organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzo­thia­zol-2-amine–3-meth­­oxy­carbonyl-7-oxabi­cyclo­[2.2.1]hept-5-ene-2-carb­­oxy­lic acid (1/1)

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 6 December 2010; accepted 14 December 2010; online 18 December 2010)

In the title 1:1 adduct, C7H6N2S·C9H10O5, all non-H atoms of the benzothia­zol-2-amine mol­ecule are essentially coplanar, with a maximum deviation of 0.0286 (9) Å for the S atom. In the crystal, inter­molecular N—H⋯O and O—H⋯N hydrogen bonds connect two mol­ecules of each type into centrosymmetric four-component clusters.

Related literature

For applications of 3-(meth­oxy­carbon­yl)-7-oxa-bicyclo­[2.2.1]hept-5-ene-2-carb­oxy­lic acid and its derivatives, see: Deng & Hu (2007[Deng, L. P. & Hu, Y. Z. (2007). J. Heterocycl. Chem. 44, 597-601.]). For a related structure, see: Wang et al. (2008[Wang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2008). Acta Cryst. E64, o1442.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N2S·C9H10O5

  • Mr = 348.37

  • Monoclinic, P 21 /n

  • a = 10.2737 (10) Å

  • b = 10.4325 (11) Å

  • c = 15.0308 (17) Å

  • β = 93.646 (1)°

  • V = 1607.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.44 × 0.42 × 0.35 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.924

  • 7888 measured reflections

  • 2849 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.123

  • S = 1.03

  • 2849 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.86 2.08 2.849 (3) 148
N2—H2B⋯O3ii 0.86 2.46 2.987 (4) 120
N2—H2B⋯O5ii 0.86 2.14 2.949 (4) 157
O4—H4⋯N1iii 0.82 1.89 2.676 (3) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

7-Oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride has been widely employed in clinical practice (Deng & Hu, 2007). In this paper, the crystal structure of the title compound is reported. The asymmetric unit consistes of a 3-(methoxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid molecule and a benzothiazol-2-amine molecule (Fig. 1). Bond lengths and angles are comparable to those observed for the 1:1 cocrystal of rac-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid and benzothiazol-2-amine (Wang, et al., 2008). In the 3-(methoxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid molecule the dihedral angle between the mean plane formed by atoms C3/C4/C5/C8 and the plane fromed by C5/C6/C7/C8 is 69.3 (2) °. All non-hydrogen atoms of the benzothiazol-2-amine molecule are essentially co-planar with a maximum deviation of 0.0286 (9)Å for atom S1. In the crystal structure, intermolecular N—H···O and O—H···N hydrogen bonds connect two molecules of each type into centrosymmetric four component clusters (Fig. 2, Table 1).

Related literature top

For applications of 3-(methoxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid and its derivatives, see: Deng & Hu (2007). For a related structure, see: Wang et al. (2008).

Experimental top

A mixture of exo-7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride (0.332 g, 2 mmol) and benzothiazol-2-amine (0.3 g, 2 mmol) in methanol (5 ml) was stirred for 5 h at room temperature. The reacted solution was left for crystallization at room temperature. The single-crystal suitable for X-ray determination was obtained by evaporation after 5 d.

Refinement top

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.93–0.96 Å, N-H =0.86Å, O-H = 0.82Å and Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O, methyl C).

Structure description top

7-Oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride has been widely employed in clinical practice (Deng & Hu, 2007). In this paper, the crystal structure of the title compound is reported. The asymmetric unit consistes of a 3-(methoxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid molecule and a benzothiazol-2-amine molecule (Fig. 1). Bond lengths and angles are comparable to those observed for the 1:1 cocrystal of rac-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid and benzothiazol-2-amine (Wang, et al., 2008). In the 3-(methoxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid molecule the dihedral angle between the mean plane formed by atoms C3/C4/C5/C8 and the plane fromed by C5/C6/C7/C8 is 69.3 (2) °. All non-hydrogen atoms of the benzothiazol-2-amine molecule are essentially co-planar with a maximum deviation of 0.0286 (9)Å for atom S1. In the crystal structure, intermolecular N—H···O and O—H···N hydrogen bonds connect two molecules of each type into centrosymmetric four component clusters (Fig. 2, Table 1).

For applications of 3-(methoxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid and its derivatives, see: Deng & Hu (2007). For a related structure, see: Wang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Benzothiazol-2-amine–3-methoxycarbonyl-7-oxabicyclo[2.2.1]hept-5-ene-2- carboxylic acid (1/1) top
Crystal data top
C7H6N2S·C9H10O5F(000) = 728
Mr = 348.37Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1736 reflections
a = 10.2737 (10) Åθ = 2.3–22.2°
b = 10.4325 (11) ŵ = 0.23 mm1
c = 15.0308 (17) ÅT = 298 K
β = 93.646 (1)°Block, light yellow
V = 1607.7 (3) Å30.44 × 0.42 × 0.35 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2849 independent reflections
Radiation source: fine-focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1212
Tmin = 0.905, Tmax = 0.924k = 1211
7888 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.9023P]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C7H6N2S·C9H10O5V = 1607.7 (3) Å3
Mr = 348.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2737 (10) ŵ = 0.23 mm1
b = 10.4325 (11) ÅT = 298 K
c = 15.0308 (17) Å0.44 × 0.42 × 0.35 mm
β = 93.646 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1679 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.924Rint = 0.044
7888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2849 reflectionsΔρmin = 0.28 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4153 (2)0.6895 (2)0.77925 (16)0.0453 (7)
N20.5207 (3)0.5250 (3)0.85991 (17)0.0582 (8)
H2A0.52630.57000.90790.070*
H2B0.55140.44830.86010.070*
O10.3673 (2)0.2580 (2)0.52228 (13)0.0535 (6)
O20.3477 (3)0.1157 (3)0.41181 (16)0.0818 (9)
O30.0688 (2)0.1771 (2)0.49890 (13)0.0617 (7)
O40.0927 (2)0.3513 (2)0.58303 (13)0.0582 (6)
H40.07280.30160.62220.087*
O50.0846 (2)0.2395 (2)0.30892 (13)0.0513 (6)
S10.45412 (9)0.48354 (8)0.68714 (6)0.0561 (3)
C10.3281 (3)0.2196 (3)0.4405 (2)0.0465 (8)
C20.0935 (3)0.2904 (3)0.5075 (2)0.0420 (8)
C30.2594 (3)0.3276 (3)0.39140 (18)0.0389 (7)
H30.31880.40100.38960.047*
C40.1297 (3)0.3720 (3)0.43033 (18)0.0393 (7)
H4A0.13470.46250.44760.047*
C50.0336 (3)0.3534 (3)0.3470 (2)0.0471 (8)
H50.05880.34940.35940.057*
C60.0675 (3)0.4538 (3)0.2804 (2)0.0525 (9)
H60.02090.52800.26560.063*
C70.1755 (3)0.4154 (3)0.2479 (2)0.0510 (9)
H70.22140.45620.20460.061*
C80.2104 (3)0.2917 (3)0.29452 (19)0.0477 (8)
H80.26830.23520.26310.057*
C90.4275 (4)0.1628 (3)0.5812 (2)0.0713 (11)
H9A0.36210.10460.59980.107*
H9B0.46890.20430.63250.107*
H9C0.49150.11620.55040.107*
C100.4647 (3)0.5736 (3)0.7857 (2)0.0460 (8)
C110.3640 (3)0.7130 (3)0.6929 (2)0.0446 (8)
C120.3787 (3)0.6131 (3)0.6332 (2)0.0470 (8)
C130.3350 (3)0.6251 (4)0.5446 (2)0.0638 (10)
H130.34540.55820.50480.077*
C140.2767 (4)0.7362 (4)0.5167 (2)0.0722 (12)
H140.24790.74530.45710.087*
C150.2594 (3)0.8357 (4)0.5750 (2)0.0652 (10)
H150.21790.91020.55440.078*
C160.3029 (3)0.8262 (3)0.6639 (2)0.0547 (9)
H160.29170.89360.70320.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0546 (16)0.0395 (17)0.0419 (16)0.0030 (13)0.0026 (13)0.0020 (12)
N20.085 (2)0.0442 (18)0.0454 (17)0.0167 (16)0.0036 (15)0.0005 (14)
O10.0663 (15)0.0479 (15)0.0437 (13)0.0040 (11)0.0162 (11)0.0004 (11)
O20.122 (2)0.0556 (17)0.0649 (17)0.0284 (16)0.0192 (15)0.0140 (14)
O30.0928 (18)0.0521 (16)0.0407 (13)0.0243 (14)0.0078 (12)0.0001 (11)
O40.0928 (18)0.0474 (14)0.0354 (13)0.0022 (13)0.0114 (12)0.0016 (11)
O50.0674 (15)0.0475 (14)0.0376 (12)0.0173 (12)0.0078 (11)0.0021 (11)
S10.0723 (6)0.0454 (6)0.0512 (5)0.0042 (5)0.0095 (4)0.0105 (4)
C10.049 (2)0.049 (2)0.0406 (19)0.0010 (17)0.0008 (15)0.0009 (17)
C20.0448 (18)0.045 (2)0.0358 (19)0.0019 (16)0.0019 (14)0.0015 (16)
C30.0438 (18)0.0360 (18)0.0364 (17)0.0060 (14)0.0007 (14)0.0001 (14)
C40.0461 (18)0.0365 (18)0.0349 (16)0.0033 (15)0.0011 (14)0.0007 (14)
C50.0470 (19)0.051 (2)0.0426 (19)0.0059 (16)0.0058 (15)0.0068 (17)
C60.060 (2)0.051 (2)0.0444 (19)0.0001 (18)0.0153 (17)0.0096 (17)
C70.068 (2)0.050 (2)0.0335 (18)0.0141 (19)0.0058 (17)0.0080 (16)
C80.061 (2)0.049 (2)0.0333 (17)0.0028 (17)0.0037 (15)0.0004 (15)
C90.085 (3)0.065 (3)0.060 (2)0.011 (2)0.021 (2)0.015 (2)
C100.0497 (19)0.044 (2)0.0450 (19)0.0030 (16)0.0108 (15)0.0010 (16)
C110.0409 (18)0.047 (2)0.0455 (19)0.0080 (16)0.0020 (15)0.0001 (16)
C120.0486 (19)0.052 (2)0.0399 (19)0.0135 (16)0.0028 (15)0.0056 (16)
C130.069 (2)0.071 (3)0.051 (2)0.018 (2)0.0037 (19)0.014 (2)
C140.071 (3)0.093 (3)0.050 (2)0.018 (2)0.0163 (19)0.005 (2)
C150.056 (2)0.073 (3)0.065 (3)0.007 (2)0.0136 (19)0.013 (2)
C160.054 (2)0.053 (2)0.056 (2)0.0020 (18)0.0012 (17)0.0009 (18)
Geometric parameters (Å, º) top
N1—C101.312 (4)C4—H4A0.9800
N1—C111.391 (4)C5—C61.504 (4)
N2—C101.323 (4)C5—H50.9800
N2—H2A0.8600C6—C71.304 (4)
N2—H2B0.8600C6—H60.9300
O1—C11.330 (3)C7—C81.501 (4)
O1—C91.443 (3)C7—H70.9300
O2—C11.188 (4)C8—H80.9800
O3—C21.214 (4)C9—H9A0.9600
O4—C21.302 (3)C9—H9B0.9600
O4—H40.8200C9—H9C0.9600
O5—C81.432 (4)C11—C121.390 (4)
O5—C51.432 (4)C11—C161.395 (4)
S1—C121.733 (3)C12—C131.384 (4)
S1—C101.752 (3)C13—C141.359 (5)
C1—C31.499 (4)C13—H130.9300
C2—C41.504 (4)C14—C151.377 (5)
C3—C81.556 (4)C14—H140.9300
C3—C41.560 (4)C15—C161.385 (4)
C3—H30.9800C15—H150.9300
C4—C51.557 (4)C16—H160.9300
C10—N1—C11110.7 (3)C6—C7—H7127.1
C10—N2—H2A120.0C8—C7—H7127.1
C10—N2—H2B120.0O5—C8—C7101.9 (3)
H2A—N2—H2B120.0O5—C8—C3101.0 (2)
C1—O1—C9116.9 (3)C7—C8—C3106.5 (3)
C2—O4—H4109.5O5—C8—H8115.2
C8—O5—C595.9 (2)C7—C8—H8115.2
C12—S1—C1088.80 (16)C3—C8—H8115.2
O2—C1—O1124.2 (3)O1—C9—H9A109.5
O2—C1—C3126.3 (3)O1—C9—H9B109.5
O1—C1—C3109.5 (3)H9A—C9—H9B109.5
O3—C2—O4123.7 (3)O1—C9—H9C109.5
O3—C2—C4121.9 (3)H9A—C9—H9C109.5
O4—C2—C4114.3 (3)H9B—C9—H9C109.5
C1—C3—C8113.2 (3)N1—C10—N2124.2 (3)
C1—C3—C4115.1 (2)N1—C10—S1115.4 (2)
C8—C3—C4100.9 (2)N2—C10—S1120.5 (3)
C1—C3—H3109.1C12—C11—N1114.8 (3)
C8—C3—H3109.1C12—C11—C16119.9 (3)
C4—C3—H3109.1N1—C11—C16125.3 (3)
C2—C4—C5112.0 (2)C13—C12—C11120.8 (3)
C2—C4—C3112.4 (2)C13—C12—S1128.9 (3)
C5—C4—C3100.0 (2)C11—C12—S1110.3 (2)
C2—C4—H4A110.7C14—C13—C12118.9 (4)
C5—C4—H4A110.7C14—C13—H13120.5
C3—C4—H4A110.7C12—C13—H13120.5
O5—C5—C6101.9 (3)C13—C14—C15121.2 (3)
O5—C5—C4101.3 (2)C13—C14—H14119.4
C6—C5—C4106.6 (2)C15—C14—H14119.4
O5—C5—H5115.1C14—C15—C16120.9 (4)
C6—C5—H5115.1C14—C15—H15119.5
C4—C5—H5115.1C16—C15—H15119.5
C7—C6—C5105.9 (3)C15—C16—C11118.2 (3)
C7—C6—H6127.0C15—C16—H16120.9
C5—C6—H6127.0C11—C16—H16120.9
C6—C7—C8105.8 (3)
C9—O1—C1—O25.4 (5)C6—C7—C8—O532.5 (3)
C9—O1—C1—C3175.8 (3)C6—C7—C8—C373.0 (3)
O2—C1—C3—C81.0 (5)C1—C3—C8—O587.8 (3)
O1—C1—C3—C8179.7 (2)C4—C3—C8—O535.8 (3)
O2—C1—C3—C4116.3 (4)C1—C3—C8—C7166.1 (3)
O1—C1—C3—C464.9 (3)C4—C3—C8—C770.3 (3)
O3—C2—C4—C548.4 (4)C11—N1—C10—N2179.8 (3)
O4—C2—C4—C5132.4 (3)C11—N1—C10—S10.4 (3)
O3—C2—C4—C363.3 (4)C12—S1—C10—N10.6 (2)
O4—C2—C4—C3115.9 (3)C12—S1—C10—N2178.8 (3)
C1—C3—C4—C23.9 (3)C10—N1—C11—C121.6 (4)
C8—C3—C4—C2118.4 (3)C10—N1—C11—C16179.2 (3)
C1—C3—C4—C5122.8 (3)N1—C11—C12—C13178.4 (3)
C8—C3—C4—C50.6 (3)C16—C11—C12—C130.9 (5)
C8—O5—C5—C649.2 (2)N1—C11—C12—S12.1 (3)
C8—O5—C5—C460.7 (2)C16—C11—C12—S1178.7 (2)
C2—C4—C5—O582.4 (3)C10—S1—C12—C13179.0 (3)
C3—C4—C5—O536.8 (3)C10—S1—C12—C111.5 (2)
C2—C4—C5—C6171.4 (3)C11—C12—C13—C140.3 (5)
C3—C4—C5—C669.4 (3)S1—C12—C13—C14179.2 (3)
O5—C5—C6—C731.4 (3)C12—C13—C14—C150.7 (6)
C4—C5—C6—C774.3 (3)C13—C14—C15—C161.0 (6)
C5—C6—C7—C80.6 (3)C14—C15—C16—C110.4 (5)
C5—O5—C8—C749.7 (3)C12—C11—C16—C150.5 (5)
C5—O5—C8—C360.0 (2)N1—C11—C16—C15178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.862.082.849 (3)148
N2—H2B···O3ii0.862.462.987 (4)120
N2—H2B···O5ii0.862.142.949 (4)157
O4—H4···N1iii0.821.892.676 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H6N2S·C9H10O5
Mr348.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.2737 (10), 10.4325 (11), 15.0308 (17)
β (°) 93.646 (1)
V3)1607.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.44 × 0.42 × 0.35
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.905, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
7888, 2849, 1679
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.03
No. of reflections2849
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.862.082.849 (3)148
N2—H2B···O3ii0.862.462.987 (4)120
N2—H2B···O5ii0.862.142.949 (4)157
O4—H4···N1iii0.821.892.676 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, L. P. & Hu, Y. Z. (2007). J. Heterocycl. Chem. 44, 597–601.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2008). Acta Cryst. E64, o1442.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds