metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy­carbonyl­pyridinium tetra­chlorido(pyridine-2-carboxyl­ato-κ2N,O)stannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 January 2011; accepted 12 January 2011; online 22 January 2011)

In the reaction of pyridine-2-carb­oxy­lic acid and stannic chloride in methanol, one equivalent of the carb­oxy­lic acid is protonated at the amino site and is also esterified, yielding the title salt, (C7H8NO2)[SnCl4(C6H4NO2)]. The SnIV atom in the anion is N,O-chelated by a pyridine-2-carboxyl­ate in a cis-SnNOCl4 octa­hedral geometry. The cation is linked to the anion by an N—H⋯O hydrogen bond.

Related literature

For a related organotin structure, see: Nowell et al. (1983[Nowell, I. W., Brooks, J. S., Beech, G. & Hill, R. (1983). J. Organomet. Chem. 244, 119-124.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H8NO2)[SnCl4(C6H4NO2)]

  • Mr = 520.74

  • Orthorhombic, P 21 21 21

  • a = 8.8898 (3) Å

  • b = 10.3571 (3) Å

  • c = 20.0938 (7) Å

  • V = 1850.09 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.588, Tmax = 0.693

  • 6191 measured reflections

  • 3787 independent reflections

  • 3679 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 0.96

  • 3787 reflections

  • 222 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.68 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1428 Friedel pairs

  • Flack parameter: −0.03 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.88 (3) 1.89 (1) 2.745 (3) 166 (3)

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The direct synthesis of a potentially chelating amino-carboxylic acid with stannic tetrachloride has not been reported. Pyridine-2-carboxylic acid yields a number of derivatives with organotin compounds; these are either synthesized by condensing the amino-carboxylic acids with an organotin oxide/hydroxide or by reacting the amino-carboxylic acids with an organotin chloride in the presence of a proton abstractor. With the latter route, the product may be an organostannate in which the pyridine-2-carboxylate chelates to the chlorine-bonded tin atom (Nowell et al., 1983). In the reaction of pyridine-2-carboxylic acid and stannic chloride in methanol, one equivalent of the carboxylic acid is protonated at the amino site and is also esterified to yield the salt, [C7H8NO2]+ [SnCl4(C6H4NO2)]- (Scheme I, Fig. 1). The tin atom in the anion is N,O-chelated by a pyridine-2-carboxylate in an octahedral geometry. The cation is linked to the anion by an N–H···O hydrogen bond (Table 1).

Related literature top

For a related organotin structure, see: Nowell et al. (1983).

Experimental top

Stannic chloride pentahydrate 0.35 g, 1 mmol) and pyridine-2-carboxylic acid (0.13 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was refined.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C7H8NO2]+ [SnCl4(C6H4NO2)]- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Methoxycarbonylpyridinium tetrachlorido(pyridine-2-carboxylato-κ2N,O)stannate(IV) top
Crystal data top
(C7H8NO2)[SnCl4(C6H4NO2)]F(000) = 1016
Mr = 520.74Dx = 1.870 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5063 reflections
a = 8.8898 (3) Åθ = 2.5–29.3°
b = 10.3571 (3) ŵ = 1.98 mm1
c = 20.0938 (7) ÅT = 100 K
V = 1850.09 (10) Å3Prism, colorless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3787 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3679 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 117
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1310
Tmin = 0.588, Tmax = 0.693l = 2515
6191 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0199P)2 + 1.6372P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
3787 reflectionsΔρmax = 0.36 e Å3
222 parametersΔρmin = 0.68 e Å3
1 restraintAbsolute structure: Flack (1983), 1428 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
(C7H8NO2)[SnCl4(C6H4NO2)]V = 1850.09 (10) Å3
Mr = 520.74Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8898 (3) ŵ = 1.98 mm1
b = 10.3571 (3) ÅT = 100 K
c = 20.0938 (7) Å0.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3787 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
3679 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.693Rint = 0.021
6191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049Δρmax = 0.36 e Å3
S = 0.96Δρmin = 0.68 e Å3
3787 reflectionsAbsolute structure: Flack (1983), 1428 Friedel pairs
222 parametersAbsolute structure parameter: 0.03 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.389388 (18)0.500107 (17)0.098352 (8)0.01202 (5)
Cl40.19677 (7)0.49203 (9)0.18312 (3)0.01817 (13)
Cl30.59780 (8)0.48209 (7)0.02047 (3)0.01800 (14)
Cl20.39844 (9)0.72817 (6)0.09456 (4)0.02160 (15)
Cl10.21001 (8)0.46486 (7)0.01310 (4)0.02040 (16)
O10.54531 (19)0.5006 (2)0.17598 (8)0.0163 (4)
O20.6707 (2)0.3817 (2)0.24920 (10)0.0217 (5)
O30.9194 (2)0.2695 (2)0.17094 (10)0.0202 (4)
O41.1105 (3)0.1264 (2)0.16977 (11)0.0271 (5)
N10.4309 (3)0.2927 (2)0.11697 (11)0.0127 (5)
N20.9440 (3)0.3078 (2)0.30014 (13)0.0148 (5)
H20.866 (2)0.338 (3)0.2787 (14)0.012 (8)*
C10.5869 (3)0.3918 (3)0.20127 (13)0.0156 (6)
C20.5262 (3)0.2717 (3)0.16754 (13)0.0148 (6)
C30.5707 (4)0.1491 (3)0.18569 (14)0.0195 (6)
H30.63610.13580.22250.023*
C40.5172 (3)0.0454 (3)0.14858 (15)0.0208 (6)
H40.54670.04020.15940.025*
C50.4211 (3)0.0678 (3)0.09613 (15)0.0196 (6)
H50.38500.00200.07000.024*
C60.3776 (3)0.1931 (3)0.08186 (14)0.0158 (6)
H60.30880.20850.04660.019*
C70.9024 (4)0.2550 (3)0.09935 (16)0.0295 (7)
H7A0.81820.30840.08400.044*
H7B0.88240.16430.08870.044*
H7C0.99500.28270.07710.044*
C81.0302 (4)0.2023 (3)0.19757 (16)0.0182 (7)
C91.0474 (3)0.2317 (3)0.27057 (14)0.0154 (6)
C101.1650 (4)0.1834 (3)0.30627 (15)0.0209 (6)
H101.23840.13020.28560.025*
C111.1758 (4)0.2136 (3)0.37360 (17)0.0266 (7)
H111.25640.18030.39950.032*
C121.0684 (4)0.2923 (3)0.40256 (17)0.0239 (7)
H121.07520.31380.44840.029*
C130.9520 (4)0.3391 (3)0.36472 (15)0.0177 (6)
H130.87770.39320.38420.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01237 (8)0.01123 (8)0.01245 (8)0.00035 (11)0.00144 (7)0.00058 (8)
Cl40.0168 (3)0.0182 (3)0.0195 (3)0.0011 (4)0.0035 (2)0.0029 (3)
Cl30.0173 (3)0.0198 (3)0.0170 (3)0.0010 (3)0.0027 (3)0.0005 (3)
Cl20.0263 (4)0.0115 (3)0.0270 (4)0.0001 (3)0.0020 (4)0.0006 (3)
Cl10.0186 (3)0.0253 (4)0.0173 (3)0.0008 (3)0.0061 (3)0.0007 (3)
O10.0159 (8)0.0182 (8)0.0148 (8)0.0015 (12)0.0046 (7)0.0011 (10)
O20.0170 (10)0.0324 (11)0.0156 (10)0.0063 (10)0.0037 (9)0.0041 (9)
O30.0186 (11)0.0297 (11)0.0123 (9)0.0005 (10)0.0002 (9)0.0031 (8)
O40.0294 (12)0.0277 (10)0.0242 (11)0.0063 (12)0.0070 (11)0.0067 (9)
N10.0132 (12)0.0110 (10)0.0139 (12)0.0013 (10)0.0015 (10)0.0005 (8)
N20.0097 (12)0.0163 (12)0.0184 (13)0.0012 (10)0.0026 (11)0.0034 (10)
C10.0101 (13)0.0242 (14)0.0123 (12)0.0042 (12)0.0038 (11)0.0027 (11)
C20.0138 (13)0.0190 (13)0.0115 (13)0.0018 (12)0.0022 (11)0.0021 (10)
C30.0210 (15)0.0220 (14)0.0155 (14)0.0036 (13)0.0025 (12)0.0055 (11)
C40.0220 (15)0.0150 (12)0.0253 (16)0.0023 (12)0.0100 (13)0.0063 (11)
C50.0212 (14)0.0132 (12)0.0245 (14)0.0020 (12)0.0076 (14)0.0009 (11)
C60.0153 (13)0.0151 (12)0.0170 (14)0.0025 (12)0.0034 (12)0.0015 (10)
C70.0268 (17)0.0482 (19)0.0134 (14)0.0025 (18)0.0033 (17)0.0023 (15)
C80.0177 (15)0.0183 (14)0.0186 (16)0.0025 (13)0.0012 (14)0.0014 (12)
C90.0145 (13)0.0136 (12)0.0181 (14)0.0013 (11)0.0008 (12)0.0009 (10)
C100.0172 (14)0.0204 (14)0.0253 (16)0.0060 (12)0.0009 (14)0.0009 (12)
C110.0224 (16)0.0333 (17)0.0241 (16)0.0063 (15)0.0067 (15)0.0012 (14)
C120.0242 (16)0.0292 (15)0.0183 (14)0.0027 (14)0.0047 (15)0.0018 (14)
C130.0184 (14)0.0180 (13)0.0165 (14)0.0019 (12)0.0012 (12)0.0015 (11)
Geometric parameters (Å, º) top
Sn1—O12.0868 (16)C3—H30.9500
Sn1—N12.211 (2)C4—C51.376 (4)
Sn1—Cl22.3647 (6)C4—H40.9500
Sn1—Cl12.3687 (7)C5—C61.384 (4)
Sn1—Cl42.4167 (6)C5—H50.9500
Sn1—Cl32.4325 (7)C6—H60.9500
O1—C11.291 (3)C7—H7A0.9800
O2—C11.222 (3)C7—H7B0.9800
O3—C81.320 (4)C7—H7C0.9800
O3—C71.454 (4)C8—C91.506 (4)
O4—C81.199 (4)C9—C101.363 (4)
N1—C21.341 (4)C10—C111.392 (4)
N1—C61.337 (3)C10—H100.9500
N2—C131.339 (4)C11—C121.384 (5)
N2—C91.348 (4)C11—H110.9500
N2—H20.88 (2)C12—C131.373 (4)
C1—C21.516 (4)C12—H120.9500
C2—C31.379 (4)C13—H130.9500
C3—C41.391 (4)
O1—Sn1—N176.42 (9)C5—C4—H4120.2
O1—Sn1—Cl289.93 (7)C3—C4—H4120.2
N1—Sn1—Cl2165.94 (7)C4—C5—C6119.3 (3)
O1—Sn1—Cl1171.19 (7)C4—C5—H5120.3
N1—Sn1—Cl194.88 (6)C6—C5—H5120.3
Cl2—Sn1—Cl198.83 (3)N1—C6—C5121.0 (3)
O1—Sn1—Cl486.78 (5)N1—C6—H6119.5
N1—Sn1—Cl488.02 (6)C5—C6—H6119.5
Cl2—Sn1—Cl494.67 (3)O3—C7—H7A109.5
Cl1—Sn1—Cl491.57 (2)O3—C7—H7B109.5
O1—Sn1—Cl388.58 (5)H7A—C7—H7B109.5
N1—Sn1—Cl384.67 (6)O3—C7—H7C109.5
Cl2—Sn1—Cl391.72 (3)H7A—C7—H7C109.5
Cl1—Sn1—Cl392.04 (2)H7B—C7—H7C109.5
Cl4—Sn1—Cl3172.10 (3)O4—C8—O3126.9 (3)
C1—O1—Sn1118.83 (19)O4—C8—C9121.7 (3)
C8—O3—C7115.1 (2)O3—C8—C9111.3 (3)
C2—N1—C6119.9 (2)N2—C9—C10120.3 (3)
C2—N1—Sn1113.08 (18)N2—C9—C8118.6 (3)
C6—N1—Sn1126.95 (19)C10—C9—C8121.1 (3)
C13—N2—C9122.2 (3)C9—C10—C11118.8 (3)
C13—N2—H2116 (2)C9—C10—H10120.6
C9—N2—H2122 (2)C11—C10—H10120.6
O2—C1—O1124.0 (3)C10—C11—C12119.6 (3)
O2—C1—C2119.9 (2)C10—C11—H11120.2
O1—C1—C2116.0 (2)C12—C11—H11120.2
N1—C2—C3122.1 (3)C13—C12—C11119.7 (3)
N1—C2—C1115.5 (2)C13—C12—H12120.1
C3—C2—C1122.4 (3)C11—C12—H12120.1
C2—C3—C4118.1 (3)N2—C13—C12119.4 (3)
C2—C3—H3121.0N2—C13—H13120.3
C4—C3—H3121.0C12—C13—H13120.3
C5—C4—C3119.5 (3)
N1—Sn1—O1—C13.82 (19)O1—C1—C2—C3174.6 (3)
Cl2—Sn1—O1—C1179.60 (18)N1—C2—C3—C41.8 (4)
Cl4—Sn1—O1—C184.92 (18)C1—C2—C3—C4175.4 (3)
Cl3—Sn1—O1—C188.68 (18)C2—C3—C4—C50.9 (4)
O1—Sn1—N1—C22.07 (18)C3—C4—C5—C61.0 (4)
Cl2—Sn1—N1—C216.3 (4)C2—N1—C6—C51.1 (4)
Cl1—Sn1—N1—C2176.51 (18)Sn1—N1—C6—C5175.4 (2)
Cl4—Sn1—N1—C285.10 (19)C4—C5—C6—N12.0 (4)
Cl3—Sn1—N1—C291.89 (19)C7—O3—C8—O44.7 (5)
O1—Sn1—N1—C6174.6 (3)C7—O3—C8—C9175.2 (3)
Cl2—Sn1—N1—C6160.4 (2)C13—N2—C9—C100.1 (4)
Cl1—Sn1—N1—C66.8 (2)C13—N2—C9—C8179.6 (2)
Cl4—Sn1—N1—C698.3 (2)O4—C8—C9—N2173.4 (3)
Cl3—Sn1—N1—C684.8 (2)O3—C8—C9—N26.7 (4)
Sn1—O1—C1—O2175.6 (2)O4—C8—C9—C107.0 (5)
Sn1—O1—C1—C24.8 (3)O3—C8—C9—C10173.0 (3)
C6—N1—C2—C30.9 (4)N2—C9—C10—C110.4 (4)
Sn1—N1—C2—C3177.8 (2)C8—C9—C10—C11180.0 (3)
C6—N1—C2—C1176.5 (2)C9—C10—C11—C120.6 (5)
Sn1—N1—C2—C10.4 (3)C10—C11—C12—C130.4 (5)
O2—C1—C2—N1177.7 (2)C9—N2—C13—C120.3 (4)
O1—C1—C2—N12.7 (4)C11—C12—C13—N20.0 (5)
O2—C1—C2—C35.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.88 (3)1.89 (1)2.745 (3)166 (3)

Experimental details

Crystal data
Chemical formula(C7H8NO2)[SnCl4(C6H4NO2)]
Mr520.74
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.8898 (3), 10.3571 (3), 20.0938 (7)
V3)1850.09 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.588, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
6191, 3787, 3679
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 0.96
No. of reflections3787
No. of parameters222
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.68
Absolute structureFlack (1983), 1428 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.88 (3)1.887 (13)2.745 (3)166 (3)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNowell, I. W., Brooks, J. S., Beech, G. & Hill, R. (1983). J. Organomet. Chem. 244, 119–124.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds