metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,2-Bis­(diiso­propyl­phosphan­yl)ethane-κ2P,P′]di­chloridonickel(II)–9H-carbazole (1/2)

aFacultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
*Correspondence e-mail: juvent@servidor.unam.mx

(Received 4 March 2011; accepted 21 March 2011; online 26 March 2011)

In the title compound, [NiCl2(C14H32P2)]·2C12H9N, the neutral [Ni(dppe)Cl2] complex [dppe is 1,2-bis­(diisopropyl­phosphan­yl)ethane] consists of a tetracoordinated Ni2+ cation and has a crystallographic twofold axis passing through the metal atom and the mid-point of the CH2—CH2 bond of the dppe ligand. The metal atom shows slight tetra­hedral distortion from an ideal square-planar coordination geometry, as reflected in the dihedral angle between NiCl2 and NiP2 planes of 15.32 (2)°. The 9H-carbazole ring system is essentially planar (r.m.s. deviation = 0.022 Å). In the crystal packing, there are two symmetry-related 9H-carbazole mol­ecules between two adjacent NiII complexes, with an angle between the carbazole mean planes of ca 77°.

Related literature

For the use of nickel complexes of the type [Ni(dppe)Cl2] as starting materials and precursors in metal-mediated and catalytic systems, respectively, see: Vicic & Jones (1997[Vicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855-10856.]); Arévalo & García (2010[Arévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063-4074.]). For details of tetra­hedral distortion and motifs, see: Angulo et al. (2003[Angulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97-106.]); Dahlenburg & Kurth (2001[Dahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176-182.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C14H32P2)]·2C12H9N

  • Mr = 726.35

  • Monoclinic, C 2/c

  • a = 22.5830 (5) Å

  • b = 8.4374 (2) Å

  • c = 18.9630 (5) Å

  • β = 101.544 (2)°

  • V = 3540.15 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 122 K

  • 0.42 × 0.16 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.851, Tmax = 0.987

  • 12792 measured reflections

  • 3484 independent reflections

  • 2908 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.05

  • 3484 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—Cl1 2.2221 (4)
Ni1—P1 2.1581 (5)
P1i—Ni1—P1 88.61 (3)
P1i—Ni1—Cl1i 168.757 (16)
P1i—Ni1—Cl1 89.797 (16)
Cl1i—Ni1—Cl1 93.87 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The nickel complexes of the type [Ni(dppe)Cl2] are useful starting materials for the preparation of catalysts and catalytic precursors, for an interesting series of active catalyst in a wide variety of stoichiometric (Vicic & Jones, 1997) and catalytic systems (Arévalo & García, 2010). The synthesis of the current complex [Ni (dppe)Cl2](carbazole)2 (see Scheme) can be envisaged as the preparation of a model compound relevant to hydrodenitrogenation and N—H activation process.

In the asymmetric unit, the tetracoordinated [Ni(dppe)Cl2] complex has a 2-fold axis passing through the metal and the centre of the methylene—methylene bond (Fig. 1). The metal center shows slight tetrahedral distortion from ideal square-planar coordination geometry, with the angle between the normals to the planes defined by the two cis-Cl–Ni–Cl and cis-P–Ni–P fragments [15.32 (2)°] being larger than the limiting value of 0° for square-planar coordination. Additionally, the metal ion is situated 0.1144 (1) Å above the Cl1/P1/Cl1i/P1i plane [symmetry code: (i) -x, y, 1/2 - z]. These deviations from planarity, which can safely be attributed to some steric congestion by intermolecular contacts between the metallic complex and the 9H-carbazole molecules (Fig. 2), are somewhat larger than the distortion from ideal square-planar coordination geometry observed for related [Ni(dcpe)Cl2] (Angulo et al., 2003) and [(1S,2S)-C5H8{P(C6H11)2}2NiCl2] (Dahlenburg & Kurth, 2001) complexes, where the NiCl2/NiP2 dihedral angles are 3.96 and 5.37°, respectively. The Ni–P bond lengths in the title compound are equal, by symmetry. Probably as a consequence of the steric bulk of the 9H-carbazole molecules, the Ni–Cl distance, 2.2221 (4) Å, tends to be slightly longer than those in the analogues nickel complexes.

In the crystal packing, there are two 9H-carbazole molecules between two adjacent nickel complexes, with an angle between the carbazole mean planes of ca. 77°. There are two types of intermolecular contacts: one of the van der Waals type N—H···Cl [2.65 (2) Å] is formed from N1 donor atom of the 9H-carbazole to Cl1 chloride atom acceptor of the metallic complex; and other of the type C—H···N [2.645 (1) Å] involving C19 in the dppe ligand and N1 in 9H-carbazole. These van der Waals interactions lead to infinite ribbons based on R12(5) motifs (Etter et al., 1990), as illustrated in Fig. 2.

Related literature top

For the use of nickel complexes of the type [Ni(dppe)Cl2] as starting materials and precursors in stoichiometric and catalytic systems, respectively, see: Vicic & Jones (1997); Arévalo & García (2010). For details of tetrahedral distortion and motifs see: Angulo et al. (2003); Dahlenburg & Kurth (2001); Etter et al. (1990).

Experimental top

A THF solution of [Ni(dppe)H]2 (Vicic & Jones, 1997) (0.100 g, 0.15 mmol) was added with 9H-carbazole (0. 261 g, 1.56 mmol) and heated to 80 °C for 10 h. After this time, the solution changed from wine red color to brown. The solvent was eliminated under reduced pressure and the resulting solid dissolved in dichloromethane (DCM). Slow evaporation at room temperature of DCM afforded crystals suitable for X-ray diffraction. NMR: 31P{1H} (acetone-d6,121.32 MHz, 25 °C): d 57.2. NMR 1H (acetone-d6, 300 MHz, 25 °C): d 8.13 (d, JH—H=7.8, 1H), d 7.54 (d, JH—H=7.8, 1H), d 7.39 (dd, JH—H=7.8, JH—H=7.2, 1H), d 7.18 (dd, JH—H=7.2, JH—H=7.8, 1H), d 2.5 (m, CH, 2H), d 1.7 (m, CH2, 2H), d 1.35 (m, CH3, 12H). Elemental analysis (calc.): C 62.9 (62.83), H 6.90 (6.93), N 3.82% (3.85%).

Refinement top

H atom bonded to N atom was located in a difference and was refined with free coordinates and Uiso(H) = 1.2Ueq(N). H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.95 (aromatic CH), 0.98 (methyl CH3), 0.99 (methylene CH2) and 1.00 Å (methine CH), and with Uiso = 1.2–1.5 Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure for the title compound. Displacement ellipsoids are draw at the 50% probability level and H atoms are shown as circles of arbitrary size. Symmetry code for i labeled atoms: -x, y, -z + 1/2.
[Figure 2] Fig. 2. Intermolecular van der Waals contacts (dashed lines) in the crystal structure, forming infinite ribbons including R12(5) motifs.
[1,2-Bis(diisopropylphosphanyl)ethane- κ2P,P']dichloridonickel(II)–9H-carbazole (1/2) top
Crystal data top
[NiCl2(C14H32P2)]·2C12H9NF(000) = 1536
Mr = 726.35Dx = 1.363 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7654 reflections
a = 22.5830 (5) Åθ = 3.3–26.0°
b = 8.4374 (2) ŵ = 0.82 mm1
c = 18.9630 (5) ÅT = 122 K
β = 101.544 (2)°Prism, orange
V = 3540.15 (15) Å30.42 × 0.16 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
3484 independent reflections
Radiation source: fine-focus sealed tube2908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.4685 pixels mm-1θmax = 26.1°, θmin = 3.5°
ω scansh = 2727
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
k = 1010
Tmin = 0.851, Tmax = 0.987l = 1823
12792 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.7966P]
where P = (Fo2 + 2Fc2)/3
3484 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.26 e Å3
0 constraints
Crystal data top
[NiCl2(C14H32P2)]·2C12H9NV = 3540.15 (15) Å3
Mr = 726.35Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.5830 (5) ŵ = 0.82 mm1
b = 8.4374 (2) ÅT = 122 K
c = 18.9630 (5) Å0.42 × 0.16 × 0.02 mm
β = 101.544 (2)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
3484 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
2908 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.987Rint = 0.027
12792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.62 e Å3
3484 reflectionsΔρmin = 0.26 e Å3
211 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13521 (7)0.51654 (19)0.17978 (9)0.0162 (4)
C20.10421 (8)0.4878 (2)0.10949 (9)0.0208 (4)
H20.07040.41850.09980.025*
C30.12477 (8)0.5644 (2)0.05455 (10)0.0237 (4)
H30.10460.54690.00620.028*
C40.17440 (8)0.6668 (2)0.06818 (10)0.0231 (4)
H40.18730.71770.02910.028*
C50.20488 (8)0.6947 (2)0.13744 (10)0.0207 (4)
H50.23850.76480.14640.025*
C60.18570 (7)0.61860 (19)0.19446 (9)0.0163 (4)
C70.20640 (7)0.61872 (19)0.27183 (9)0.0164 (4)
C80.25374 (8)0.6941 (2)0.31818 (10)0.0218 (4)
H80.28120.75970.29960.026*
C90.26007 (8)0.6719 (2)0.39150 (10)0.0251 (4)
H90.29220.72260.42350.03*
C100.21966 (8)0.5759 (2)0.41916 (10)0.0236 (4)
H100.22460.56350.46980.028*
C110.17264 (8)0.4985 (2)0.37428 (9)0.0195 (4)
H110.14530.43340.39330.023*
C120.16687 (7)0.51933 (19)0.30049 (9)0.0164 (4)
C130.12297 (7)0.9420 (2)0.35115 (9)0.0193 (4)
H130.13820.83120.3610.023*
C140.14981 (8)1.0047 (2)0.28869 (10)0.0247 (4)
H14A0.1361.11370.27760.037*
H14B0.13660.93770.24630.037*
H14C0.1941.00310.30220.037*
C150.14581 (8)1.0381 (2)0.41930 (10)0.0247 (4)
H15A0.191.04480.4280.037*
H15B0.13350.98620.46030.037*
H15C0.12861.1450.41340.037*
C160.01068 (8)0.9163 (2)0.40785 (9)0.0213 (4)
H160.02721.00940.43810.026*
C170.03308 (9)0.7674 (2)0.45155 (11)0.0316 (5)
H17A0.02230.77410.4990.047*
H17B0.07710.75950.45730.047*
H17C0.01410.67340.42620.047*
C180.05797 (8)0.9302 (2)0.39410 (10)0.0268 (4)
H18A0.07610.84010.36490.04*
H18B0.07051.02920.36840.04*
H18C0.07140.93010.44010.04*
C190.02934 (8)0.7388 (2)0.27707 (10)0.0251 (4)
H19A0.06330.71960.25230.03*
H19B0.0290.65250.31240.03*
Cl10.025597 (18)1.29303 (5)0.16367 (2)0.01865 (11)
N10.12485 (7)0.45582 (17)0.24411 (8)0.0174 (3)
Ni101.11320 (3)0.250.01164 (9)
P10.039792 (19)0.93016 (5)0.32401 (2)0.01575 (11)
H1N0.0953 (9)0.405 (2)0.2501 (10)0.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0171 (8)0.0132 (8)0.0203 (9)0.0045 (7)0.0080 (7)0.0006 (7)
C20.0194 (9)0.0193 (9)0.0239 (10)0.0008 (7)0.0046 (8)0.0053 (7)
C30.0245 (10)0.0283 (10)0.0183 (10)0.0045 (8)0.0045 (8)0.0027 (8)
C40.0257 (10)0.0252 (9)0.0214 (10)0.0059 (8)0.0114 (8)0.0056 (8)
C50.0188 (9)0.0181 (9)0.0272 (10)0.0014 (7)0.0091 (8)0.0037 (8)
C60.0143 (8)0.0140 (8)0.0214 (9)0.0033 (7)0.0060 (7)0.0007 (7)
C70.0149 (8)0.0147 (8)0.0205 (9)0.0027 (7)0.0054 (7)0.0006 (7)
C80.0184 (9)0.0204 (9)0.0274 (10)0.0012 (8)0.0061 (8)0.0000 (8)
C90.0198 (9)0.0280 (10)0.0248 (10)0.0000 (8)0.0016 (8)0.0049 (8)
C100.0268 (10)0.0265 (10)0.0169 (9)0.0076 (8)0.0029 (8)0.0026 (7)
C110.0221 (9)0.0161 (9)0.0222 (10)0.0029 (7)0.0089 (8)0.0036 (7)
C120.0172 (8)0.0127 (8)0.0198 (9)0.0039 (7)0.0047 (7)0.0006 (7)
C130.0157 (8)0.0182 (9)0.0218 (9)0.0040 (7)0.0020 (7)0.0012 (7)
C140.0183 (9)0.0281 (10)0.0274 (10)0.0031 (8)0.0037 (8)0.0027 (8)
C150.0173 (9)0.0268 (10)0.0270 (10)0.0005 (8)0.0027 (8)0.0019 (8)
C160.0212 (9)0.0252 (10)0.0165 (9)0.0046 (8)0.0013 (7)0.0039 (7)
C170.0337 (11)0.0314 (11)0.0278 (11)0.0026 (9)0.0016 (9)0.0124 (9)
C180.0220 (9)0.0363 (11)0.0219 (10)0.0054 (8)0.0042 (8)0.0041 (8)
C190.0311 (10)0.0137 (8)0.0276 (10)0.0010 (8)0.0014 (8)0.0001 (8)
Cl10.0204 (2)0.0144 (2)0.0208 (2)0.00193 (16)0.00338 (17)0.00393 (16)
N10.0162 (7)0.0158 (7)0.0218 (8)0.0033 (6)0.0074 (6)0.0011 (6)
Ni10.01075 (15)0.00869 (15)0.01507 (16)00.00161 (11)0
P10.0167 (2)0.0120 (2)0.0169 (2)0.00081 (17)0.00073 (17)0.00090 (17)
Geometric parameters (Å, º) top
C1—N11.386 (2)C13—H131
C1—C21.397 (2)C14—H14A0.98
C1—C61.411 (2)C14—H14B0.98
C2—C31.383 (3)C14—H14C0.98
C2—H20.95C15—H15A0.98
C3—C41.398 (3)C15—H15B0.98
C3—H30.95C15—H15C0.98
C4—C51.376 (2)C16—C181.524 (2)
C4—H40.95C16—C171.534 (2)
C5—C61.399 (2)C16—P11.8418 (18)
C5—H50.95C16—H161
C6—C71.448 (2)C17—H17A0.98
C7—C81.394 (2)C17—H17B0.98
C7—C121.411 (2)C17—H17C0.98
C8—C91.382 (3)C18—H18A0.98
C8—H80.95C18—H18B0.98
C9—C101.399 (3)C18—H18C0.98
C9—H90.95C19—C19i1.505 (3)
C10—C111.384 (2)C19—P11.8362 (18)
C10—H100.95C19—H19A0.99
C11—C121.390 (2)C19—H19B0.99
C11—H110.95Ni1—Cl12.2221 (4)
C12—N11.387 (2)N1—H1N0.821 (19)
C13—C151.525 (2)Ni1—P1i2.1581 (5)
C13—C141.529 (3)Ni1—P12.1581 (5)
C13—P11.8482 (17)Ni1—Cl1i2.2221 (4)
N1—C1—C2129.44 (16)H14B—C14—H14C109.5
N1—C1—C6108.91 (15)C13—C15—H15A109.5
C2—C1—C6121.65 (16)C13—C15—H15B109.5
C3—C2—C1117.26 (16)H15A—C15—H15B109.5
C3—C2—H2121.4C13—C15—H15C109.5
C1—C2—H2121.4H15A—C15—H15C109.5
C2—C3—C4121.82 (17)H15B—C15—H15C109.5
C2—C3—H3119.1C18—C16—C17111.69 (15)
C4—C3—H3119.1C18—C16—P1111.96 (12)
C5—C4—C3120.79 (17)C17—C16—P1112.49 (13)
C5—C4—H4119.6C18—C16—H16106.8
C3—C4—H4119.6C17—C16—H16106.8
C4—C5—C6119.09 (17)P1—C16—H16106.8
C4—C5—H5120.5C16—C17—H17A109.5
C6—C5—H5120.5C16—C17—H17B109.5
C5—C6—C1119.38 (16)H17A—C17—H17B109.5
C5—C6—C7134.09 (16)C16—C17—H17C109.5
C1—C6—C7106.53 (14)H17A—C17—H17C109.5
C8—C7—C12119.53 (16)H17B—C17—H17C109.5
C8—C7—C6133.67 (16)C16—C18—H18A109.5
C12—C7—C6106.80 (14)C16—C18—H18B109.5
C9—C8—C7118.98 (16)H18A—C18—H18B109.5
C9—C8—H8120.5C16—C18—H18C109.5
C7—C8—H8120.5H18A—C18—H18C109.5
C8—C9—C10120.79 (17)H18B—C18—H18C109.5
C8—C9—H9119.6C19i—C19—P1109.93 (8)
C10—C9—H9119.6C19i—C19—H19A109.7
C11—C10—C9121.37 (17)P1—C19—H19A109.7
C11—C10—H10119.3C19i—C19—H19B109.7
C9—C10—H10119.3P1—C19—H19B109.7
C10—C11—C12117.70 (16)H19A—C19—H19B108.2
C10—C11—H11121.1C1—N1—C12109.01 (14)
C12—C11—H11121.1C1—N1—H1N126.9 (13)
N1—C12—C11129.69 (15)C12—N1—H1N123.1 (13)
N1—C12—C7108.71 (14)P1i—Ni1—P188.61 (3)
C11—C12—C7121.60 (16)P1i—Ni1—Cl1i168.757 (16)
C15—C13—C14110.67 (15)P1—Ni1—Cl1i89.797 (16)
C15—C13—P1114.66 (12)P1i—Ni1—Cl189.797 (16)
C14—C13—P1109.96 (12)P1—Ni1—Cl1168.758 (16)
C15—C13—H13107.1Cl1i—Ni1—Cl193.87 (2)
C14—C13—H13107.1C19—P1—C16109.21 (9)
P1—C13—H13107.1C19—P1—C13101.97 (8)
C13—C14—H14A109.5C16—P1—C13106.35 (8)
C13—C14—H14B109.5C19—P1—Ni1108.52 (6)
H14A—C14—H14B109.5C16—P1—Ni1115.65 (6)
C13—C14—H14C109.5C13—P1—Ni1114.22 (6)
H14A—C14—H14C109.5
N1—C1—C2—C3179.52 (17)C6—C1—N1—C121.32 (18)
C6—C1—C2—C30.4 (3)C11—C12—N1—C1177.09 (17)
C1—C2—C3—C40.1 (3)C7—C12—N1—C12.04 (18)
C2—C3—C4—C50.2 (3)C19i—C19—P1—C1693.81 (18)
C3—C4—C5—C60.3 (3)C19i—C19—P1—C13153.95 (17)
C4—C5—C6—C10.7 (2)C19i—C19—P1—Ni133.06 (19)
C4—C5—C6—C7179.56 (17)C18—C16—P1—C1979.07 (14)
N1—C1—C6—C5179.89 (15)C17—C16—P1—C1947.67 (15)
C2—C1—C6—C50.8 (2)C18—C16—P1—C13171.60 (13)
N1—C1—C6—C70.11 (18)C17—C16—P1—C1361.66 (14)
C2—C1—C6—C7179.40 (15)C18—C16—P1—Ni143.64 (14)
C5—C6—C7—C80.7 (3)C17—C16—P1—Ni1170.38 (11)
C1—C6—C7—C8179.53 (18)C15—C13—P1—C19151.39 (13)
C5—C6—C7—C12178.62 (18)C14—C13—P1—C1983.17 (14)
C1—C6—C7—C121.10 (18)C15—C13—P1—C1637.02 (15)
C12—C7—C8—C91.3 (2)C14—C13—P1—C16162.46 (12)
C6—C7—C8—C9178.01 (17)C15—C13—P1—Ni191.77 (13)
C7—C8—C9—C100.2 (3)C14—C13—P1—Ni133.67 (14)
C8—C9—C10—C110.8 (3)P1i—Ni1—P1—C1910.07 (6)
C9—C10—C11—C120.0 (3)Cl1i—Ni1—P1—C19178.94 (7)
C10—C11—C12—N1179.44 (16)Cl1—Ni1—P1—C1971.87 (12)
C10—C11—C12—C71.5 (2)P1i—Ni1—P1—C16113.00 (7)
C8—C7—C12—N1178.60 (15)Cl1i—Ni1—P1—C1655.87 (6)
C6—C7—C12—N11.93 (18)Cl1—Ni1—P1—C16165.06 (10)
C8—C7—C12—C112.2 (2)P1i—Ni1—P1—C13123.06 (7)
C6—C7—C12—C11177.29 (15)Cl1i—Ni1—P1—C1368.07 (6)
C2—C1—N1—C12179.46 (16)Cl1—Ni1—P1—C1341.12 (12)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[NiCl2(C14H32P2)]·2C12H9N
Mr726.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)122
a, b, c (Å)22.5830 (5), 8.4374 (2), 18.9630 (5)
β (°) 101.544 (2)
V3)3540.15 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.42 × 0.16 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.851, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
12792, 3484, 2908
Rint0.027
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.05
No. of reflections3484
No. of parameters211
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—Cl12.2221 (4)Ni1—P12.1581 (5)
P1i—Ni1—P188.61 (3)P1i—Ni1—Cl189.797 (16)
P1i—Ni1—Cl1i168.757 (16)Cl1i—Ni1—Cl193.87 (2)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

We thank PAPIIT-DGAPA-UNAM (IN-201010) and CONACYT (080606) for their financial support of this work and DGAPA-UNAM for a postdoctoral grant to FCB. We also thank Dr A. Arévalo for technical assistance.

References

First citationAngulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97–106.  CSD CrossRef CAS Google Scholar
First citationArévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063–4074.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176–182.  CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855–10856.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds