metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyanido­tetra­kis­(tri­methyl­phosphine)cobalt(I)

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: runner-one@sdu.edu.cn

(Received 15 January 2011; accepted 23 March 2011; online 26 March 2011)

The title compound, [Co(CN)(C3H9P)4], was obtained as a product of the reaction of [Co(PMe3)4] with a molar equivalent of 2,6-difluoro­benzonitrile in diethyl ether. This compound is stable in the air for several hours, but rapidly decomposes at room temperature in solution. The cobalt(I) atom has s trigonal–bipyramidal coordination enviroment in which the cyano group and one of the PMe3 groups are in the axial positions.

Related literature

For related cobalt(II) compounds, see: Yu et al. (2008[Yu, F., Wang, Q. & Li, X. (2008). Acta Cryst. E64, m112.]); Li et al. (2006[Li, X., Sun, H. & Yu, F. (2006). Organometallics, 25, 4695-4697.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(CN)(C3H9P)4]

  • Mr = 389.24

  • Monoclinic, P 21 /c

  • a = 13.160 (3) Å

  • b = 9.6136 (19) Å

  • c = 17.971 (4) Å

  • β = 93.09 (3)°

  • V = 2270.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.395, Tmax = 0.434

  • 11732 measured reflections

  • 4438 independent reflections

  • 3663 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.216

  • S = 1.06

  • 4438 reflections

  • 185 parameters

  • 150 restraints

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −2.00 e Å−3

Table 1
Selected geometric parameters (Å, °)

C13—N1 1.166 (7)
Co1—C13 1.896 (5)
Co1—P2 2.2018 (15)
Co1—P1 2.2082 (17)
Co1—P4 2.2115 (17)
Co1—P3 2.2272 (17)
N1—C13—Co1 178.8 (6)
C13—Co1—P2 179.02 (19)
C13—Co1—P1 83.92 (19)
P2—Co1—P1 97.05 (7)
C13—Co1—P4 83.39 (18)
P2—Co1—P4 96.24 (6)
P1—Co1—P4 119.14 (8)
C13—Co1—P3 84.66 (19)
P2—Co1—P3 94.75 (7)
P1—Co1—P3 118.05 (8)
P4—Co1—P3 119.55 (8)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title molecule (Fig. 1, Table 1) the cobalt(I) atom has trigonal planar coordination geometry. Three PMe3 groups using P1, P3 and P4 form the trigonal plane and the fourth PMe3 group, using P2, and the cyano group are in the axial position. The axial groups are linear with P2-Co1-C13 of 179.02 (1)°. The sum of the bond angles in the trigonal plane (356.75 (8)°) indicates only slightly distorted planarity. We have previously reported two related cobalt(II) structures. In one, (Yu et al., 2008), the axial PMe3 group is replaced by a phenyl and in the other, it is replaced by a 2,6-difluorophenyl group (Li et al., 2006). These structures show a distorted square pyramidal coordination, which is different from the title compound.

Related literature top

For related cobalt(II) compounds see: Yu et al. (2008); Li et al. (2006).

Experimental top

A sample of Co(PMe3)4 (1.0 g, 2.75 mmol) in 30 ml of diethyl ether was combined with a solution of 2,6-difluorobenzonitrile (0.19 g, 1.36 mmol) in diethyl ether (20 ml) at -80%A. The reaction mixture was warmed to ambient temperature and stirred for 24 h to form a red solution. The volatiles were removed in vacuo, and the resulting solid was extracted with pentane (50 ml). Crystallization from its pentane solution at -15 °C afforded red crystals suitable for X-ray diffraction analysis (yield 0.22 g, 42%), dec > 120 °C. The datum crystal was coated with perfluoropolyether to retard decomposition due to air sensitivity during data collection.

Refinement top

All H atoms on C were placed in calculated positions with a C—H bond distance of 0.96 Å and Uiso(H) = 1.5Ueq of the carrier atom. Large thermal motion of the methyl groups required that restraints be applied to the thermal parameters of several atoms, namely, SIMU 0.001 0.002 3.8 P3 C7 C8 C9; SIMU 0.01 0.02 3.8 P4 C10 C11 C12; ISOR 0.01 $C. The maximum and minimum peaks in the final electron density map had values of 1.06 e/Å3 and -2.00 e/Å3 which were located 0.03 Å from P3 and 0.05 Å from C7, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound showing 30% probability displacement ellipsoids.
Cyanidotetrakis(trimethylphosphine)cobalt(I) top
Crystal data top
[Co(CN)(C3H9P)4]F(000) = 832.0
Mr = 389.24Dx = 1.139 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4976 reflections
a = 13.160 (3) Åθ = 2.3–26.0°
b = 9.6136 (19) ŵ = 1.03 mm1
c = 17.971 (4) ÅT = 293 K
β = 93.09 (3)°Block, red
V = 2270.3 (8) Å30.25 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
4438 independent reflections
Radiation source: fine-focus sealed tube3663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1516
Tmin = 0.395, Tmax = 0.434k = 1111
11732 measured reflectionsl = 1522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1278P)2 + 4.380P]
where P = (Fo2 + 2Fc2)/3
4438 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 1.06 e Å3
150 restraintsΔρmin = 2.00 e Å3
Crystal data top
[Co(CN)(C3H9P)4]V = 2270.3 (8) Å3
Mr = 389.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.160 (3) ŵ = 1.03 mm1
b = 9.6136 (19) ÅT = 293 K
c = 17.971 (4) Å0.25 × 0.23 × 0.22 mm
β = 93.09 (3)°
Data collection top
Bruker APEXII
diffractometer
4438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3663 reflections with I > 2σ(I)
Tmin = 0.395, Tmax = 0.434Rint = 0.020
11732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068150 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.06Δρmax = 1.06 e Å3
4438 reflectionsΔρmin = 2.00 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0427 (7)0.5719 (11)0.6108 (6)0.112 (3)
H1A0.01420.55450.64070.167*
H1B0.07560.48550.60020.167*
H1C0.01940.61540.56490.167*
C20.1727 (9)0.5681 (11)0.7382 (6)0.125 (4)
H2A0.21140.61740.77660.187*
H2B0.21340.49480.71920.187*
H2C0.11300.52920.75850.187*
C30.0419 (8)0.7949 (12)0.7113 (7)0.123 (4)
H3A0.01180.73610.72710.184*
H3B0.01400.86510.67820.184*
H3C0.07540.83830.75400.184*
C40.3468 (6)0.7624 (9)0.4375 (4)0.080 (2)
H4A0.41360.74180.45880.120*
H4B0.34160.86030.42730.120*
H4C0.33530.71120.39200.120*
C50.1325 (6)0.7398 (9)0.4449 (4)0.0768 (19)
H5A0.13540.68580.40020.115*
H5B0.12630.83660.43230.115*
H5C0.07480.71150.47160.115*
C60.2570 (7)0.5211 (8)0.4942 (4)0.080 (2)
H6A0.19980.47940.51670.120*
H6B0.31890.48770.51860.120*
H6C0.25570.49710.44240.120*
C70.5231 (5)0.8559 (9)0.6188 (4)0.0783 (9)
H7A0.50860.89250.56970.117*
H7B0.58710.80780.62030.117*
H7C0.52640.93090.65410.117*
C80.4623 (6)0.7086 (8)0.7401 (4)0.0771 (9)
H8A0.43080.62730.75970.116*
H8B0.44380.78870.76820.116*
H8C0.53490.69750.74360.116*
C90.4766 (5)0.5759 (8)0.6060 (4)0.0770 (9)
H9A0.54660.57040.62370.115*
H9B0.47270.57970.55250.115*
H9C0.44070.49540.62220.115*
C100.1996 (9)1.0851 (10)0.4832 (5)0.114 (3)
H10A0.19931.18490.48260.172*
H10B0.13301.05120.46830.172*
H10C0.24791.05130.44930.172*
C110.1338 (10)1.1173 (12)0.6267 (7)0.134 (3)
H11A0.13301.08660.67750.201*
H11B0.06911.09840.60160.201*
H11C0.14701.21540.62550.201*
C120.3430 (9)1.1417 (11)0.5971 (7)0.123 (3)
H12A0.40251.10460.57570.185*
H12B0.35571.15210.64990.185*
H12C0.32701.23080.57540.185*
C130.2731 (5)0.8878 (6)0.7120 (3)0.0545 (13)
Co10.26139 (5)0.80567 (6)0.61596 (3)0.0371 (3)
N10.2797 (6)0.9405 (7)0.7705 (3)0.0869 (19)
P10.13485 (13)0.68895 (18)0.66233 (9)0.0621 (5)
P20.25026 (12)0.71209 (15)0.50400 (7)0.0479 (4)
P30.41947 (12)0.7316 (2)0.64284 (9)0.0605 (4)
P40.23568 (14)1.02279 (15)0.57888 (9)0.0598 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.099 (5)0.129 (7)0.109 (6)0.062 (5)0.023 (5)0.026 (5)
C20.133 (7)0.130 (7)0.111 (6)0.039 (6)0.015 (5)0.045 (6)
C30.097 (6)0.142 (8)0.136 (7)0.010 (5)0.061 (6)0.021 (6)
C40.091 (5)0.105 (5)0.046 (3)0.014 (4)0.021 (3)0.007 (3)
C50.079 (4)0.086 (4)0.063 (4)0.010 (4)0.019 (3)0.003 (3)
C60.104 (5)0.061 (4)0.076 (4)0.000 (4)0.002 (4)0.019 (3)
C70.0674 (16)0.0953 (17)0.0713 (16)0.0130 (15)0.0047 (14)0.0044 (15)
C80.0674 (15)0.0951 (17)0.0678 (16)0.0156 (15)0.0053 (14)0.0044 (15)
C90.0670 (15)0.0934 (17)0.0696 (16)0.0167 (15)0.0053 (14)0.0069 (15)
C100.149 (6)0.085 (5)0.106 (5)0.007 (5)0.026 (5)0.023 (4)
C110.153 (7)0.102 (6)0.147 (7)0.044 (5)0.013 (6)0.008 (5)
C120.141 (6)0.082 (5)0.142 (6)0.031 (5)0.036 (5)0.022 (5)
C130.063 (3)0.056 (3)0.044 (3)0.002 (3)0.003 (2)0.005 (2)
Co10.0414 (4)0.0375 (4)0.0323 (4)0.0004 (2)0.0023 (3)0.0018 (2)
N10.117 (5)0.090 (4)0.053 (3)0.013 (4)0.001 (3)0.026 (3)
P10.0630 (10)0.0687 (10)0.0564 (9)0.0182 (7)0.0193 (7)0.0050 (7)
P20.0575 (8)0.0509 (8)0.0353 (7)0.0059 (6)0.0012 (6)0.0048 (5)
P30.0509 (8)0.0800 (10)0.0498 (8)0.0160 (7)0.0038 (6)0.0075 (7)
P40.0747 (10)0.0405 (8)0.0628 (9)0.0027 (7)0.0097 (8)0.0039 (6)
Geometric parameters (Å, º) top
C1—P11.863 (8)C7—H7C0.9600
C1—H1A0.9600C8—P31.820 (7)
C1—H1B0.9600C8—H8A0.9600
C1—H1C0.9600C8—H8B0.9600
C2—P11.840 (10)C8—H8C0.9600
C2—H2A0.9600C9—P31.816 (7)
C2—H2B0.9600C9—H9A0.9600
C2—H2C0.9600C9—H9B0.9600
C3—P11.850 (9)C9—H9C0.9600
C3—H3A0.9600C10—P41.858 (9)
C3—H3B0.9600C10—H10A0.9600
C3—H3C0.9600C10—H10B0.9600
C4—P21.855 (7)C10—H10C0.9600
C4—H4A0.9600C11—P41.866 (11)
C4—H4B0.9600C11—H11A0.9600
C4—H4C0.9600C11—H11B0.9600
C5—P21.850 (7)C11—H11C0.9600
C5—H5A0.9600C12—P41.833 (10)
C5—H5B0.9600C12—H12A0.9600
C5—H5C0.9600C12—H12B0.9600
C6—P21.847 (7)C12—H12C0.9600
C6—H6A0.9600C13—N11.166 (7)
C6—H6B0.9600Co1—C131.896 (5)
C6—H6C0.9600Co1—P22.2018 (15)
C7—P31.881 (8)Co1—P12.2082 (17)
C7—H7A0.9600Co1—P42.2115 (17)
C7—H7B0.9600Co1—P32.2272 (17)
P1—C1—H1A109.5P4—C10—H10B109.5
P1—C1—H1B109.5P4—C10—H10C109.5
H1A—C1—H1B109.5P4—C11—H11A109.5
P1—C1—H1C109.5P4—C11—H11B109.5
H1A—C1—H1C109.5P4—C11—H11C109.5
H1B—C1—H1C109.5P4—C12—H12A109.5
P1—C2—H2A109.5P4—C12—H12B109.5
P1—C2—H2B109.5P4—C12—H12C109.5
H2A—C2—H2B109.5N1—C13—Co1178.8 (6)
P1—C2—H2C109.5C13—Co1—P2179.02 (19)
H2A—C2—H2C109.5C13—Co1—P183.92 (19)
H2B—C2—H2C109.5P2—Co1—P197.05 (7)
P1—C3—H3A109.5C13—Co1—P483.39 (18)
P1—C3—H3B109.5P2—Co1—P496.24 (6)
P1—C3—H3C109.5P1—Co1—P4119.14 (8)
P2—C4—H4A109.5C13—Co1—P384.66 (19)
P2—C4—H4B109.5P2—Co1—P394.75 (7)
H4A—C4—H4B109.5P1—Co1—P3118.05 (8)
P2—C4—H4C109.5P4—Co1—P3119.55 (8)
H4A—C4—H4C109.5C2—P1—C398.9 (6)
H4B—C4—H4C109.5C2—P1—C197.5 (5)
P2—C5—H5A109.5C3—P1—C198.0 (5)
P2—C5—H5B109.5C2—P1—Co1114.9 (3)
H5A—C5—H5B109.5C3—P1—Co1115.5 (4)
P2—C5—H5C109.5C1—P1—Co1127.1 (3)
H5A—C5—H5C109.5C6—P2—C597.6 (4)
H5B—C5—H5C109.5C6—P2—C499.2 (4)
P2—C6—H6A109.5C5—P2—C4100.1 (4)
P2—C6—H6B109.5C6—P2—Co1119.5 (3)
H6A—C6—H6B109.5C5—P2—Co1118.6 (3)
P2—C6—H6C109.5C4—P2—Co1117.9 (3)
H6A—C6—H6C109.5C9—P3—C897.9 (3)
H6B—C6—H6C109.5C9—P3—C796.9 (4)
P3—C7—H7A109.5C8—P3—C796.1 (4)
P3—C7—H7B109.5C9—P3—Co1125.8 (2)
P3—C7—H7C109.5C8—P3—Co1119.0 (2)
P3—C8—H8A109.5C7—P3—Co1115.3 (2)
P3—C8—H8B109.5C12—P4—C1096.9 (5)
P3—C8—H8C109.5C12—P4—C11100.4 (6)
P3—C9—H9A109.5C10—P4—C1196.6 (5)
P3—C9—H9B109.5C12—P4—Co1115.5 (4)
P3—C9—H9C109.5C10—P4—Co1127.6 (3)
P4—C10—H10A109.5C11—P4—Co1115.0 (4)

Experimental details

Crystal data
Chemical formula[Co(CN)(C3H9P)4]
Mr389.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.160 (3), 9.6136 (19), 17.971 (4)
β (°) 93.09 (3)
V3)2270.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.25 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.395, 0.434
No. of measured, independent and
observed [I > 2σ(I)] reflections
11732, 4438, 3663
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.216, 1.06
No. of reflections4438
No. of parameters185
No. of restraints150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 2.00

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C13—N11.166 (7)Co1—P12.2082 (17)
Co1—C131.896 (5)Co1—P42.2115 (17)
Co1—P22.2018 (15)Co1—P32.2272 (17)
N1—C13—Co1178.8 (6)P1—Co1—P4119.14 (8)
C13—Co1—P2179.02 (19)C13—Co1—P384.66 (19)
C13—Co1—P183.92 (19)P2—Co1—P394.75 (7)
P2—Co1—P197.05 (7)P1—Co1—P3118.05 (8)
C13—Co1—P483.39 (18)P4—Co1—P3119.55 (8)
P2—Co1—P496.24 (6)
 

Acknowledgements

We gratefully acknowledge support by the NSF China (No. 20872080/20772072) and the Science Foundation of Shandong Province (Nos. Y2007B06/Y2006B18).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X., Sun, H. & Yu, F. (2006). Organometallics, 25, 4695–4697.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, F., Wang, Q. & Li, X. (2008). Acta Cryst. E64, m112.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds