metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Nitrato-κ2O,O′)(nitrito-κ2O,O′)(0.25/1.75)]bis­­(1,10-phenanthroline-κ2N,N′)cadmium(II)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 January 2011; accepted 17 January 2011; online 22 January 2011)

The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate–nitrite title complex, [Cd(NO2)1.75(NO3)0.25(C12H8N2)2]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca­hedral CdN4O4 coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion.

Related literature

For the crystal structure of [Cd(NO3)2(C12H8N2)2], see: Tadjarodi et al. (2001[Tadjarodi, A., Taeb, A. & Ng, S. W. (2001). Main Group Met. Chem. 24, 805-806.]) and for the crystal structure of [Cd(NO2)2(C12H8N2)2], see: Abedini et al. (2005[Abedini, J., Morsali, A. & Kempe, R. (2005). J. Coord. Chem. 58, 1161-1167.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO2)1.75(NO3)0.25(C12H8N2)2]

  • Mr = 568.83

  • Triclinic, [P \overline 1]

  • a = 9.1470 (4) Å

  • b = 10.1866 (4) Å

  • c = 13.0057 (6) Å

  • α = 76.953 (4)°

  • β = 77.270 (4)°

  • γ = 70.404 (4)°

  • V = 1098.27 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.745, Tmax = 0.903

  • 8702 measured reflections

  • 4852 independent reflections

  • 4256 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.073

  • S = 1.02

  • 4852 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O3 2.355 (2)
Cd1—N6 2.390 (2)
Cd1—N4 2.393 (2)
Cd1—N3 2.418 (2)
Cd1—O1 2.4547 (19)
Cd1—O4 2.503 (2)
Cd1—O2 2.5041 (19)
Cd1—N5 2.510 (2)

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We had previously reported the structure of the 1,10-phenanthroline adduct of cadmium nitrate. In the corresponding structure, the cadmium ion, situated on a twofold rotation axis, shows eightfold coordination, which is somewhat less common (Tadjarodi et al., 2001). The compound is conveniently synthesized by the direct addition of 1,10-phenanthroline to a cadmium nitrate solution. In a similar reaction, but when nitrite ions present, a mixed nitrate/nitrite compound is obtained.

In the title compound, Cd(NO2)1.75(NO3)0.25(C12H8N2)2 (Scheme I), the metal ion also exists in an eight-coordinate distorted dodecahedral CdN4O4 geometry (Fig. 1). The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions. The molecule lies on a general position, and one nitrite group is disordered with respect to a nitrate group (ratio 0.75:0.25).

Related literature top

For the crystal structure of [Cd(NO3)2(C12H8N2)2], see: Tadjarodi et al. (2001) and for the crystal structure of [Cd(NO2)2(C12H8N2)2], see: Abedini et al. (2005).

Experimental top

Cadmium nitrate (1 mmol), sodium nitrite (1 mmol) and 1,10-phenanthroline (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm of the tube after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The structure, when refined as a dinitrite, had a high remaining peak approximately 1.2 Å away from one of the two N atoms of the nitrite groups. This site was allow to refine as an O atom of a disordered nitrate group. As the occupancy refined to nearly 1/4, its occupancy was eventually fixed as 0.25.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Cd(NO2)1.75(NO3)0.25(C12H8N2)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[(Nitrato-κ2O,O')(nitrito κ2O,O')(0.25/1.75)]bis(1,10-phenanthroline- κ2N,N')cadmium(II) top
Crystal data top
[Cd(NO2)1.75(NO3)0.25(C12H8N2)2]Z = 2
Mr = 568.83F(000) = 568
Triclinic, P1Dx = 1.720 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1470 (4) ÅCell parameters from 4883 reflections
b = 10.1866 (4) Åθ = 2.4–29.3°
c = 13.0057 (6) ŵ = 1.04 mm1
α = 76.953 (4)°T = 100 K
β = 77.270 (4)°Irregular, colorless
γ = 70.404 (4)°0.30 × 0.20 × 0.10 mm
V = 1098.27 (8) Å3
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
4852 independent reflections
Radiation source: SuperNova X-ray Source4256 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1011
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1311
Tmin = 0.745, Tmax = 0.903l = 1612
8702 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.1342P]
where P = (Fo2 + 2Fc2)/3
4852 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cd(NO2)1.75(NO3)0.25(C12H8N2)2]γ = 70.404 (4)°
Mr = 568.83V = 1098.27 (8) Å3
Triclinic, P1Z = 2
a = 9.1470 (4) ÅMo Kα radiation
b = 10.1866 (4) ŵ = 1.04 mm1
c = 13.0057 (6) ÅT = 100 K
α = 76.953 (4)°0.30 × 0.20 × 0.10 mm
β = 77.270 (4)°
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
4852 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
4256 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.903Rint = 0.032
8702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
4852 reflectionsΔρmin = 0.69 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.55052 (2)0.243966 (18)0.241633 (15)0.01614 (7)
N10.7446 (3)0.0427 (2)0.3117 (2)0.0230 (5)
N20.8042 (3)0.3662 (3)0.1701 (2)0.0297 (6)
N30.4863 (3)0.2130 (2)0.07978 (17)0.0169 (5)
N40.3528 (3)0.1267 (2)0.28117 (17)0.0154 (5)
N50.3074 (3)0.4518 (2)0.22889 (17)0.0178 (5)
N60.4512 (3)0.3368 (2)0.40496 (18)0.0192 (5)
O10.7414 (2)0.01355 (19)0.21528 (15)0.0232 (4)
O20.6588 (2)0.0353 (2)0.37712 (15)0.0244 (5)
O30.6973 (3)0.3783 (2)0.11795 (17)0.0324 (5)
O40.7905 (3)0.2957 (2)0.26214 (17)0.0311 (5)
O50.9091 (12)0.4103 (10)0.1371 (8)0.042 (2)0.25
C10.5549 (4)0.2514 (3)0.0180 (2)0.0207 (6)
H10.64010.28820.02590.025*
C20.5079 (4)0.2403 (3)0.1101 (2)0.0245 (7)
H20.55990.26970.17880.029*
C30.3864 (4)0.1866 (3)0.1000 (2)0.0214 (6)
H30.35340.17780.16170.026*
C40.3102 (3)0.1446 (3)0.0025 (2)0.0172 (6)
C50.3661 (3)0.1595 (2)0.0909 (2)0.0150 (5)
C60.1825 (3)0.0874 (3)0.0203 (2)0.0212 (6)
H60.14550.07680.03920.025*
C70.1132 (4)0.0480 (3)0.1201 (2)0.0220 (6)
H70.02600.01330.12970.026*
C80.1691 (3)0.0577 (3)0.2120 (2)0.0181 (6)
C90.2942 (3)0.1139 (2)0.1978 (2)0.0151 (6)
C100.1059 (4)0.0116 (3)0.3171 (2)0.0231 (6)
H100.02020.02610.33050.028*
C110.1695 (3)0.0216 (3)0.4007 (2)0.0224 (6)
H110.13020.01160.47220.027*
C120.2919 (3)0.0807 (3)0.3790 (2)0.0193 (6)
H120.33370.08840.43740.023*
C130.2348 (4)0.5050 (3)0.1442 (2)0.0208 (6)
H130.28240.46830.07980.025*
C140.0912 (4)0.6131 (3)0.1453 (2)0.0242 (7)
H140.04190.64690.08330.029*
C150.0235 (4)0.6689 (3)0.2363 (2)0.0246 (7)
H150.07320.74290.23810.029*
C160.0972 (3)0.6166 (3)0.3281 (2)0.0195 (6)
C170.2391 (3)0.5055 (3)0.3202 (2)0.0171 (6)
C180.0342 (4)0.6698 (3)0.4263 (2)0.0240 (7)
H180.06120.74510.43090.029*
C190.1074 (4)0.6156 (3)0.5130 (2)0.0240 (7)
H190.06440.65470.57680.029*
C200.2491 (4)0.4999 (3)0.5094 (2)0.0209 (6)
C210.3163 (3)0.4449 (3)0.4137 (2)0.0175 (6)
C220.3269 (4)0.4374 (3)0.5986 (2)0.0242 (7)
H220.28550.47060.66480.029*
C230.4628 (4)0.3281 (3)0.5883 (2)0.0269 (7)
H230.51650.28370.64770.032*
C240.5216 (4)0.2824 (3)0.4898 (2)0.0233 (6)
H240.61770.20800.48360.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01776 (13)0.01855 (11)0.01235 (11)0.00468 (8)0.00285 (8)0.00377 (8)
N10.0219 (14)0.0227 (12)0.0237 (14)0.0033 (10)0.0042 (11)0.0069 (11)
N20.0284 (17)0.0363 (15)0.0304 (15)0.0163 (13)0.0004 (13)0.0124 (12)
N30.0190 (13)0.0177 (11)0.0145 (12)0.0060 (9)0.0005 (10)0.0050 (9)
N40.0149 (13)0.0173 (11)0.0116 (11)0.0024 (9)0.0016 (10)0.0021 (9)
N50.0247 (14)0.0156 (11)0.0137 (12)0.0073 (10)0.0027 (10)0.0021 (9)
N60.0219 (14)0.0186 (11)0.0189 (12)0.0043 (10)0.0082 (11)0.0043 (10)
O10.0218 (12)0.0298 (10)0.0171 (11)0.0051 (9)0.0027 (9)0.0063 (9)
O20.0224 (12)0.0309 (11)0.0177 (11)0.0022 (9)0.0037 (9)0.0081 (9)
O30.0370 (15)0.0430 (13)0.0277 (12)0.0244 (11)0.0071 (11)0.0057 (10)
O40.0328 (14)0.0357 (12)0.0275 (13)0.0096 (10)0.0054 (11)0.0110 (10)
O50.031 (6)0.053 (6)0.054 (6)0.035 (5)0.001 (5)0.009 (5)
C10.0216 (17)0.0242 (14)0.0180 (15)0.0102 (12)0.0011 (12)0.0035 (12)
C20.0307 (19)0.0293 (15)0.0130 (14)0.0130 (13)0.0029 (13)0.0027 (12)
C30.0274 (18)0.0234 (14)0.0154 (14)0.0083 (12)0.0044 (13)0.0056 (12)
C40.0192 (16)0.0164 (13)0.0161 (14)0.0030 (11)0.0045 (12)0.0048 (11)
C50.0160 (15)0.0132 (12)0.0140 (13)0.0003 (10)0.0034 (11)0.0043 (10)
C60.0227 (17)0.0243 (14)0.0201 (15)0.0068 (12)0.0091 (13)0.0056 (12)
C70.0182 (16)0.0262 (14)0.0248 (16)0.0086 (12)0.0045 (13)0.0062 (13)
C80.0148 (15)0.0194 (13)0.0188 (14)0.0032 (11)0.0024 (12)0.0038 (11)
C90.0148 (15)0.0119 (12)0.0143 (13)0.0020 (10)0.0024 (11)0.0026 (10)
C100.0166 (16)0.0298 (15)0.0225 (16)0.0090 (12)0.0013 (13)0.0021 (13)
C110.0176 (16)0.0305 (15)0.0147 (14)0.0076 (12)0.0008 (12)0.0021 (12)
C120.0162 (15)0.0235 (14)0.0151 (14)0.0032 (11)0.0011 (12)0.0027 (11)
C130.0279 (18)0.0167 (13)0.0167 (14)0.0053 (12)0.0049 (13)0.0012 (11)
C140.0268 (18)0.0201 (14)0.0212 (16)0.0029 (12)0.0088 (14)0.0038 (12)
C150.0252 (18)0.0171 (13)0.0278 (17)0.0012 (12)0.0071 (14)0.0015 (12)
C160.0213 (17)0.0152 (13)0.0188 (15)0.0046 (11)0.0010 (12)0.0020 (11)
C170.0195 (16)0.0157 (13)0.0165 (14)0.0073 (11)0.0004 (12)0.0032 (11)
C180.0243 (17)0.0176 (13)0.0275 (17)0.0053 (12)0.0013 (14)0.0053 (12)
C190.0297 (18)0.0203 (14)0.0213 (16)0.0088 (13)0.0046 (13)0.0088 (12)
C200.0231 (17)0.0207 (14)0.0205 (15)0.0101 (12)0.0005 (13)0.0038 (12)
C210.0214 (16)0.0161 (13)0.0155 (14)0.0086 (11)0.0007 (12)0.0014 (11)
C220.0327 (19)0.0289 (15)0.0147 (14)0.0134 (14)0.0005 (13)0.0087 (12)
C230.035 (2)0.0279 (15)0.0201 (16)0.0068 (14)0.0116 (14)0.0051 (13)
C240.0240 (17)0.0238 (14)0.0226 (16)0.0036 (12)0.0077 (13)0.0064 (12)
Geometric parameters (Å, º) top
Cd1—O32.355 (2)C6—H60.9500
Cd1—N62.390 (2)C7—C81.434 (4)
Cd1—N42.393 (2)C7—H70.9500
Cd1—N32.418 (2)C8—C101.403 (4)
Cd1—O12.4547 (19)C8—C91.403 (4)
Cd1—O42.503 (2)C10—C111.377 (4)
Cd1—O22.5041 (19)C10—H100.9500
Cd1—N52.510 (2)C11—C121.391 (4)
N1—O21.250 (3)C11—H110.9500
N1—O11.258 (3)C12—H120.9500
N2—O51.151 (9)C13—C141.403 (4)
N2—O41.254 (3)C13—H130.9500
N2—O31.267 (3)C14—C151.362 (4)
N3—C11.323 (3)C14—H140.9500
N3—C51.349 (3)C15—C161.410 (4)
N4—C121.320 (3)C15—H150.9500
N4—C91.359 (3)C16—C171.409 (4)
N5—C131.326 (3)C16—C181.428 (4)
N5—C171.356 (3)C17—C211.451 (4)
N6—C241.319 (3)C18—C191.351 (4)
N6—C211.353 (4)C18—H180.9500
C1—C21.398 (4)C19—C201.430 (4)
C1—H10.9500C19—H190.9500
C2—C31.365 (4)C20—C221.409 (4)
C2—H20.9500C20—C211.410 (4)
C3—C41.406 (4)C22—C231.367 (4)
C3—H30.9500C22—H220.9500
C4—C51.414 (3)C23—C241.395 (4)
C4—C61.426 (4)C23—H230.9500
C5—C91.447 (4)C24—H240.9500
C6—C71.350 (4)
O3—Cd1—N6111.58 (7)N3—C5—C4122.6 (2)
O3—Cd1—N4149.81 (7)N3—C5—C9118.3 (2)
N6—Cd1—N490.18 (8)C4—C5—C9119.1 (2)
O3—Cd1—N381.88 (7)C7—C6—C4121.2 (2)
N6—Cd1—N3145.83 (8)C7—C6—H6119.4
N4—Cd1—N368.85 (7)C4—C6—H6119.4
O3—Cd1—O195.42 (7)C6—C7—C8121.0 (3)
N6—Cd1—O1127.58 (7)C6—C7—H7119.5
N4—Cd1—O186.59 (7)C8—C7—H7119.5
N3—Cd1—O179.44 (7)C10—C8—C9117.5 (2)
O3—Cd1—O451.44 (7)C10—C8—C7123.1 (3)
N6—Cd1—O481.44 (8)C9—C8—C7119.4 (3)
N4—Cd1—O4157.42 (7)N4—C9—C8122.6 (2)
N3—Cd1—O4127.41 (8)N4—C9—C5117.8 (2)
O1—Cd1—O482.14 (7)C8—C9—C5119.6 (2)
O3—Cd1—O2125.56 (7)C11—C10—C8119.2 (3)
N6—Cd1—O277.83 (7)C11—C10—H10120.4
N4—Cd1—O278.09 (7)C8—C10—H10120.4
N3—Cd1—O2120.90 (6)C10—C11—C12119.3 (3)
O1—Cd1—O250.33 (6)C10—C11—H11120.4
O4—Cd1—O279.66 (7)C12—C11—H11120.4
O3—Cd1—N589.71 (8)N4—C12—C11123.0 (3)
N6—Cd1—N567.54 (7)N4—C12—H12118.5
N4—Cd1—N579.26 (7)C11—C12—H12118.5
N3—Cd1—N581.80 (7)N5—C13—C14123.1 (3)
O1—Cd1—N5159.63 (7)N5—C13—H13118.4
O4—Cd1—N5115.94 (7)C14—C13—H13118.4
O2—Cd1—N5138.17 (7)C15—C14—C13119.1 (3)
O2—N1—O1114.4 (2)C15—C14—H14120.5
O5—N2—O4121.3 (5)C13—C14—H14120.5
O5—N2—O3124.7 (6)C14—C15—C16119.8 (3)
O4—N2—O3113.9 (2)C14—C15—H15120.1
C1—N3—C5118.4 (2)C16—C15—H15120.1
C1—N3—Cd1124.62 (18)C17—C16—C15117.0 (3)
C5—N3—Cd1116.90 (17)C17—C16—C18119.7 (3)
C12—N4—C9118.3 (2)C15—C16—C18123.2 (3)
C12—N4—Cd1123.87 (17)N5—C17—C16122.9 (2)
C9—N4—Cd1117.69 (17)N5—C17—C21118.1 (2)
C13—N5—C17118.0 (2)C16—C17—C21119.0 (3)
C13—N5—Cd1125.85 (19)C19—C18—C16121.5 (3)
C17—N5—Cd1115.91 (17)C19—C18—H18119.3
C24—N6—C21118.0 (3)C16—C18—H18119.3
C24—N6—Cd1121.76 (19)C18—C19—C20120.5 (3)
C21—N6—Cd1120.25 (17)C18—C19—H19119.7
N1—O1—Cd198.71 (15)C20—C19—H19119.7
N1—O2—Cd196.51 (15)C22—C20—C21117.6 (3)
N2—O3—Cd1100.74 (17)C22—C20—C19122.5 (3)
N2—O4—Cd193.91 (16)C21—C20—C19119.9 (3)
N3—C1—C2123.1 (3)N6—C21—C20122.6 (2)
N3—C1—H1118.5N6—C21—C17118.0 (2)
C2—C1—H1118.5C20—C21—C17119.3 (3)
C3—C2—C1119.1 (3)C23—C22—C20119.0 (3)
C3—C2—H2120.4C23—C22—H22120.5
C1—C2—H2120.4C20—C22—H22120.5
C2—C3—C4119.6 (2)C22—C23—C24119.3 (3)
C2—C3—H3120.2C22—C23—H23120.4
C4—C3—H3120.2C24—C23—H23120.4
C3—C4—C5117.2 (2)N6—C24—C23123.5 (3)
C3—C4—C6123.3 (2)N6—C24—H24118.2
C5—C4—C6119.5 (3)C23—C24—H24118.2
O3—Cd1—N3—C19.7 (2)O3—N2—O4—Cd11.6 (2)
N6—Cd1—N3—C1126.5 (2)O3—Cd1—O4—N20.98 (16)
N4—Cd1—N3—C1177.9 (2)N6—Cd1—O4—N2127.53 (17)
O1—Cd1—N3—C187.4 (2)N4—Cd1—O4—N2163.19 (18)
O4—Cd1—N3—C116.0 (2)N3—Cd1—O4—N232.21 (19)
O2—Cd1—N3—C1117.2 (2)O1—Cd1—O4—N2102.42 (17)
N5—Cd1—N3—C1100.5 (2)O2—Cd1—O4—N2153.38 (17)
O3—Cd1—N3—C5166.68 (19)N5—Cd1—O4—N267.72 (18)
N6—Cd1—N3—C549.9 (2)C5—N3—C1—C20.6 (4)
N4—Cd1—N3—C55.81 (17)Cd1—N3—C1—C2175.7 (2)
O1—Cd1—N3—C596.22 (18)N3—C1—C2—C30.4 (4)
O4—Cd1—N3—C5167.70 (16)C1—C2—C3—C40.4 (4)
O2—Cd1—N3—C566.5 (2)C2—C3—C4—C50.5 (4)
N5—Cd1—N3—C575.80 (18)C2—C3—C4—C6179.9 (3)
O3—Cd1—N4—C12167.40 (19)C1—N3—C5—C40.7 (4)
N6—Cd1—N4—C1230.0 (2)Cd1—N3—C5—C4175.90 (19)
N3—Cd1—N4—C12177.7 (2)C1—N3—C5—C9178.3 (2)
O1—Cd1—N4—C1297.7 (2)Cd1—N3—C5—C95.2 (3)
O4—Cd1—N4—C1237.7 (3)C3—C4—C5—N30.7 (4)
O2—Cd1—N4—C1247.6 (2)C6—C4—C5—N3179.9 (2)
N5—Cd1—N4—C1297.0 (2)C3—C4—C5—C9178.3 (2)
O3—Cd1—N4—C98.8 (3)C6—C4—C5—C91.2 (4)
N6—Cd1—N4—C9146.27 (18)C3—C4—C6—C7179.8 (3)
N3—Cd1—N4—C96.09 (17)C5—C4—C6—C70.4 (4)
O1—Cd1—N4—C986.08 (18)C4—C6—C7—C82.2 (4)
O4—Cd1—N4—C9146.08 (19)C6—C7—C8—C10176.7 (3)
O2—Cd1—N4—C9136.21 (19)C6—C7—C8—C92.3 (4)
N5—Cd1—N4—C979.19 (18)C12—N4—C9—C81.8 (4)
O3—Cd1—N5—C1368.5 (2)Cd1—N4—C9—C8174.59 (18)
N6—Cd1—N5—C13177.9 (2)C12—N4—C9—C5177.6 (2)
N4—Cd1—N5—C1383.2 (2)Cd1—N4—C9—C56.0 (3)
N3—Cd1—N5—C1313.3 (2)C10—C8—C9—N41.0 (4)
O1—Cd1—N5—C1336.4 (3)C7—C8—C9—N4179.8 (2)
O4—Cd1—N5—C13114.5 (2)C10—C8—C9—C5178.4 (2)
O2—Cd1—N5—C13141.39 (19)C7—C8—C9—C50.7 (4)
O3—Cd1—N5—C17117.09 (18)N3—C5—C9—N40.5 (3)
N6—Cd1—N5—C173.51 (17)C4—C5—C9—N4178.5 (2)
N4—Cd1—N5—C1791.18 (19)N3—C5—C9—C8179.9 (2)
N3—Cd1—N5—C17161.08 (19)C4—C5—C9—C81.0 (4)
O1—Cd1—N5—C17138.0 (2)C9—C8—C10—C110.8 (4)
O4—Cd1—N5—C1771.16 (19)C7—C8—C10—C11178.3 (3)
O2—Cd1—N5—C1733.0 (2)C8—C10—C11—C121.8 (4)
O3—Cd1—N6—C2499.0 (2)C9—N4—C12—C110.8 (4)
N4—Cd1—N6—C24102.5 (2)Cd1—N4—C12—C11175.4 (2)
N3—Cd1—N6—C24152.85 (19)C10—C11—C12—N41.0 (4)
O1—Cd1—N6—C2416.6 (2)C17—N5—C13—C140.4 (4)
O4—Cd1—N6—C2456.5 (2)Cd1—N5—C13—C14173.9 (2)
O2—Cd1—N6—C2424.7 (2)N5—C13—C14—C151.4 (4)
N5—Cd1—N6—C24179.2 (2)C13—C14—C15—C160.7 (4)
O3—Cd1—N6—C2183.4 (2)C14—C15—C16—C170.9 (4)
N4—Cd1—N6—C2175.1 (2)C14—C15—C16—C18179.7 (3)
N3—Cd1—N6—C2124.8 (3)C13—N5—C17—C161.4 (4)
O1—Cd1—N6—C21160.97 (17)Cd1—N5—C17—C16176.21 (19)
O4—Cd1—N6—C21125.9 (2)C13—N5—C17—C21178.5 (2)
O2—Cd1—N6—C21152.9 (2)Cd1—N5—C17—C213.7 (3)
N5—Cd1—N6—C213.16 (18)C15—C16—C17—N52.0 (4)
O2—N1—O1—Cd11.1 (2)C18—C16—C17—N5178.5 (2)
O3—Cd1—O1—N1133.52 (16)C15—C16—C17—C21177.9 (2)
N6—Cd1—O1—N110.90 (19)C18—C16—C17—C211.6 (4)
N4—Cd1—O1—N176.70 (16)C17—C16—C18—C190.3 (4)
N3—Cd1—O1—N1145.80 (16)C15—C16—C18—C19179.2 (3)
O4—Cd1—O1—N183.69 (16)C16—C18—C19—C201.6 (4)
O2—Cd1—O1—N10.64 (14)C18—C19—C20—C22178.1 (3)
N5—Cd1—O1—N1122.5 (2)C18—C19—C20—C212.2 (4)
O1—N1—O2—Cd11.1 (2)C24—N6—C21—C200.4 (4)
O3—Cd1—O2—N164.39 (17)Cd1—N6—C21—C20177.34 (19)
N6—Cd1—O2—N1172.34 (17)C24—N6—C21—C17179.7 (2)
N4—Cd1—O2—N194.86 (16)Cd1—N6—C21—C172.6 (3)
N3—Cd1—O2—N138.65 (18)C22—C20—C21—N60.5 (4)
O1—Cd1—O2—N10.64 (14)C19—C20—C21—N6179.1 (2)
O4—Cd1—O2—N188.97 (16)C22—C20—C21—C17179.4 (2)
N5—Cd1—O2—N1153.45 (15)C19—C20—C21—C170.9 (4)
O5—N2—O3—Cd1175.7 (6)N5—C17—C21—N60.9 (4)
O4—N2—O3—Cd11.7 (3)C16—C17—C21—N6179.0 (2)
N6—Cd1—O3—N259.66 (19)N5—C17—C21—C20179.1 (2)
N4—Cd1—O3—N2167.00 (16)C16—C17—C21—C201.0 (4)
N3—Cd1—O3—N2152.96 (18)C21—C20—C22—C230.4 (4)
O1—Cd1—O3—N274.47 (18)C19—C20—C22—C23179.3 (3)
O4—Cd1—O3—N20.99 (16)C20—C22—C23—C240.6 (4)
O2—Cd1—O3—N230.6 (2)C21—N6—C24—C231.5 (4)
N5—Cd1—O3—N2125.28 (18)Cd1—N6—C24—C23176.2 (2)
O5—N2—O4—Cd1175.9 (6)C22—C23—C24—N61.6 (5)

Experimental details

Crystal data
Chemical formula[Cd(NO2)1.75(NO3)0.25(C12H8N2)2]
Mr568.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1470 (4), 10.1866 (4), 13.0057 (6)
α, β, γ (°)76.953 (4), 77.270 (4), 70.404 (4)
V3)1098.27 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.745, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
8702, 4852, 4256
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 1.02
No. of reflections4852
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.69

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—O32.355 (2)Cd1—O12.4547 (19)
Cd1—N62.390 (2)Cd1—O42.503 (2)
Cd1—N42.393 (2)Cd1—O22.5041 (19)
Cd1—N32.418 (2)Cd1—N52.510 (2)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAbedini, J., Morsali, A. & Kempe, R. (2005). J. Coord. Chem. 58, 1161–1167.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadjarodi, A., Taeb, A. & Ng, S. W. (2001). Main Group Met. Chem. 24, 805–806.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds