organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(2-meth­­oxy-6-formyl­phen­­oxy)ethane

aKey Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 18 December 2010; accepted 24 December 2010; online 8 January 2011)

In the title compound [systematic name: 3,3′-dimethoxy-2,2′-(ethane-1,2-diyldioxy)dibenzaldehyde], C18H18O6, prepared from 1,2-dibromo­ethane and ortho-vanillin in the presence of sodium carbonate, the two vanillin units are linked via a CH2–CH2 bridge. The two benzene rings are inclined at a dihedral angle of 41.6 (5)°.

Related literature

For the use of open chain-ionophores, including polyethyl­ene glycols, as microbiological agents and in ion binding, see: Valeur et al. (1992[Valeur, B., Pouget, J., Bourson, J., Kaschke, M. & Ernsting, N. P. (1992). J. Phys. Chem. 96, 6545-6549.]); Tuncer & Erk (2000[Tuncer, H. & Erk, C. (2000). Dyes Pigments, 44, 81-86.]). For the synthesis, see: Tuncer & Erk (2000[Tuncer, H. & Erk, C. (2000). Dyes Pigments, 44, 81-86.]). For related structures, see: Higham et al. (2010[Higham, L. T., Scott, J. L. & Strauss, J. R. (2010). Cryst. Growth Des. 10, 2409-2420.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O6

  • Mr = 330.32

  • Monoclinic, P 21 /n

  • a = 4.161 (3) Å

  • b = 30.155 (18) Å

  • c = 12.934 (8) Å

  • β = 96.817 (7)°

  • V = 1611.6 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.992

  • 14774 measured reflections

  • 2815 independent reflections

  • 1519 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.141

  • S = 1.00

  • 2815 reflections

  • 220 parameters

  • H-atom parameters not refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Open chain ionophores including polyethylene glycols have proved to be extremely interesting compounds due to their versatility as microbiological agents and in ion binding (Valeur et al., 1992). Their extraordinary capacity for ion binding has attracted much attention in view of their acyclic and bulky structures. For example, aromatic carbonyl derivatives of glycols such as 1,2-bis(2-methoxy-6- formylphenoxy)ethane were investigated to determine the role of sodium ions using steady state fluorescence spectroscopy (Tuncer & Erk, 2000). 1,2-Bis(2-methoxy-6-formylphenoxy)ethane and its analogues have also been used in the synthesis of dienone-ether macrocycles displaying molecular and supramolecular diversity (Higham et al., 2010). Herein we present the single-crystal structure of the title compound.

Related literature top

For the use of open chain-ionophores, including polyethylene glycols, as microbiological agents and in ion binding, see: Valeur et al. (1992); Tuncer & Erk (2000). For the synthesis, see: Tuncer & Erk (2000). For related structures, see: Higham et al. (2010).

Experimental top

The title compound was prepared as reported in the literature (Tuncer & Erk, 2000). Single crystals suitable for X-ray diffraction measurement was obtained by slow evaporation of the solution in acetone [m.p. 391–393 K; literature value: 392 K (Tuncer & Erk, 2000)].

Refinement top

All H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) for aromatic and CH2 groups and = 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
3,3'-Dimethoxy-2,2'-(ethane-1,2-diyldioxy)dibenzaldehyde top
Crystal data top
C18H18O6F(000) = 696
Mr = 330.32Dx = 1.361 Mg m3
Monoclinic, P21/nMelting point = 391–393 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 4.161 (3) ÅCell parameters from 1432 reflections
b = 30.155 (18) Åθ = 2.6–19.0°
c = 12.934 (8) ŵ = 0.10 mm1
β = 96.817 (7)°T = 296 K
V = 1611.6 (17) Å3Block, colorless
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2815 independent reflections
Radiation source: fine-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 44
Tmin = 0.988, Tmax = 0.992k = 3535
14774 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters not refined
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2815 reflectionsΔρmax = 0.18 e Å3
220 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (19)
Crystal data top
C18H18O6V = 1611.6 (17) Å3
Mr = 330.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.161 (3) ŵ = 0.10 mm1
b = 30.155 (18) ÅT = 296 K
c = 12.934 (8) Å0.12 × 0.10 × 0.08 mm
β = 96.817 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2815 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1519 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.992Rint = 0.096
14774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.141H-atom parameters not refined
S = 1.00Δρmax = 0.18 e Å3
2815 reflectionsΔρmin = 0.18 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3389 (9)0.03026 (11)0.5936 (2)0.0647 (10)
H1A0.56830.03440.59560.097*
H1B0.28950.00080.58950.097*
H1C0.26760.04240.65560.097*
C20.2236 (7)0.09709 (10)0.4969 (2)0.0448 (8)
C30.4057 (8)0.12260 (11)0.5701 (2)0.0554 (9)
H30.51600.10920.62860.066*
C40.4264 (8)0.16785 (12)0.5577 (3)0.0622 (10)
H40.55430.18450.60710.075*
C50.2608 (8)0.18851 (11)0.4733 (3)0.0547 (9)
H50.27170.21920.46660.066*
C60.0754 (7)0.16342 (10)0.3975 (2)0.0453 (8)
C70.0586 (7)0.11786 (10)0.4081 (2)0.0420 (8)
C80.1070 (8)0.18701 (12)0.3090 (3)0.0612 (10)
H80.22090.17030.25640.073*
C90.0325 (8)0.06410 (9)0.2724 (2)0.0461 (8)
H9A0.11300.04070.24490.055*
H9B0.21180.05040.31560.055*
C100.1595 (7)0.08728 (10)0.1841 (2)0.0438 (8)
H10A0.28600.11290.20940.053*
H10B0.29790.06750.15010.053*
C110.0342 (7)0.11450 (10)0.0157 (2)0.0440 (8)
C120.1182 (8)0.15543 (11)0.0050 (3)0.0532 (9)
C130.1759 (9)0.16920 (13)0.0933 (3)0.0714 (11)
H130.27420.19650.10160.086*
C140.0882 (11)0.14262 (16)0.1793 (3)0.0814 (13)
H140.12690.15230.24500.098*
C150.0523 (10)0.10304 (14)0.1689 (3)0.0747 (12)
H150.10640.08540.22740.090*
C160.1190 (8)0.08786 (11)0.0705 (2)0.0526 (9)
C170.2777 (9)0.04495 (12)0.0610 (3)0.0703 (11)
H170.31830.03600.00500.084*
C180.3642 (9)0.21970 (10)0.0892 (3)0.0809 (12)
H18A0.57240.21340.06770.121*
H18B0.39200.23350.15650.121*
H18C0.24690.23930.03980.121*
O10.1379 (5)0.09317 (6)0.33650 (14)0.0448 (6)
O20.1126 (5)0.10109 (6)0.11105 (14)0.0446 (6)
O30.1872 (6)0.17924 (7)0.09468 (19)0.0640 (7)
O40.1771 (5)0.05236 (7)0.50439 (15)0.0560 (6)
O50.1154 (7)0.22701 (8)0.30153 (19)0.0849 (9)
O60.3593 (8)0.02042 (9)0.1333 (2)0.1053 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (3)0.067 (2)0.045 (2)0.001 (2)0.0003 (19)0.0127 (18)
C20.052 (2)0.045 (2)0.0370 (18)0.0069 (17)0.0063 (15)0.0016 (16)
C30.059 (2)0.066 (2)0.039 (2)0.0036 (19)0.0018 (17)0.0019 (18)
C40.069 (3)0.067 (3)0.050 (2)0.018 (2)0.0009 (19)0.0127 (19)
C50.060 (2)0.047 (2)0.058 (2)0.0068 (17)0.0130 (19)0.0113 (18)
C60.050 (2)0.044 (2)0.043 (2)0.0017 (16)0.0124 (16)0.0041 (16)
C70.0433 (19)0.050 (2)0.0340 (18)0.0050 (16)0.0084 (15)0.0083 (16)
C80.068 (2)0.061 (3)0.056 (2)0.013 (2)0.0077 (19)0.0067 (19)
C90.061 (2)0.0381 (18)0.0395 (18)0.0023 (16)0.0051 (16)0.0010 (14)
C100.0451 (19)0.0461 (19)0.0399 (18)0.0039 (15)0.0038 (15)0.0001 (15)
C110.0456 (19)0.049 (2)0.0382 (19)0.0093 (16)0.0081 (15)0.0059 (16)
C120.053 (2)0.055 (2)0.053 (2)0.0084 (18)0.0105 (18)0.0120 (18)
C130.070 (3)0.072 (3)0.076 (3)0.010 (2)0.024 (2)0.032 (2)
C140.093 (3)0.108 (4)0.046 (3)0.025 (3)0.023 (2)0.027 (3)
C150.088 (3)0.094 (3)0.042 (2)0.026 (3)0.006 (2)0.001 (2)
C160.057 (2)0.061 (2)0.0390 (19)0.0138 (18)0.0035 (16)0.0029 (18)
C170.082 (3)0.062 (3)0.064 (3)0.008 (2)0.002 (2)0.014 (2)
C180.069 (3)0.046 (2)0.123 (3)0.009 (2)0.006 (2)0.024 (2)
O10.0467 (13)0.0490 (13)0.0387 (12)0.0020 (11)0.0051 (10)0.0055 (10)
O20.0433 (12)0.0535 (14)0.0371 (12)0.0007 (10)0.0055 (10)0.0064 (10)
O30.0704 (16)0.0468 (14)0.0756 (18)0.0126 (12)0.0120 (13)0.0075 (13)
O40.0708 (16)0.0526 (15)0.0419 (13)0.0078 (12)0.0044 (11)0.0059 (10)
O50.122 (2)0.0432 (16)0.086 (2)0.0179 (15)0.0016 (16)0.0016 (13)
O60.138 (3)0.083 (2)0.089 (2)0.0013 (18)0.012 (2)0.0349 (17)
Geometric parameters (Å, º) top
C1—O41.430 (3)C10—O21.447 (3)
C1—H1A0.9600C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C11—O21.373 (3)
C2—O41.368 (4)C11—C161.385 (4)
C2—C31.376 (4)C11—C121.402 (4)
C2—C71.413 (4)C12—O31.366 (4)
C3—C41.378 (4)C12—C131.385 (4)
C3—H30.9300C13—C141.384 (5)
C4—C51.369 (4)C13—H130.9300
C4—H40.9300C14—C151.343 (5)
C5—C61.396 (4)C14—H140.9300
C5—H50.9300C15—C161.412 (4)
C6—C71.383 (4)C15—H150.9300
C6—C81.479 (4)C16—C171.464 (5)
C7—O11.378 (3)C17—O61.209 (4)
C8—O51.210 (4)C17—H170.9300
C8—H80.9300C18—O31.431 (3)
C9—O11.449 (3)C18—H18A0.9600
C9—C101.489 (4)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700
O4—C1—H1A109.5C9—C10—H10A110.0
O4—C1—H1B109.5O2—C10—H10B110.0
H1A—C1—H1B109.5C9—C10—H10B110.0
O4—C1—H1C109.5H10A—C10—H10B108.4
H1A—C1—H1C109.5O2—C11—C16119.1 (3)
H1B—C1—H1C109.5O2—C11—C12120.4 (3)
O4—C2—C3125.0 (3)C16—C11—C12120.4 (3)
O4—C2—C7115.8 (3)O3—C12—C13125.5 (3)
C3—C2—C7119.1 (3)O3—C12—C11115.5 (3)
C2—C3—C4120.7 (3)C13—C12—C11119.0 (3)
C2—C3—H3119.7C14—C13—C12120.4 (4)
C4—C3—H3119.7C14—C13—H13119.8
C5—C4—C3120.7 (3)C12—C13—H13119.8
C5—C4—H4119.6C15—C14—C13120.7 (4)
C3—C4—H4119.6C15—C14—H14119.6
C4—C5—C6119.8 (3)C13—C14—H14119.6
C4—C5—H5120.1C14—C15—C16120.9 (4)
C6—C5—H5120.1C14—C15—H15119.6
C7—C6—C5120.0 (3)C16—C15—H15119.6
C7—C6—C8121.8 (3)C11—C16—C15118.6 (3)
C5—C6—C8118.2 (3)C11—C16—C17121.3 (3)
O1—C7—C6120.2 (3)C15—C16—C17120.1 (3)
O1—C7—C2119.9 (3)O6—C17—C16124.3 (4)
C6—C7—C2119.7 (3)O6—C17—H17117.8
O5—C8—C6123.2 (3)C16—C17—H17117.8
O5—C8—H8118.4O3—C18—H18A109.5
C6—C8—H8118.4O3—C18—H18B109.5
O1—C9—C10113.4 (2)H18A—C18—H18B109.5
O1—C9—H9A108.9O3—C18—H18C109.5
C10—C9—H9A108.9H18A—C18—H18C109.5
O1—C9—H9B108.9H18B—C18—H18C109.5
C10—C9—H9B108.9C7—O1—C9114.8 (2)
H9A—C9—H9B107.7C11—O2—C10114.8 (2)
O2—C10—C9108.3 (2)C12—O3—C18117.6 (3)
O2—C10—H10A110.0C2—O4—C1117.4 (2)

Experimental details

Crystal data
Chemical formulaC18H18O6
Mr330.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.161 (3), 30.155 (18), 12.934 (8)
β (°) 96.817 (7)
V3)1611.6 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.988, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14774, 2815, 1519
Rint0.096
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.141, 1.00
No. of reflections2815
No. of parameters220
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support of the project by the Shanghai Natural Science Foundation (No. 06ZR14001) is acknowledged.

References

First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationHigham, L. T., Scott, J. L. & Strauss, J. R. (2010). Cryst. Growth Des. 10, 2409–2420.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuncer, H. & Erk, C. (2000). Dyes Pigments, 44, 81–86.  Web of Science CrossRef CAS Google Scholar
First citationValeur, B., Pouget, J., Bourson, J., Kaschke, M. & Ernsting, N. P. (1992). J. Phys. Chem. 96, 6545–6549.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds