 (0.0048) Mn1 2.1762 (0.0033) 158.65 (0.31) N1 - C1

N2 - Distance Angles C2 1.1582 (0.0051) Mn1_$4 2.1508 (0.0033) 159.78 (0.31) N2 - C2

N3 - Distance Angles C3 1.1545 (0.0048) Mn2 2.1504 (0.0032) 176.05 (0.31) N3 - C3

N4 - Distance Angles C4 1.1529 (0.0047) Mn2_$1 2.2011 (0.0032) 146.40 (0.30) N4 - C4

N5 - Distance Angles C5 1.1465 (0.0049) N5 -

N6 - Distance Angles C6 1.1526 (0.0051) N6 -

N7 - Distance Angles C7 1.1597 (0.0050) N7 -

N8 - Distance Angles C8 1.1575 (0.0052) N8 -

N9 - Distance Angles C9 1.3429 (0.0050) C13 1.3559 (0.0045) 118.44 (0.31) Mn1 2.2542 (0.0029) 124.73 (0.24) 116.59 (0.24) N9 - C9 C13

N10 - Distance Angles C18 1.3462 (0.0050) C14 1.3514 (0.0048) 118.82 (0.33) Mn1 2.2339 (0.0032) 123.80 (0.25) 117.30 (0.25) N10 - C18 C14

N11 - Distance Angles C19 1.3327 (0.0053) C23 1.3506 (0.0048) 119.05 (0.34) Mn2 2.2493 (0.0032) 124.16 (0.27) 116.66 (0.26) N11 - C19 C23

N12 - Distance Angles C28 1.3420 (0.0050) C24 1.3487 (0.0048) 118.53 (0.32) Mn2 2.2482 (0.0030) 124.07 (0.25) 117.37 (0.25) N12 - C28 C24

C1 - Distance Angles N1 1.1627 (0.0048) W1 2.1498 (0.0038) 178.55 (0.34) C1 - N1

C2 - Distance Angles N2 1.1582 (0.0051) W1 2.1424 (0.0041) 177.68 (0.34) C2 - N2

C3 - Distance Angles N3 1.1545 (0.0048) W1 2.1494 (0.0039) 178.65 (0.34) C3 - N3

C4 - Distance Angles N4 1.1529 (0.0047) W1 2.1437 (0.0038) 175.63 (0.33) C4 - N4

C5 - Distance Angles N5 1.1465 (0.0049) W1 2.1872 (0.0039) 176.70 (0.31) C5 - N5

C6 - Distance Angles N6 1.1526 (0.0051) W1 2.1858 (0.0040) 177.03 (0.32) C6 - N6

C7 - Distance Angles N7 1.1597 (0.0050) W1 2.1591 (0.0039) 178.24 (0.37) C7 - N7

C8 - Distance Angles N8 1.1575 (0.0052) W1 2.1700 (0.0040) 178.82 (0.38) C8 - N8

C9 - Distance Angles N9 1.3429 (0.0050) C10 1.3907 (0.0053) 123.11 (0.36) H9 0.9500 118.44 118.44 C9 - N9 C10

C10 - Distance Angles C11 1.3817 (0.0057) C9 1.3907 (0.0053) 117.87 (0.37) H10 0.9500 121.07 121.07 C10 - C11 C9

C11 - Distance Angles C10 1.3817 (0.0057) C12 1.3945 (0.0060) 119.57 (0.36) H11 0.9500 120.22 120.22 C11 - C10 C12

C12 - Distance Angles C13 1.3781 (0.0052) C11 1.3945 (0.0060) 119.19 (0.36) H12 0.9500 120.41 120.41 C12 - C13 C11

C13 - Distance Angles N9 1.3559 (0.0045) C12 1.3781 (0.0052) 121.72 (0.36) C14 1.4931 (0.0055) 115.99 (0.32) 122.28 (0.35) C13 - N9 C12

C14 - Distance Angles N10 1.3514 (0.0048) C15 1.3977 (0.0051) 121.38 (0.36) C13 1.4931 (0.0054) 116.37 (0.32) 122.22 (0.35) C14 - N10 C15

C15 - Distance Angles C16 1.3876 (0.0061) C14 1.3977 (0.0051) 119.00 (0.38) H15 0.9500 120.50 120.50 C15 - C16 C14

C16 - Distance Angles C17 1.3835 (0.0060) C15 1.3876 (0.0061) 119.36 (0.37) H16 0.9500 120.32 120.32 C16 - C17 C15

C17 - Distance Angles C18 1.3809 (0.0054) C16 1.3835 (0.0060) 118.75 (0.39) H17 0.9500 120.63 120.63 C17 - C18 C16

C18 - Distance Angles N10 1.3462 (0.0049) C17 1.3809 (0.0054) 122.69 (0.37) H18 0.9500 118.66 118.66 C18 - N10 C17

C19 - Distance Angles N11 1.3327 (0.0053) C20 1.3846 (0.0058) 122.88 (0.42) H19 0.9500 118.56 118.56 C19 - N11 C20

C20 - Distance Angles C21 1.3833 (0.0064) C19 1.3846 (0.0058) 118.35 (0.44) H20 0.9500 120.82 120.82 C20 - C21 C19

C21 - Distance Angles C22 1.3743 (0.0066) C20 1.3833 (0.0064) 119.29 (0.40) H21 0.9500 120.36 120.36 C21 - C22 C20

C22 - Distance Angles C21 1.3743 (0.0066) C23 1.3955 (0.0055) 119.60 (0.41) H22 0.9500 120.20 120.20 C22 - C21 C23

C23 - Distance Angles N11 1.3506 (0.0048) C22 1.3955 (0.0055) 120.82 (0.38) C24 1.4917 (0.0058) 116.51 (0.33) 122.62 (0.37) C23 - N11 C22

C24 - Distance Angles N12 1.3487 (0.0048) C25 1.3938 (0.0054) 121.71 (0.39) C23 1.4917 (0.0058) 115.76 (0.33) 122.50 (0.37) C24 - N12 C25

C25 - Distance Angles C26 1.3784 (0.0067) C24 1.3938 (0.0054) 118.98 (0.40) H25 0.9500 120.51 120.51 C25 - C26 C24

C26 - Distance Angles C25 1.3784 (0.0067) C27 1.3910 (0.0061) 119.72 (0.39) H26 0.9500 120.14 120.14 C26 - C25 C27

C27 - Distance Angles C28 1.3840 (0.0053) C26 1.3910 (0.0061) 117.90 (0.40) H27 0.9500 121.05 121.05 C27 - C28 C26

C28 - Distance Angles N12 1.3420 (0.0050) C27 1.3840 (0.0053) 123.16 (0.37) H28 0.9500 118.42 118.42 C28 - N12 C27

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.810420 (12)0.888675 (9)0.224158 (6)0.01102 (6)
Mn10.45358 (5)1.11286 (4)0.17557 (3)0.01337 (12)
Mn20.47767 (5)0.64730 (4)0.15037 (2)0.01383 (12)
O10.4226 (3)1.0759 (2)0.27269 (13)0.0256 (7)
H10.487 (2)1.069 (3)0.2960 (19)0.031*
H20.390 (4)1.116 (2)0.289 (2)0.031*
O20.3345 (2)1.2232 (2)0.18036 (15)0.0263 (7)
H30.2623 (17)1.227 (3)0.175 (2)0.032*
H40.359 (4)1.2694 (18)0.196 (2)0.032*
O30.4296 (3)0.6143 (2)0.24405 (14)0.0256 (7)
H50.482 (3)0.586 (3)0.265 (2)0.031*
H60.417 (4)0.654 (2)0.2679 (18)0.031*
O40.3504 (2)0.7532 (2)0.15113 (13)0.0233 (6)
H70.281 (2)0.742 (3)0.154 (2)0.028*
H80.370 (4)0.790 (2)0.1789 (17)0.028*
O51.1463 (3)1.3841 (2)0.25177 (16)0.0298 (7)
H291.110 (4)1.4308 (19)0.249 (2)0.036*
H301.217 (2)1.396 (3)0.253 (2)0.036*
O61.1027 (3)1.24366 (19)0.17341 (14)0.0254 (7)
H311.096 (4)1.288 (2)0.1945 (19)0.030*
H321.055 (3)1.240 (3)0.1406 (14)0.030*
O70.9086 (3)1.22249 (19)0.08148 (14)0.0233 (6)
H330.898 (4)1.1743 (17)0.096 (2)0.028*
H340.866 (3)1.254 (3)0.0984 (19)0.028*
O80.9834 (3)1.2948 (2)0.02763 (16)0.0358 (8)
H360.956 (4)1.274 (3)0.0026 (17)0.043*
H351.035 (3)1.265 (3)0.039 (2)0.043*
O90.8777 (3)1.2844 (2)0.14985 (14)0.0283 (7)
H370.901 (4)1.298 (3)0.1123 (11)0.034*
H380.913 (4)1.241 (2)0.160 (2)0.034*
O100.8624 (3)0.5937 (3)0.14671 (17)0.0539 (11)
N10.5679 (3)1.0016 (2)0.18906 (15)0.0190 (7)
N20.9176 (3)0.7068 (2)0.28805 (16)0.0213 (7)
N30.6026 (3)0.7475 (2)0.17782 (14)0.0175 (7)
N40.8920 (3)1.0454 (2)0.32493 (14)0.0178 (7)
N50.8726 (3)1.0573 (2)0.13964 (15)0.0204 (7)
N61.1000 (3)0.8869 (2)0.24367 (16)0.0223 (8)
N70.8601 (3)0.7988 (2)0.09063 (16)0.0277 (8)
N80.6807 (3)0.8526 (2)0.34906 (16)0.0286 (8)
N90.3003 (3)1.0525 (2)0.11361 (13)0.0148 (7)
N100.4871 (3)1.1251 (2)0.07622 (15)0.0166 (7)
N110.3369 (3)0.5667 (2)0.09489 (15)0.0195 (7)
N120.5095 (3)0.6474 (2)0.04966 (14)0.0155 (7)
C10.6537 (3)0.9626 (2)0.20079 (16)0.0144 (8)
C20.8776 (3)0.7701 (3)0.26592 (17)0.0186 (8)
C30.6743 (3)0.7977 (3)0.19365 (16)0.0149 (8)
C40.8609 (3)0.9891 (2)0.29147 (16)0.0142 (8)
C50.8501 (3)0.9979 (3)0.16697 (16)0.0145 (8)
C61.0001 (3)0.8900 (2)0.23681 (17)0.0163 (8)
C70.8414 (3)0.8311 (3)0.13671 (17)0.0180 (8)
C80.7253 (3)0.8661 (3)0.30556 (18)0.0189 (8)
C90.2107 (3)1.0146 (3)0.13495 (18)0.0203 (8)
H90.20541.01960.17860.024*
C100.1254 (3)0.9682 (3)0.09624 (19)0.0234 (9)
H100.06470.94030.11310.028*
C110.1318 (3)0.9641 (3)0.03249 (19)0.0258 (10)
H110.07540.93260.00470.031*
C120.2215 (3)1.0065 (3)0.00926 (18)0.0225 (9)
H120.22471.00650.03470.027*
C130.3053 (3)1.0485 (3)0.05091 (17)0.0172 (8)
C140.4080 (3)1.0904 (2)0.03018 (17)0.0156 (8)
C150.4242 (4)1.0915 (3)0.03304 (18)0.0210 (9)
H150.36751.06730.06500.025*
C160.5243 (4)1.1284 (3)0.04842 (19)0.0257 (10)
H160.53691.12970.09110.031*
C170.6054 (4)1.1632 (3)0.00101 (19)0.0244 (9)
H170.67491.18820.01050.029*
C180.5835 (3)1.1609 (3)0.06040 (18)0.0190 (8)
H180.63871.18570.09280.023*
C190.2547 (4)0.5260 (3)0.1201 (2)0.0264 (9)
H190.25840.52740.16470.032*
C200.1643 (4)0.4819 (3)0.0842 (2)0.0325 (11)
H200.10720.45340.10360.039*
C210.1592 (4)0.4803 (3)0.0193 (2)0.0335 (11)
H210.09810.45070.00670.040*
C220.2434 (4)0.5220 (3)0.0073 (2)0.0301 (10)
H220.24050.52190.05180.036*
C230.3331 (3)0.5645 (3)0.03160 (18)0.0193 (8)
C240.4317 (4)0.6061 (2)0.00663 (18)0.0183 (8)
C250.4452 (4)0.6007 (3)0.05668 (19)0.0270 (10)
H250.38920.57170.08640.032*
C260.5413 (4)0.6380 (3)0.0755 (2)0.0296 (10)
H260.55190.63500.11850.036*
C270.6226 (4)0.6800 (3)0.03138 (18)0.0238 (9)
H270.68980.70550.04330.029*
C280.6025 (3)0.6833 (3)0.03048 (18)0.0195 (8)
H280.65710.71250.06080.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01106 (9)0.01089 (9)0.01059 (8)0.00028 (6)0.00020 (5)0.00007 (5)
Mn10.0120 (3)0.0139 (3)0.0135 (3)0.0009 (2)0.0000 (2)0.0007 (2)
Mn20.0134 (3)0.0148 (3)0.0129 (3)0.0006 (2)0.0007 (2)0.0002 (2)
O10.0334 (18)0.0266 (17)0.0183 (15)0.0010 (15)0.0087 (12)0.0014 (12)
O20.0149 (14)0.0209 (17)0.0412 (18)0.0019 (13)0.0012 (13)0.0107 (13)
O30.0317 (17)0.0262 (18)0.0205 (15)0.0088 (14)0.0095 (13)0.0049 (12)
O40.0155 (14)0.0284 (18)0.0263 (16)0.0017 (14)0.0045 (12)0.0002 (12)
O50.0197 (16)0.0264 (18)0.0425 (19)0.0022 (14)0.0022 (14)0.0066 (14)
O60.0232 (16)0.0232 (17)0.0286 (17)0.0015 (14)0.0009 (12)0.0042 (13)
O70.0291 (16)0.0187 (16)0.0238 (15)0.0002 (14)0.0098 (12)0.0006 (12)
O80.0362 (19)0.043 (2)0.0322 (18)0.0063 (17)0.0168 (15)0.0078 (15)
O90.0208 (15)0.036 (2)0.0292 (16)0.0044 (14)0.0079 (13)0.0056 (14)
O100.043 (2)0.082 (3)0.037 (2)0.024 (2)0.0055 (17)0.0118 (19)
N10.0197 (17)0.0174 (17)0.0192 (16)0.0025 (15)0.0011 (13)0.0010 (13)
N20.0149 (16)0.0215 (19)0.0274 (18)0.0006 (15)0.0031 (13)0.0037 (15)
N30.0150 (16)0.0187 (18)0.0184 (16)0.0007 (15)0.0012 (12)0.0032 (13)
N40.0216 (17)0.0176 (18)0.0139 (16)0.0047 (15)0.0016 (13)0.0024 (13)
N50.0264 (18)0.0180 (18)0.0165 (16)0.0043 (15)0.0024 (13)0.0007 (13)
N60.0191 (19)0.023 (2)0.0252 (18)0.0017 (15)0.0042 (14)0.0036 (14)
N70.0290 (19)0.031 (2)0.0245 (19)0.0028 (17)0.0078 (15)0.0086 (16)
N80.038 (2)0.025 (2)0.0241 (19)0.0143 (18)0.0110 (16)0.0029 (15)
N90.0128 (15)0.0194 (18)0.0120 (15)0.0008 (14)0.0014 (12)0.0004 (12)
N100.0192 (17)0.0133 (17)0.0175 (16)0.0021 (14)0.0034 (13)0.0017 (12)
N110.0170 (16)0.0186 (18)0.0217 (17)0.0005 (15)0.0010 (13)0.0002 (14)
N120.0174 (16)0.0151 (17)0.0143 (15)0.0025 (14)0.0028 (12)0.0010 (12)
C10.0200 (19)0.0131 (19)0.0106 (17)0.0020 (17)0.0040 (14)0.0030 (13)
C20.0145 (19)0.024 (2)0.0165 (19)0.0045 (17)0.0011 (14)0.0007 (16)
C30.0152 (18)0.016 (2)0.0144 (17)0.0056 (17)0.0052 (14)0.0012 (14)
C40.0108 (17)0.018 (2)0.0143 (18)0.0011 (16)0.0039 (13)0.0022 (15)
C50.0118 (18)0.018 (2)0.0132 (17)0.0020 (16)0.0003 (13)0.0056 (15)
C60.021 (2)0.0124 (19)0.0155 (18)0.0018 (16)0.0038 (15)0.0011 (14)
C70.0161 (19)0.019 (2)0.0187 (19)0.0046 (17)0.0029 (15)0.0002 (16)
C80.022 (2)0.018 (2)0.0163 (19)0.0001 (17)0.0004 (16)0.0009 (15)
C90.020 (2)0.021 (2)0.0195 (19)0.0019 (18)0.0037 (15)0.0003 (16)
C100.0148 (19)0.027 (2)0.028 (2)0.0047 (18)0.0024 (16)0.0007 (17)
C110.019 (2)0.030 (2)0.026 (2)0.0003 (19)0.0062 (16)0.0091 (18)
C120.025 (2)0.025 (2)0.0152 (19)0.0021 (19)0.0021 (16)0.0027 (16)
C130.0168 (19)0.017 (2)0.0175 (18)0.0056 (17)0.0001 (15)0.0015 (15)
C140.0177 (19)0.0133 (19)0.0163 (18)0.0072 (16)0.0041 (14)0.0046 (14)
C150.028 (2)0.020 (2)0.0142 (18)0.0077 (18)0.0037 (16)0.0024 (15)
C160.034 (2)0.025 (2)0.020 (2)0.011 (2)0.0123 (18)0.0064 (17)
C170.025 (2)0.022 (2)0.028 (2)0.0046 (19)0.0121 (17)0.0100 (17)
C180.0126 (18)0.018 (2)0.027 (2)0.0014 (17)0.0049 (15)0.0027 (16)
C190.022 (2)0.025 (2)0.033 (2)0.0023 (19)0.0067 (18)0.0006 (18)
C200.022 (2)0.027 (3)0.047 (3)0.005 (2)0.003 (2)0.002 (2)
C210.024 (2)0.029 (3)0.043 (3)0.005 (2)0.006 (2)0.007 (2)
C220.033 (2)0.027 (2)0.025 (2)0.005 (2)0.0101 (19)0.0022 (18)
C230.022 (2)0.012 (2)0.022 (2)0.0077 (17)0.0013 (16)0.0004 (15)
C240.023 (2)0.015 (2)0.0157 (18)0.0065 (17)0.0001 (15)0.0016 (14)
C250.038 (3)0.028 (2)0.0140 (19)0.007 (2)0.0021 (17)0.0022 (16)
C260.046 (3)0.026 (2)0.018 (2)0.013 (2)0.0090 (19)0.0028 (17)
C270.031 (2)0.021 (2)0.021 (2)0.0073 (19)0.0110 (17)0.0046 (16)
C280.023 (2)0.017 (2)0.0181 (19)0.0040 (18)0.0033 (15)0.0017 (15)
Geometric parameters (Å, º) top
W1—C22.142 (4)N6—C61.153 (5)
W1—C42.144 (4)N7—C71.160 (5)
W1—C32.149 (4)N8—C81.157 (5)
W1—C12.150 (4)N9—C91.343 (5)
W1—C72.159 (4)N9—C131.356 (5)
W1—C82.170 (4)N10—C181.346 (5)
W1—C62.186 (4)N10—C141.351 (5)
W1—C52.187 (4)N11—C191.333 (5)
Mn1—N2i2.151 (3)N11—C231.351 (5)
Mn1—N12.176 (3)N12—C281.342 (5)
Mn1—O22.221 (3)N12—C241.349 (5)
Mn1—N102.234 (3)C9—C101.391 (5)
Mn1—O12.244 (3)C9—H90.9500
Mn1—N92.254 (3)C10—C111.382 (6)
Mn2—N32.150 (3)C10—H100.9500
Mn2—N4ii2.201 (3)C11—C121.395 (6)
Mn2—O42.219 (3)C11—H110.9500
Mn2—O32.229 (3)C12—C131.378 (5)
Mn2—N122.248 (3)C12—H120.9500
Mn2—N112.249 (3)C13—C141.493 (5)
O1—H10.836 (19)C14—C151.398 (5)
O1—H20.842 (19)C15—C161.388 (6)
O2—H30.834 (19)C15—H150.9500
O2—H40.822 (19)C16—C171.384 (6)
O3—H50.824 (19)C16—H160.9500
O3—H60.829 (19)C17—C181.381 (5)
O4—H70.837 (19)C17—H170.9500
O4—H80.830 (19)C18—H180.9500
O5—H290.835 (19)C19—C201.385 (6)
O5—H300.836 (19)C19—H190.9500
O6—H310.833 (19)C20—C211.383 (6)
O6—H320.827 (19)C20—H200.9500
O7—H330.826 (19)C21—C221.374 (7)
O7—H340.824 (19)C21—H210.9500
O8—H360.831 (19)C22—C231.396 (5)
O8—H350.828 (19)C22—H220.9500
O9—H370.834 (19)C23—C241.492 (6)
O9—H380.839 (19)C24—C251.394 (5)
N1—C11.163 (5)C25—C261.378 (7)
N2—C21.158 (5)C25—H250.9500
N2—Mn1ii2.151 (3)C26—C271.391 (6)
N3—C31.154 (5)C26—H260.9500
N4—C41.153 (5)C27—C281.384 (5)
N4—Mn2i2.201 (3)C27—H270.9500
N5—C51.146 (5)C28—H280.9500
C2—W1—C4107.63 (14)C9—N9—Mn1124.7 (2)
C2—W1—C376.34 (14)C13—N9—Mn1116.6 (2)
C4—W1—C3142.60 (13)C18—N10—C14118.8 (3)
C2—W1—C1142.96 (14)C18—N10—Mn1123.8 (3)
C4—W1—C184.20 (13)C14—N10—Mn1117.3 (2)
C3—W1—C173.85 (14)C19—N11—C23119.1 (3)
C2—W1—C784.55 (15)C19—N11—Mn2124.2 (3)
C4—W1—C7145.08 (14)C23—N11—Mn2116.7 (3)
C3—W1—C771.42 (14)C28—N12—C24118.5 (3)
C1—W1—C7105.89 (14)C28—N12—Mn2124.1 (2)
C2—W1—C873.08 (15)C24—N12—Mn2117.4 (3)
C4—W1—C871.85 (14)N1—C1—W1178.5 (3)
C3—W1—C874.17 (14)N2—C2—W1177.7 (3)
C1—W1—C878.01 (14)N3—C3—W1178.6 (3)
C7—W1—C8142.45 (15)N4—C4—W1175.6 (3)
C2—W1—C670.17 (14)N5—C5—W1176.7 (3)
C4—W1—C675.29 (14)N6—C6—W1177.0 (3)
C3—W1—C6136.71 (14)N7—C7—W1178.2 (4)
C1—W1—C6146.11 (14)N8—C8—W1178.8 (4)
C7—W1—C678.73 (14)N9—C9—C10123.1 (4)
C8—W1—C6119.10 (14)N9—C9—H9118.4
C2—W1—C5143.73 (14)C10—C9—H9118.4
C4—W1—C575.60 (13)C11—C10—C9117.9 (4)
C3—W1—C5123.59 (13)C11—C10—H10121.1
C1—W1—C572.70 (14)C9—C10—H10121.1
C7—W1—C575.84 (14)C10—C11—C12119.6 (4)
C8—W1—C5137.85 (14)C10—C11—H11120.2
C6—W1—C576.19 (13)C12—C11—H11120.2
N2i—Mn1—N196.57 (13)C13—C12—C11119.2 (4)
N2i—Mn1—O282.20 (12)C13—C12—H12120.4
N1—Mn1—O2169.50 (12)C11—C12—H12120.4
N2i—Mn1—N1093.95 (12)N9—C13—C12121.7 (4)
N1—Mn1—N1089.84 (12)N9—C13—C14116.0 (3)
O2—Mn1—N10100.64 (12)C12—C13—C14122.3 (3)
N2i—Mn1—O192.57 (12)N10—C14—C15121.4 (4)
N1—Mn1—O181.90 (12)N10—C14—C13116.4 (3)
O2—Mn1—O187.73 (12)C15—C14—C13122.2 (4)
N10—Mn1—O1170.02 (12)C16—C15—C14119.0 (4)
N2i—Mn1—N9159.83 (12)C16—C15—H15120.5
N1—Mn1—N999.14 (12)C14—C15—H15120.5
O2—Mn1—N984.59 (11)C17—C16—C15119.4 (4)
N10—Mn1—N973.59 (11)C17—C16—H16120.3
O1—Mn1—N9102.08 (11)C15—C16—H16120.3
N3—Mn2—N4ii92.55 (12)C18—C17—C16118.7 (4)
N3—Mn2—O483.38 (12)C18—C17—H17120.6
N4ii—Mn2—O4165.86 (11)C16—C17—H17120.6
N3—Mn2—O3100.21 (12)N10—C18—C17122.7 (4)
N4ii—Mn2—O383.18 (11)N10—C18—H18118.7
O4—Mn2—O384.22 (11)C17—C18—H18118.7
N3—Mn2—N1293.06 (12)N11—C19—C20122.9 (4)
N4ii—Mn2—N1291.00 (11)N11—C19—H19118.6
O4—Mn2—N12102.71 (11)C20—C19—H19118.6
O3—Mn2—N12165.71 (12)C21—C20—C19118.4 (4)
N3—Mn2—N11162.59 (12)C21—C20—H20120.8
N4ii—Mn2—N1198.25 (12)C19—C20—H20120.8
O4—Mn2—N1189.14 (11)C22—C21—C20119.3 (4)
O3—Mn2—N1194.61 (12)C22—C21—H21120.4
N12—Mn2—N1173.24 (12)C20—C21—H21120.4
Mn1—O1—H1109 (3)C21—C22—C23119.6 (4)
Mn1—O1—H2110 (3)C21—C22—H22120.2
H1—O1—H2106 (5)C23—C22—H22120.2
Mn1—O2—H3133 (3)N11—C23—C22120.8 (4)
Mn1—O2—H4121 (3)N11—C23—C24116.5 (3)
H3—O2—H4106 (5)C22—C23—C24122.6 (4)
Mn2—O3—H5110 (3)N12—C24—C25121.7 (4)
Mn2—O3—H6118 (3)N12—C24—C23115.8 (3)
H5—O3—H6105 (5)C25—C24—C23122.5 (4)
Mn2—O4—H7120 (3)C26—C25—C24119.0 (4)
Mn2—O4—H8114 (3)C26—C25—H25120.5
H7—O4—H8104 (4)C24—C25—H25120.5
H29—O5—H30107 (5)C25—C26—C27119.7 (4)
H31—O6—H32114 (4)C25—C26—H26120.1
H33—O7—H34104 (5)C27—C26—H26120.1
H36—O8—H35114 (5)C28—C27—C26117.9 (4)
H37—O9—H38111 (5)C28—C27—H27121.0
C1—N1—Mn1158.7 (3)C26—C27—H27121.0
C2—N2—Mn1ii159.8 (3)N12—C28—C27123.2 (4)
C3—N3—Mn2176.1 (3)N12—C28—H28118.4
C4—N4—Mn2i146.4 (3)C27—C28—H28118.4
C9—N9—C13118.4 (3)
N2i—Mn1—N1—C17.6 (8)C5—W1—C4—N425 (4)
O2—Mn1—N1—C190.2 (11)C2—W1—C5—N595 (6)
N10—Mn1—N1—C186.4 (8)C4—W1—C5—N55 (6)
O1—Mn1—N1—C199.3 (8)C3—W1—C5—N5149 (6)
N9—Mn1—N1—C1159.7 (8)C1—W1—C5—N593 (6)
N4ii—Mn2—N3—C33 (4)C7—W1—C5—N5155 (6)
O4—Mn2—N3—C3163 (4)C8—W1—C5—N545 (6)
O3—Mn2—N3—C380 (4)C6—W1—C5—N573 (6)
N12—Mn2—N3—C394 (4)C2—W1—C6—N619 (6)
N11—Mn2—N3—C3132 (4)C4—W1—C6—N6135 (6)
N2i—Mn1—N9—C9128.7 (4)C3—W1—C6—N622 (7)
N1—Mn1—N9—C990.6 (3)C1—W1—C6—N6171 (6)
O2—Mn1—N9—C979.5 (3)C7—W1—C6—N669 (6)
N10—Mn1—N9—C9177.7 (3)C8—W1—C6—N676 (6)
O1—Mn1—N9—C97.0 (3)C5—W1—C6—N6147 (6)
N2i—Mn1—N9—C1357.1 (5)C2—W1—C7—N720 (12)
N1—Mn1—N9—C1383.6 (3)C4—W1—C7—N794 (12)
O2—Mn1—N9—C13106.3 (3)C3—W1—C7—N797 (12)
N10—Mn1—N9—C133.6 (3)C1—W1—C7—N7163 (12)
O1—Mn1—N9—C13167.2 (3)C8—W1—C7—N772 (12)
N2i—Mn1—N10—C1817.3 (3)C6—W1—C7—N751 (12)
N1—Mn1—N10—C1879.3 (3)C5—W1—C7—N7130 (12)
O2—Mn1—N10—C18100.1 (3)C2—W1—C8—N811 (18)
O1—Mn1—N10—C18113.3 (7)C4—W1—C8—N8127 (18)
N9—Mn1—N10—C18178.8 (3)C3—W1—C8—N869 (18)
N2i—Mn1—N10—C14166.1 (3)C1—W1—C8—N8145 (18)
N1—Mn1—N10—C1497.3 (3)C7—W1—C8—N845 (18)
O2—Mn1—N10—C1483.3 (3)C6—W1—C8—N866 (18)
O1—Mn1—N10—C1463.3 (8)C5—W1—C8—N8168 (18)
N9—Mn1—N10—C142.2 (3)C13—N9—C9—C102.8 (6)
N3—Mn2—N11—C19142.6 (4)Mn1—N9—C9—C10171.3 (3)
N4ii—Mn2—N11—C1989.6 (3)N9—C9—C10—C112.4 (6)
O4—Mn2—N11—C1978.3 (3)C9—C10—C11—C120.6 (6)
O3—Mn2—N11—C195.8 (3)C10—C11—C12—C133.0 (6)
N12—Mn2—N11—C19178.1 (4)C9—N9—C13—C120.2 (6)
N3—Mn2—N11—C2333.3 (6)Mn1—N9—C13—C12174.4 (3)
N4ii—Mn2—N11—C2394.5 (3)C9—N9—C13—C14178.9 (3)
O4—Mn2—N11—C2397.6 (3)Mn1—N9—C13—C144.3 (4)
O3—Mn2—N11—C23178.2 (3)C11—C12—C13—N92.7 (6)
N12—Mn2—N11—C235.9 (3)C11—C12—C13—C14176.0 (4)
N3—Mn2—N12—C2816.4 (3)C18—N10—C14—C150.3 (5)
N4ii—Mn2—N12—C2876.2 (3)Mn1—N10—C14—C15177.1 (3)
O4—Mn2—N12—C28100.3 (3)C18—N10—C14—C13177.6 (3)
O3—Mn2—N12—C28141.9 (4)Mn1—N10—C14—C130.8 (4)
N11—Mn2—N12—C28174.5 (3)N9—C13—C14—N102.4 (5)
N3—Mn2—N12—C24165.9 (3)C12—C13—C14—N10176.4 (4)
N4ii—Mn2—N12—C24101.5 (3)N9—C13—C14—C15179.8 (3)
O4—Mn2—N12—C2482.0 (3)C12—C13—C14—C151.5 (6)
O3—Mn2—N12—C2435.8 (6)N10—C14—C15—C160.6 (6)
N11—Mn2—N12—C243.2 (3)C13—C14—C15—C16177.2 (4)
Mn1—N1—C1—W1127 (14)C14—C15—C16—C170.0 (6)
C2—W1—C1—N119 (14)C15—C16—C17—C180.7 (6)
C4—W1—C1—N193 (14)C14—N10—C18—C170.5 (6)
C3—W1—C1—N156 (14)Mn1—N10—C18—C17176.1 (3)
C7—W1—C1—N1121 (14)C16—C17—C18—N101.0 (6)
C8—W1—C1—N120 (14)C23—N11—C19—C200.6 (6)
C6—W1—C1—N1145 (14)Mn2—N11—C19—C20175.2 (3)
C5—W1—C1—N1170 (100)N11—C19—C20—C210.2 (7)
Mn1ii—N2—C2—W19 (10)C19—C20—C21—C220.2 (7)
C4—W1—C2—N277 (9)C20—C21—C22—C230.6 (7)
C3—W1—C2—N2141 (9)C19—N11—C23—C221.4 (6)
C1—W1—C2—N2179 (100)Mn2—N11—C23—C22174.7 (3)
C7—W1—C2—N269 (9)C19—N11—C23—C24176.1 (4)
C8—W1—C2—N2141 (9)Mn2—N11—C23—C247.8 (4)
C6—W1—C2—N211 (9)C21—C22—C23—N111.4 (6)
C5—W1—C2—N212 (9)C21—C22—C23—C24175.9 (4)
Mn2—N3—C3—W110 (18)C28—N12—C24—C250.5 (6)
C2—W1—C3—N34 (14)Mn2—N12—C24—C25178.3 (3)
C4—W1—C3—N3106 (14)C28—N12—C24—C23177.5 (3)
C1—W1—C3—N3162 (14)Mn2—N12—C24—C230.4 (4)
C7—W1—C3—N384 (14)N11—C23—C24—N124.9 (5)
C8—W1—C3—N380 (14)C22—C23—C24—N12177.7 (4)
C6—W1—C3—N335 (14)N11—C23—C24—C25173.0 (4)
C5—W1—C3—N3142 (14)C22—C23—C24—C254.4 (6)
Mn2i—N4—C4—W121 (5)N12—C24—C25—C260.5 (6)
C2—W1—C4—N4118 (4)C23—C24—C25—C26177.3 (4)
C3—W1—C4—N4152 (4)C24—C25—C26—C270.1 (6)
C1—W1—C4—N498 (4)C25—C26—C27—C280.7 (6)
C7—W1—C4—N411 (4)C24—N12—C28—C270.2 (6)
C8—W1—C4—N4178 (4)Mn2—N12—C28—C27177.6 (3)
C6—W1—C4—N454 (4)C26—C27—C28—N120.7 (6)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O10i0.84 (2)2.02 (2)2.822 (5)162 (5)
O1—H2···O9iii0.84 (2)2.04 (3)2.834 (4)156 (5)
O2—H3···O6iv0.83 (2)1.87 (2)2.703 (4)173 (5)
O2—H4···N6i0.82 (2)2.25 (2)3.052 (4)165 (5)
O3—H6···O6ii0.83 (2)1.92 (2)2.744 (4)176 (5)
O3—H5···N5ii0.82 (2)2.48 (3)3.238 (4)153 (4)
O4—H8···O5ii0.83 (2)2.12 (2)2.907 (5)159 (4)
O4—H7···O9v0.84 (2)1.89 (2)2.722 (4)174 (4)
O5—H30···N6vi0.84 (2)2.13 (2)2.946 (5)164 (5)
O5—H29···O1i0.84 (2)2.32 (3)3.111 (4)157 (5)
O6—H32···O70.83 (2)1.97 (2)2.773 (4)162 (5)
O6—H31···O50.83 (2)1.97 (3)2.753 (4)157 (4)
O7—H34···N8i0.82 (2)2.02 (2)2.810 (5)159 (4)
O7—H33···N50.83 (2)2.09 (2)2.915 (5)175 (4)
O8—H35···N7vii0.83 (2)2.03 (2)2.840 (5)165 (5)
O8—H36···O70.83 (2)2.03 (2)2.854 (4)174 (5)
O9—H38···N6vii0.84 (2)2.66 (3)3.372 (5)143 (4)
O9—H37···O80.83 (2)1.91 (2)2.715 (5)161 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x1/2, y+5/2, z+1/2; (iv) x1, y, z; (v) x+1, y+2, z; (vi) x+5/2, y+1/2, z+1/2; (vii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[Mn2W(CN)8(C10H8N2)2(H2O)4]·6H2O
Mr992.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)11.6673 (3), 15.5511 (4), 21.4339 (7)
β (°) 99.213 (1)
V3)3838.78 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.70
Crystal size (mm)0.90 × 0.20 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.135, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
33108, 8606, 7342
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.079, 1.03
No. of reflections8606
No. of parameters533
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.47, 1.92

Computer programs: PROCESS-AUTO (Rigaku, 2007), CrystalStructure (Molecular Structure Corporation & Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and VESTA (Momma & Izumi, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O10i0.836 (19)2.02 (2)2.822 (5)162 (5)
O1—H2···O9ii0.842 (19)2.04 (3)2.834 (4)156 (5)
O2—H3···O6iii0.834 (19)1.87 (2)2.703 (4)173 (5)
O2—H4···N6i0.822 (19)2.25 (2)3.052 (4)165 (5)
O3—H6···O6iv0.829 (19)1.92 (2)2.744 (4)176 (5)
O3—H5···N5iv0.824 (19)2.48 (3)3.238 (4)153 (4)
O4—H8···O5iv0.830 (19)2.12 (2)2.907 (5)159 (4)
O4—H7···O9v0.837 (19)1.89 (2)2.722 (4)174 (4)
O5—H30···N6vi0.836 (19)2.13 (2)2.946 (5)164 (5)
O5—H29···O1i0.835 (19)2.32 (3)3.111 (4)157 (5)
O6—H32···O70.827 (19)1.97 (2)2.773 (4)162 (5)
O6—H31···O50.833 (19)1.97 (3)2.753 (4)157 (4)
O7—H34···N8i0.824 (19)2.02 (2)2.810 (5)159 (4)
O7—H33···N50.826 (19)2.09 (2)2.915 (5)175 (4)
O8—H35···N7vii0.828 (19)2.03 (2)2.840 (5)165 (5)
O8—H36···O70.831 (19)2.03 (2)2.854 (4)174 (5)
O9—H38···N6vii0.839 (19)2.66 (3)3.372 (5)143 (4)
O9—H37···O80.834 (19)1.91 (2)2.715 (5)161 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+5/2, z+1/2; (iii) x1, y, z; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y+2, z; (vi) x+5/2, y+1/2, z+1/2; (vii) x+2, y+2, z.
 

Acknowledgements

The present research was supported in part by a Grant-in-Aid for Young Scientists (S) from JSPS, the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST), Grant for the Global COE Program, "Chemistry Innovation through Cooperation of Science and Engineering", the Photon Frontier Network Program from MEXT, Japan, the Center for Nano Lithography & Analysis, The University of Tokyo, supported by MEXT Japan, the Izumi Science and Technology Foundation, and The Asahi Glass Foundation.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHerrera, J. M., Armentano, D., Munno, G., Lloret, F., Julve, M. & Verdaguer, M. (2003). New J. Chem. 27, 128–133.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLeipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241–322.  CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2007). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMomma, K. & Izumi, F. (2006). IUCr Commission on Crystallographic Computing Newsletter, 130, 106–119.  Google Scholar
First citationOhkoshi, S., Hamada, Y., Matsuda, T., Tsunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048–3054.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084–3085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2007). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Pinkowicz, D., Nowicka, B., Korzeniak, T., Bałanda, M., Wasiutyński, T., Pełka, R., Makarewicz, M., Czapla, M., Rams, M., Gaweł, B. & Łasocha, W. (2009). CrystEngComm, 11, 2032–2039.  Web of Science CrossRef CAS Google Scholar
First citationSieklucka, B., Szklarzewicz, J., Kemp, T. J. & Errington, W. (2000). Inorg. Chem. 39, 5156–5158.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m702-m703
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds