organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o343-o344

3-Meth­­oxy-2-[(E)-(4-meth­­oxy­phen­yl)imino­meth­yl]phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey
*Correspondence e-mail: gozdemir@omu.edu.tr

(Received 28 December 2010; accepted 5 January 2011; online 12 January 2011)

The title compound, C15H15NO3, adopts the enol–imine tautomeric form. The two rings are twisted with respect to each other, making a dihedral angle of 44.08 (5)°. The 3-methoxy-2-[(E)-(4-methoxyphenyl)-iminomethyl]phenol unit is almost planar, the largest deviation from the mean plane being 0.047 (2) Å. Such a planar conformation might be related to the occurrence of an intra­molecular O—H⋯N hydrogen bond. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into sheets parallel to (010). These sheets are inter­connected by weak C—H⋯π inter­actions.

Related literature

For background to the properties and uses of Schiff bases, see: Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041-2051.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Özdemir Tarı et al. (2010[Özdemir Tarı, G., Tanak, H., Macit, M., Erşahin, F. & Isık, Ş. (2010). Acta Cryst. E66, o85.]); Şahin et al. (2005[Şahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859-o2861.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO3

  • Mr = 257.28

  • Monoclinic, P 21 /c

  • a = 14.2658 (8) Å

  • b = 14.1553 (11) Å

  • c = 6.5893 (17) Å

  • β = 96.398 (9)°

  • V = 1322.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.65 × 0.32 × 0.14 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe, 2002)[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.991, Tmax = 0.997

  • 7244 measured reflections

  • 2585 independent reflections

  • 1622 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.122

  • S = 1.04

  • 2585 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1—C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.60 3.428 (3) 149
C14—H14A⋯O1ii 0.96 2.49 3.412 (3) 162
O2—H2A⋯N1 0.82 1.87 2.590 (2) 146
C5—H5⋯Cg1iii 0.93 2.80 3.486 (2) 132
Symmetry codes: (i) x, y, z-1; (ii) x-1, y, z-1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe, 2002)[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]; data reduction: X-RED32 (Stoe, 2002[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton et al., 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). There are two characteristic properties of Schiff bases, viz. Photochromism and thermochromism (Cohen et al., 1964). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine (Özdemir Tarı et al., 2010) and N—H···O in keto-amine tautomers (Şahin et al., 2005). Another form of the Schiff base compounds is also known as zwitterion having an ionic intramolecular hydrogen bond (N+—H···O-) and this form is rarely seen in the solid state (Özdemir Tarı et al., 2010).

The title compound, C15H15O3N1, adopts the enol-imine tautomeric form. The C7=N1 [1.278 (3) Å] and C8=N1 [1.419 (2) Å] bond distances are of double-bond character, whereas, C6—O2 [1.356 (2) Å] distance is single bond. These distances are similar to that reported in the literature [1.269 (8) Å] and [1.397 (7) Å] for C=N and [1.332 (8) Å] for C—O respectively (Özdemir Tarı et al., 2010).

The two phenyl rings are twisted with respect to each other making dihedral angle of 44.08 (5)° (Fig. 1). The 4-methoxyphenylimino)phenol moiety is planar with the largest deviation from the mean plane being 0.047 (2)Å at C7. Such planar conformation might be related to the occurrence of the O—H···N intramolecular hydrogen bond (Fig. 1, Table 1). This intramolecular N—H···O hydrogen bond results in the formation of an S(6) ring (Etter et al., 1990; Bernstein et al., 1995).

Intermolecular C—H···O hydrogen bonds link the molecules forming sheets parallel to the (0 1 0) plane (Fig. 2, Table 1). These sheets are interconnected by weak C—H···π interactions (Table 1, Cg1 is the centroid of the C1—C6 phenyl ring).

Related literature top

For background to the properties and uses of Schiff bases, see: Barton & Ollis (1979); Layer (1963); Ingold (1969); Cohen et al. (1964); Taggi et al. (2002). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995). For related structures, see: Özdemir Tarı et al. (2010); Şahin et al. (2005).

Experimental top

(E)-3-methoxy-2-((4-methoxyphenylimino)methyl)phenol was prepared by refluxing a mixture of a solution containing 2-hydroxy-6- methoxybenzaldehyde (15.2 mg, o.1 mmol) in ethanol (30 ml) and a solution containing 4-methoxyaniline (12.3 mg, 0.1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 2 h under reflux. Single crystals of the title compound for x-ray analysis were obtained by slow evaporation of an ethanol solution (yield 72%; m.p 346–348 K).

Computing details top

Data collection: X-AREA (Stoe, 2002); cell refinement: X-AREA (Stoe, 2002); data reduction: X-RED32 (Stoe, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Intramolecular H bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the formation of sheets parallel to the (0 1 0) plane. H bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-Methoxy-2-[(E)-(4-methoxyphenyl)iminomethyl]phenol top
Crystal data top
C15H15NO3F(000) = 544
Mr = 257.28Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12079 reflections
a = 14.2658 (8) Åθ = 1.4–27.2°
b = 14.1553 (11) ŵ = 0.09 mm1
c = 6.5893 (17) ÅT = 293 K
β = 96.398 (9)°Prism, brown
V = 1322.3 (4) Å30.65 × 0.32 × 0.14 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
2585 independent reflections
Radiation source: fine-focus sealed tube1622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.4°
ϕ scan rotation methodh = 1617
Absorption correction: integration
(X-RED32; Stoe, 2002)
k = 1717
Tmin = 0.991, Tmax = 0.997l = 86
7244 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.1038P]
where P = (Fo2 + 2Fc2)/3
2585 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H15NO3V = 1322.3 (4) Å3
Mr = 257.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2658 (8) ŵ = 0.09 mm1
b = 14.1553 (11) ÅT = 293 K
c = 6.5893 (17) Å0.65 × 0.32 × 0.14 mm
β = 96.398 (9)°
Data collection top
Stoe IPDS 2
diffractometer
2585 independent reflections
Absorption correction: integration
(X-RED32; Stoe, 2002)
1622 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.997Rint = 0.032
7244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.11 e Å3
2585 reflectionsΔρmin = 0.19 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20529 (13)0.11619 (13)0.4013 (3)0.0443 (5)
C20.29338 (14)0.10131 (14)0.3295 (3)0.0483 (5)
H20.29590.07930.19720.058*
C30.37566 (14)0.11898 (15)0.4526 (3)0.0516 (5)
C40.37125 (16)0.15062 (15)0.6515 (3)0.0548 (6)
H40.42680.16260.73530.066*
C50.28635 (16)0.16440 (15)0.7254 (3)0.0542 (6)
H50.28480.18540.85880.065*
C60.20294 (15)0.14735 (14)0.6034 (3)0.0479 (5)
C70.11923 (14)0.10451 (13)0.2639 (3)0.0481 (5)
H70.12290.09000.12740.058*
C80.04619 (13)0.11307 (14)0.1930 (3)0.0459 (5)
C90.12676 (15)0.07751 (15)0.2668 (4)0.0544 (6)
H90.12260.05220.39770.065*
C100.21198 (15)0.07926 (15)0.1495 (4)0.0553 (6)
H100.26480.05350.19950.066*
C110.22005 (14)0.11941 (14)0.0446 (4)0.0512 (5)
C120.14058 (15)0.15559 (16)0.1200 (4)0.0561 (6)
H120.14520.18230.24970.067*
C130.05435 (15)0.15172 (15)0.0012 (3)0.0537 (6)
H130.00100.17550.05260.064*
C140.3216 (2)0.1629 (2)0.3428 (5)0.0908 (9)
H14A0.38680.15900.39700.136*
H14B0.28370.12970.43100.136*
H14C0.30260.22800.33380.136*
C150.47450 (18)0.0772 (2)0.1985 (4)0.0881 (9)
H15A0.54020.07420.17950.132*
H15B0.44270.11960.10000.132*
H15C0.44720.01530.18100.132*
N10.03849 (12)0.11390 (12)0.3283 (3)0.0496 (4)
O10.46496 (10)0.10987 (13)0.3953 (3)0.0752 (5)
O20.12069 (11)0.16290 (11)0.6830 (2)0.0636 (5)
H2A0.07630.15000.59750.095*
O30.30930 (10)0.12168 (12)0.1453 (3)0.0662 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (11)0.0426 (10)0.0480 (12)0.0004 (9)0.0020 (9)0.0004 (9)
C20.0481 (12)0.0525 (12)0.0439 (12)0.0043 (9)0.0032 (10)0.0031 (9)
C30.0418 (11)0.0593 (12)0.0524 (13)0.0040 (10)0.0000 (10)0.0011 (10)
C40.0537 (14)0.0603 (13)0.0475 (13)0.0011 (10)0.0073 (11)0.0002 (10)
C50.0630 (15)0.0575 (13)0.0412 (12)0.0010 (10)0.0017 (11)0.0042 (10)
C60.0494 (13)0.0472 (11)0.0487 (13)0.0010 (9)0.0117 (10)0.0013 (9)
C70.0468 (12)0.0484 (11)0.0494 (12)0.0000 (9)0.0059 (10)0.0025 (9)
C80.0401 (11)0.0430 (11)0.0551 (13)0.0016 (9)0.0075 (10)0.0027 (9)
C90.0480 (13)0.0570 (13)0.0586 (14)0.0036 (10)0.0080 (11)0.0085 (11)
C100.0406 (12)0.0562 (13)0.0706 (15)0.0078 (10)0.0127 (11)0.0063 (11)
C110.0404 (11)0.0493 (11)0.0632 (14)0.0021 (9)0.0025 (10)0.0071 (11)
C120.0519 (13)0.0645 (14)0.0516 (13)0.0045 (10)0.0046 (11)0.0036 (10)
C130.0402 (12)0.0667 (13)0.0548 (14)0.0061 (10)0.0086 (10)0.0042 (11)
C140.0623 (17)0.125 (3)0.079 (2)0.0102 (16)0.0186 (15)0.0173 (18)
C150.0519 (15)0.142 (3)0.0722 (18)0.0053 (15)0.0146 (14)0.0252 (18)
N10.0409 (10)0.0518 (10)0.0561 (11)0.0028 (8)0.0057 (8)0.0023 (8)
O10.0402 (9)0.1206 (15)0.0637 (11)0.0052 (9)0.0009 (8)0.0167 (10)
O20.0557 (9)0.0812 (11)0.0560 (10)0.0037 (8)0.0157 (8)0.0081 (8)
O30.0417 (9)0.0795 (11)0.0749 (11)0.0074 (7)0.0055 (8)0.0016 (9)
Geometric parameters (Å, º) top
C1—C61.407 (3)C9—H90.9300
C1—C21.407 (3)C10—C111.393 (3)
C1—C71.451 (3)C10—H100.9300
C2—C31.373 (3)C11—O31.369 (2)
C2—H20.9300C11—C121.386 (3)
C3—O11.375 (3)C12—C131.384 (3)
C3—C41.393 (3)C12—H120.9300
C4—C51.369 (3)C13—H130.9300
C4—H40.9300C14—O31.419 (3)
C5—C61.381 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—O21.356 (2)C14—H14C0.9600
C7—N11.278 (3)C15—O11.397 (3)
C7—H70.9300C15—H15A0.9600
C8—C131.385 (3)C15—H15B0.9600
C8—C91.391 (3)C15—H15C0.9600
C8—N11.419 (2)O2—H2A0.8200
C9—C101.366 (3)
C6—C1—C2118.79 (19)C9—C10—H10119.9
C6—C1—C7121.21 (19)C11—C10—H10119.9
C2—C1—C7119.91 (19)O3—C11—C12124.9 (2)
C3—C2—C1120.7 (2)O3—C11—C10115.58 (18)
C3—C2—H2119.6C12—C11—C10119.5 (2)
C1—C2—H2119.6C13—C12—C11119.6 (2)
C2—C3—O1125.3 (2)C13—C12—H12120.2
C2—C3—C4119.3 (2)C11—C12—H12120.2
O1—C3—C4115.40 (19)C12—C13—C8121.1 (2)
C5—C4—C3121.0 (2)C12—C13—H13119.5
C5—C4—H4119.5C8—C13—H13119.5
C3—C4—H4119.5O3—C14—H14A109.5
C4—C5—C6120.4 (2)O3—C14—H14B109.5
C4—C5—H5119.8H14A—C14—H14B109.5
C6—C5—H5119.8O3—C14—H14C109.5
O2—C6—C5118.21 (18)H14A—C14—H14C109.5
O2—C6—C1122.03 (19)H14B—C14—H14C109.5
C5—C6—C1119.75 (19)O1—C15—H15A109.5
N1—C7—C1120.8 (2)O1—C15—H15B109.5
N1—C7—H7119.6H15A—C15—H15B109.5
C1—C7—H7119.6O1—C15—H15C109.5
C13—C8—C9118.6 (2)H15A—C15—H15C109.5
C13—C8—N1123.71 (18)H15B—C15—H15C109.5
C9—C8—N1117.54 (19)C7—N1—C8121.78 (19)
C10—C9—C8120.9 (2)C3—O1—C15118.36 (18)
C10—C9—H9119.6C6—O2—H2A109.5
C8—C9—H9119.6C11—O3—C14117.85 (19)
C9—C10—C11120.29 (19)
C6—C1—C2—C31.5 (3)N1—C8—C9—C10176.32 (19)
C7—C1—C2—C3175.00 (19)C8—C9—C10—C111.9 (3)
C1—C2—C3—O1177.7 (2)C9—C10—C11—O3176.91 (19)
C1—C2—C3—C41.0 (3)C9—C10—C11—C121.5 (3)
C2—C3—C4—C50.1 (3)O3—C11—C12—C13178.0 (2)
O1—C3—C4—C5178.7 (2)C10—C11—C12—C130.3 (3)
C3—C4—C5—C60.2 (3)C11—C12—C13—C80.6 (3)
C4—C5—C6—O2179.4 (2)C9—C8—C13—C120.3 (3)
C4—C5—C6—C10.4 (3)N1—C8—C13—C12174.7 (2)
C2—C1—C6—O2179.81 (18)C1—C7—N1—C8172.99 (18)
C7—C1—C6—O23.7 (3)C13—C8—N1—C736.1 (3)
C2—C1—C6—C51.2 (3)C9—C8—N1—C7148.9 (2)
C7—C1—C6—C5175.24 (19)C2—C3—O1—C152.2 (4)
C6—C1—C7—N16.4 (3)C4—C3—O1—C15179.1 (2)
C2—C1—C7—N1177.11 (18)C12—C11—O3—C140.9 (3)
C13—C8—C9—C101.0 (3)C10—C11—O3—C14179.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1—C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.603.428 (3)149
C14—H14A···O1ii0.962.493.412 (3)162
O2—H2A···N10.821.872.590 (2)146
C5—H5···Cg1iii0.932.803.486 (2)132
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO3
Mr257.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.2658 (8), 14.1553 (11), 6.5893 (17)
β (°) 96.398 (9)
V3)1322.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.65 × 0.32 × 0.14
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe, 2002)
Tmin, Tmax0.991, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
7244, 2585, 1622
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.122, 1.04
No. of reflections2585
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.19

Computer programs: X-AREA (Stoe, 2002), X-RED32 (Stoe, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1—C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.603.428 (3)149
C14—H14A···O1ii0.962.493.412 (3)162
O2—H2A···N10.821.872.590 (2)146
C5—H5···Cg1iii0.932.803.486 (2)132
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x, y1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.  Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041–2051.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIngold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.  Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationÖzdemir Tarı, G., Tanak, H., Macit, M., Erşahin, F. & Isık, Ş. (2010). Acta Cryst. E66, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859–o2861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o343-o344
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds