organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(Benzo­yl­oxy)meth­yl]-1-oxo-3H-pyrrolizin-2-yl}methyl benzoate

aPharmaceutical Research Center, PCSIR Laboratories Complex, Karachi 75280, Pakistan, bH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and cDepartment of Pharmaceutical Engineering, Biotechnology College, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
*Correspondence e-mail: usfle8pcsir@yahoo.com

(Received 10 December 2010; accepted 11 December 2010; online 18 December 2010)

The title compound, C23H19NO5, was prepared by esterification of 2,2-bis­(hy­droxy­meth­yl)-2,3-dihydro-1H-pyrrolizin-1-one with benzoyl chloride in pyridine·The pyrrolizine ring system is approximately planar with a maximum deviation of 0.008 (2) Å from the least-squares plane; the two phenyl rings are oriented at dihedral angles of 64.26 (11) and 70.75 (10)° with respect to the pyrrolizine ring system. Weak inter­molecular C—H⋯O hydrogen bonding occurs in the crystal structure.

Related literature

For general background to 2,3-dihydro­pyrrolizine derivatives and for the biological activity of related compounds, see: Skvortsov & Astakhova (1992[Skvortsov, I. M. & Astakhova, L. N. (1992). Chem. Heterocycl. Compd, 28, 117-134.]); Albrecht et al. (2008[Albrecht, W., Unger, A., Nussler, A. K. & Laufer, S. (2008). Drug Metab. Dispos. 36, 894-903.]); Morúaa et al. (2009[Morúaa, A. G., Garcíaa, J. D. G., Montelongob, R. M. & Guerra, L. S. G. (2009). Actas Urol. Esp. 33, 1005-1010.]). For side effects of non-steroidal anti-inflammatory drugs, see: Mishra et al. (2008[Mishra, A., Veerasamy, R., Jain, P. K., Dixit, V. K. & Agrawal, R. K. (2008). Eur. J. Med. Chem. 43, 2464-2472.]). For the synthesis, see: Clemo & Ramage (1931[Clemo, G. R. & Ramage, G. R. (1931). J. Chem. Soc. 7, 49-55.]). For the natural source of the compound, see: Meinwald & Meinwald (1965[Meinwald, J. & Meinwald, Y. C. (1965). J. Am. Chem. Soc. 88, 1305-1310.]). For related structures, see: Ali et al. (2010a[Ali, Y., Peng, Y., Hua, E., Afza, N. & Khan, R. A. (2010a). Acta Cryst. E66, o1579-o1580.],b[Ali, Y., Peng, Y., Hua, E., Anwar, M. A. & Kalhoro, M. A. (2010b). Acta Cryst. E66, o2612.],c[Ali, Y., Yu, P., Hua, E., Rui, G. & Qi, S. (2010c). Acta Cryst. E66, o1578.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19NO5

  • Mr = 389.39

  • Triclinic, [P \overline 1]

  • a = 8.0438 (8) Å

  • b = 11.9359 (13) Å

  • c = 12.0614 (13) Å

  • α = 64.417 (2)°

  • β = 72.670 (2)°

  • γ = 77.390 (2)°

  • V = 991.65 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.42 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 13906 measured reflections

  • 4932 independent reflections

  • 3206 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.161

  • S = 1.01

  • 4932 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3i 0.93 2.59 3.299 (3) 133
C20—H20A⋯O3ii 0.93 2.44 3.269 (3) 149
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

Derivatives of 2,3-dihydropyrrolizine became known through studies of their synthesis (Clemo & Ramage, 1931) and isolation from natural source (Meinwald & Meinwald, 1965). Depending on their structure, derivatives of 2,3-dihydropyrrolizine have shown merit as analgesics, anti-inflammatory agents, myorelaxants, inhibitors of thrombocyte aggregation, fibrinolytics, temperature-lowering substances and drugs for the treatment of glaucoma and conjunctivitis (Skvortsov, 1992). The most important of these, Ketorolac, is reported in literature as one of the most effective nonsteroidal anti-inflammatory drugs to alleviate renoureteral colic (Morúaa et al., 2009). But it suffers from the general side effects of NSAIDs, owing to presence of free carboxylic acid group (Mishra et al., 2008). Licofelone(2-[6-(4-Chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro- 1Hpyrrolizin-5-yl] acetic acid) is a dual inhibitor of both cyclooxygenase isoforms and 5-lipoxygenase (Albrecht et al., 2008). Title compound was prepared in order to synthesize new derivatives of this series. Crystal structures of related molecules are reported (Ali et al., 2010a,b,c).

Numbering scheme for single molecule of the title compound is shown in an ORTEP (Farrugia, 1997) plot of the molecule at 50% ellipsoid probability limit (Fig. 1). The two phenyl rings (C1—C6 and C18—C23) and central pyrollizine ring (C9—C15) are each planner with maximum deviation of 0.006 (3)Å for C5, 0.007 (2)Å for C23 and 0.008 (2)Å for C9 atom from the least square planes, respectively. In the crystal structure, the molecules are stabilized, to form a two-dimensional network or infinite chains along z axis (Fig.2), by intermolecular hydrogen bonds C—H···O (Fig.3, symmetry codes as in Table 1).

Related literature top

For general background to 2,3-dihydropyrrolizine derivatives and for the biological activity of related compounds, see: Skvortsov & Astakhova (1992); Albrecht et al. (2008); Morúaa et al. (2009). For side effects of non-steroidal anti-inflammatory drugs, see: Mishra et al. (2008). For the synthesis, see: Clemo & Ramage (1931). For the natural source of the compound, see: Meinwald & Meinwald (1965). For related structures, see: Ali et al. (2010a,b,c).

Experimental top

Title compound was prepared by esterification of 2,2-bis(hydroxymethyl)-2,3-dihydro-1H-pyrrolizin- 1-one (1) with benzylchloride (2) (Fig. 4). Thus a mixture of one mole percent of 1 and 1.1 mole percent of 2 was stirred in pyridine at room temperature for three hours. The product was precipitated out by addition of cold water and filtered out to give title compound in good yeild. Final product was purified by Flash Colum Chromatography (Ethyl Acetate: Petroleum Ether = 1:1). Single crystals for X-ray analysis were grown by evaporation from a dilute solution in Ethyl Acetate: Petroleum Ether = 1:1.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 and 0.97 Å for aromatic and methylene, respectively. Uiso(H) values were taken to be equal to 1.2 Ueq(C) for all hydrogen atoms.

Structure description top

Derivatives of 2,3-dihydropyrrolizine became known through studies of their synthesis (Clemo & Ramage, 1931) and isolation from natural source (Meinwald & Meinwald, 1965). Depending on their structure, derivatives of 2,3-dihydropyrrolizine have shown merit as analgesics, anti-inflammatory agents, myorelaxants, inhibitors of thrombocyte aggregation, fibrinolytics, temperature-lowering substances and drugs for the treatment of glaucoma and conjunctivitis (Skvortsov, 1992). The most important of these, Ketorolac, is reported in literature as one of the most effective nonsteroidal anti-inflammatory drugs to alleviate renoureteral colic (Morúaa et al., 2009). But it suffers from the general side effects of NSAIDs, owing to presence of free carboxylic acid group (Mishra et al., 2008). Licofelone(2-[6-(4-Chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro- 1Hpyrrolizin-5-yl] acetic acid) is a dual inhibitor of both cyclooxygenase isoforms and 5-lipoxygenase (Albrecht et al., 2008). Title compound was prepared in order to synthesize new derivatives of this series. Crystal structures of related molecules are reported (Ali et al., 2010a,b,c).

Numbering scheme for single molecule of the title compound is shown in an ORTEP (Farrugia, 1997) plot of the molecule at 50% ellipsoid probability limit (Fig. 1). The two phenyl rings (C1—C6 and C18—C23) and central pyrollizine ring (C9—C15) are each planner with maximum deviation of 0.006 (3)Å for C5, 0.007 (2)Å for C23 and 0.008 (2)Å for C9 atom from the least square planes, respectively. In the crystal structure, the molecules are stabilized, to form a two-dimensional network or infinite chains along z axis (Fig.2), by intermolecular hydrogen bonds C—H···O (Fig.3, symmetry codes as in Table 1).

For general background to 2,3-dihydropyrrolizine derivatives and for the biological activity of related compounds, see: Skvortsov & Astakhova (1992); Albrecht et al. (2008); Morúaa et al. (2009). For side effects of non-steroidal anti-inflammatory drugs, see: Mishra et al. (2008). For the synthesis, see: Clemo & Ramage (1931). For the natural source of the compound, see: Meinwald & Meinwald (1965). For related structures, see: Ali et al. (2010a,b,c).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the single molecule showing atom numbering scheme at 50% ellipsoids probability level. Hydrogen atoms are Omitted for clarity.
[Figure 2] Fig. 2. Packing diagram showing infinite chains parallel to c axis.
[Figure 3] Fig. 3. Veiw of cell unit showing Hydrogen bonding as dashed lines.
[Figure 4] Fig. 4. Chemical Reaction Scheme.
{2-[(Benzoyloxy)methyl]-1-oxo-3H-pyrrolizin-2-yl}methyl benzoate top
Crystal data top
C23H19NO5Z = 2
Mr = 389.39F(000) = 408
Triclinic, P1Dx = 1.304 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0438 (8) ÅCell parameters from 4932 reflections
b = 11.9359 (13) Åθ = 1.9–28.3°
c = 12.0614 (13) ŵ = 0.09 mm1
α = 64.417 (2)°T = 298 K
β = 72.670 (2)°Block, colourless
γ = 77.390 (2)°0.42 × 0.20 × 0.14 mm
V = 991.65 (18) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3206 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.3°, θmin = 1.9°
Detector resolution: 83.66 pixels mm-1h = 1010
ω scansk = 1515
13906 measured reflectionsl = 1616
4932 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.1946P]
where P = (Fo2 + 2Fc2)/3
4932 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C23H19NO5γ = 77.390 (2)°
Mr = 389.39V = 991.65 (18) Å3
Triclinic, P1Z = 2
a = 8.0438 (8) ÅMo Kα radiation
b = 11.9359 (13) ŵ = 0.09 mm1
c = 12.0614 (13) ÅT = 298 K
α = 64.417 (2)°0.42 × 0.20 × 0.14 mm
β = 72.670 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3206 reflections with I > 2σ(I)
13906 measured reflectionsRint = 0.026
4932 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
4932 reflectionsΔρmin = 0.22 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3231 (2)0.62080 (14)0.45737 (13)0.0694 (4)
O20.55937 (16)0.70317 (12)0.43879 (11)0.0533 (3)
O30.4749 (2)0.66084 (19)0.82292 (15)0.0944 (6)
O40.7843 (2)0.85334 (13)0.61521 (14)0.0689 (4)
O50.6833 (2)1.05268 (15)0.57098 (18)0.0907 (6)
N10.8947 (2)0.56213 (15)0.69252 (13)0.0537 (4)
C10.6217 (3)0.8044 (2)0.17996 (19)0.0714 (6)
H1A0.68350.82840.21870.086*
C20.6589 (4)0.8481 (3)0.0492 (2)0.0926 (9)
H2A0.74520.90190.00030.111*
C30.5692 (4)0.8123 (3)0.0073 (2)0.0869 (8)
H3A0.59490.84150.09500.104*
C40.4434 (4)0.7349 (2)0.0627 (2)0.0818 (7)
H4A0.38320.71050.02310.098*
C50.4036 (3)0.6918 (2)0.19253 (19)0.0668 (6)
H5A0.31540.63950.24040.080*
C60.4945 (2)0.72617 (16)0.25171 (16)0.0479 (4)
C70.4475 (2)0.67765 (16)0.39199 (16)0.0486 (4)
C80.5139 (3)0.66392 (18)0.57460 (16)0.0559 (5)
H8A0.50440.57480.61540.067*
H8B0.40210.70700.60070.067*
C90.6569 (3)0.69529 (17)0.61193 (16)0.0531 (5)
C100.6152 (3)0.63955 (19)0.75869 (17)0.0575 (5)
C110.7683 (2)0.56484 (17)0.79665 (16)0.0513 (4)
C120.8376 (3)0.4943 (2)0.90126 (19)0.0686 (6)
H12A0.78160.48000.98500.082*
C131.0058 (3)0.4495 (3)0.8577 (2)0.0821 (7)
H13A1.08380.39890.90750.098*
C141.0393 (3)0.4921 (2)0.7279 (2)0.0730 (6)
H14A1.14290.47530.67470.088*
C150.8401 (3)0.63095 (18)0.57321 (16)0.0562 (5)
H15A0.83400.57480.53600.067*
H15B0.92010.69200.51340.067*
C160.6544 (3)0.83585 (18)0.5645 (2)0.0647 (5)
H16A0.68430.87350.47290.078*
H16B0.53960.87290.59470.078*
C170.7803 (3)0.96426 (18)0.61761 (18)0.0553 (5)
C180.9055 (2)0.96183 (17)0.68757 (17)0.0520 (4)
C191.0125 (3)0.8561 (2)0.7402 (2)0.0678 (6)
H19A1.01220.78390.72880.081*
C201.1203 (3)0.8573 (2)0.8099 (3)0.0820 (7)
H20A1.19290.78580.84490.098*
C211.1210 (3)0.9627 (3)0.8276 (3)0.0848 (7)
H21A1.19310.96270.87530.102*
C221.0158 (3)1.0683 (2)0.7753 (3)0.0856 (8)
H22A1.01611.14000.78750.103*
C230.9094 (3)1.0683 (2)0.7047 (2)0.0704 (6)
H23A0.83951.14080.66810.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0775 (10)0.0854 (10)0.0497 (8)0.0319 (8)0.0126 (7)0.0209 (7)
O20.0670 (8)0.0615 (8)0.0392 (6)0.0112 (6)0.0191 (6)0.0204 (6)
O30.0874 (12)0.1345 (16)0.0621 (10)0.0270 (11)0.0207 (9)0.0554 (10)
O40.0845 (10)0.0583 (8)0.0831 (10)0.0067 (7)0.0485 (8)0.0329 (7)
O50.1067 (13)0.0594 (9)0.1268 (15)0.0124 (9)0.0780 (12)0.0321 (9)
N10.0598 (9)0.0614 (10)0.0416 (8)0.0062 (7)0.0165 (7)0.0187 (7)
C10.0742 (14)0.0969 (16)0.0524 (11)0.0331 (12)0.0164 (10)0.0254 (11)
C20.0941 (18)0.127 (2)0.0526 (13)0.0546 (17)0.0050 (12)0.0194 (14)
C30.1055 (19)0.118 (2)0.0402 (11)0.0312 (16)0.0152 (12)0.0256 (12)
C40.1089 (19)0.1024 (19)0.0540 (12)0.0312 (15)0.0293 (13)0.0326 (12)
C50.0874 (15)0.0748 (14)0.0505 (11)0.0283 (11)0.0223 (10)0.0225 (10)
C60.0548 (10)0.0505 (10)0.0432 (9)0.0038 (8)0.0173 (8)0.0197 (8)
C70.0577 (11)0.0498 (10)0.0446 (9)0.0045 (8)0.0180 (8)0.0206 (8)
C80.0724 (12)0.0609 (11)0.0391 (9)0.0075 (9)0.0183 (9)0.0202 (8)
C90.0686 (12)0.0568 (11)0.0415 (9)0.0010 (9)0.0231 (8)0.0232 (8)
C100.0684 (12)0.0700 (13)0.0429 (10)0.0037 (10)0.0178 (9)0.0321 (9)
C110.0632 (11)0.0585 (11)0.0363 (9)0.0074 (9)0.0155 (8)0.0195 (8)
C120.0811 (15)0.0813 (15)0.0422 (10)0.0107 (12)0.0227 (10)0.0166 (10)
C130.0791 (16)0.0966 (18)0.0647 (14)0.0073 (13)0.0366 (12)0.0211 (13)
C140.0586 (12)0.0927 (17)0.0661 (13)0.0062 (11)0.0233 (10)0.0306 (12)
C150.0709 (12)0.0633 (12)0.0392 (9)0.0046 (9)0.0170 (9)0.0229 (8)
C160.0837 (14)0.0601 (12)0.0653 (12)0.0008 (10)0.0422 (11)0.0260 (10)
C170.0616 (11)0.0504 (11)0.0547 (11)0.0034 (9)0.0213 (9)0.0176 (9)
C180.0478 (10)0.0543 (11)0.0521 (10)0.0074 (8)0.0132 (8)0.0171 (8)
C190.0672 (13)0.0619 (13)0.0826 (15)0.0046 (10)0.0339 (11)0.0304 (11)
C200.0737 (15)0.0752 (15)0.1005 (19)0.0050 (12)0.0476 (14)0.0259 (14)
C210.0734 (15)0.0923 (18)0.1029 (19)0.0155 (13)0.0445 (14)0.0326 (15)
C220.0815 (16)0.0752 (16)0.123 (2)0.0121 (12)0.0450 (16)0.0446 (15)
C230.0637 (13)0.0565 (12)0.0986 (17)0.0037 (9)0.0348 (12)0.0283 (12)
Geometric parameters (Å, º) top
O1—C71.203 (2)C9—C151.544 (3)
O2—C71.339 (2)C9—C101.554 (2)
O2—C81.446 (2)C10—C111.423 (3)
O3—C101.209 (2)C11—C121.382 (2)
O4—C171.330 (2)C12—C131.377 (3)
O4—C161.448 (2)C12—H12A0.9300
O5—C171.195 (2)C13—C141.380 (3)
N1—C141.340 (2)C13—H13A0.9300
N1—C111.368 (2)C14—H14A0.9300
N1—C151.462 (2)C15—H15A0.9700
C1—C61.364 (3)C15—H15B0.9700
C1—C21.387 (3)C16—H16A0.9700
C1—H1A0.9300C16—H16B0.9700
C2—C31.359 (3)C17—C181.483 (3)
C2—H2A0.9300C18—C191.377 (3)
C3—C41.348 (3)C18—C231.381 (3)
C3—H3A0.9300C19—C201.381 (3)
C4—C51.378 (3)C19—H19A0.9300
C4—H4A0.9300C20—C211.366 (4)
C5—C61.380 (2)C20—H20A0.9300
C5—H5A0.9300C21—C221.367 (3)
C6—C71.486 (2)C21—H21A0.9300
C8—C91.520 (3)C22—C231.375 (3)
C8—H8A0.9700C22—H22A0.9300
C8—H8B0.9700C23—H23A0.9300
C9—C161.518 (3)
C7—O2—C8114.90 (14)C12—C11—C10142.85 (19)
C17—O4—C16118.43 (15)C13—C12—C11106.76 (19)
C14—N1—C11109.83 (16)C13—C12—H12A126.6
C14—N1—C15135.85 (17)C11—C12—H12A126.6
C11—N1—C15114.29 (15)C12—C13—C14108.64 (19)
C6—C1—C2120.1 (2)C12—C13—H13A125.7
C6—C1—H1A120.0C14—C13—H13A125.7
C2—C1—H1A120.0N1—C14—C13107.3 (2)
C3—C2—C1119.9 (2)N1—C14—H14A126.4
C3—C2—H2A120.0C13—C14—H14A126.4
C1—C2—H2A120.0N1—C15—C9103.49 (14)
C4—C3—C2120.5 (2)N1—C15—H15A111.1
C4—C3—H3A119.7C9—C15—H15A111.1
C2—C3—H3A119.7N1—C15—H15B111.1
C3—C4—C5120.2 (2)C9—C15—H15B111.1
C3—C4—H4A119.9H15A—C15—H15B109.0
C5—C4—H4A119.9O4—C16—C9105.05 (14)
C4—C5—C6120.1 (2)O4—C16—H16A110.7
C4—C5—H5A119.9C9—C16—H16A110.7
C6—C5—H5A119.9O4—C16—H16B110.7
C1—C6—C5119.15 (17)C9—C16—H16B110.7
C1—C6—C7122.40 (16)H16A—C16—H16B108.8
C5—C6—C7118.44 (17)O5—C17—O4122.90 (18)
O1—C7—O2123.14 (16)O5—C17—C18125.42 (18)
O1—C7—C6124.05 (16)O4—C17—C18111.66 (16)
O2—C7—C6112.81 (15)C19—C18—C23118.99 (19)
O2—C8—C9108.01 (15)C19—C18—C17122.41 (18)
O2—C8—H8A110.1C23—C18—C17118.54 (17)
C9—C8—H8A110.1C18—C19—C20120.0 (2)
O2—C8—H8B110.1C18—C19—H19A120.0
C9—C8—H8B110.1C20—C19—H19A120.0
H8A—C8—H8B108.4C21—C20—C19120.4 (2)
C16—C9—C8110.34 (15)C21—C20—H20A119.8
C16—C9—C15112.71 (17)C19—C20—H20A119.8
C8—C9—C15113.55 (15)C20—C21—C22120.0 (2)
C16—C9—C10108.49 (15)C20—C21—H21A120.0
C8—C9—C10106.88 (16)C22—C21—H21A120.0
C15—C9—C10104.41 (14)C21—C22—C23120.0 (2)
O3—C10—C11129.35 (18)C21—C22—H22A120.0
O3—C10—C9123.08 (18)C23—C22—H22A120.0
C11—C10—C9107.57 (16)C22—C23—C18120.6 (2)
N1—C11—C12107.50 (17)C22—C23—H23A119.7
N1—C11—C10109.64 (15)C18—C23—H23A119.7
C6—C1—C2—C30.4 (4)C9—C10—C11—C12175.6 (3)
C1—C2—C3—C40.3 (5)N1—C11—C12—C130.4 (2)
C2—C3—C4—C50.4 (4)C10—C11—C12—C13179.3 (3)
C3—C4—C5—C61.0 (4)C11—C12—C13—C140.1 (3)
C2—C1—C6—C50.2 (4)C11—N1—C14—C130.5 (3)
C2—C1—C6—C7179.2 (2)C15—N1—C14—C13178.2 (2)
C4—C5—C6—C10.9 (3)C12—C13—C14—N10.2 (3)
C4—C5—C6—C7180.0 (2)C14—N1—C15—C9176.2 (2)
C8—O2—C7—O13.6 (3)C11—N1—C15—C96.1 (2)
C8—O2—C7—C6176.72 (14)C16—C9—C15—N1110.08 (16)
C1—C6—C7—O1170.9 (2)C8—C9—C15—N1123.51 (16)
C5—C6—C7—O18.2 (3)C10—C9—C15—N17.47 (19)
C1—C6—C7—O29.5 (3)C17—O4—C16—C9162.70 (17)
C5—C6—C7—O2171.47 (17)C8—C9—C16—O4175.02 (15)
C7—O2—C8—C9177.88 (14)C15—C9—C16—O456.9 (2)
O2—C8—C9—C1668.2 (2)C10—C9—C16—O458.2 (2)
O2—C8—C9—C1559.5 (2)C16—O4—C17—O56.0 (3)
O2—C8—C9—C10174.06 (14)C16—O4—C17—C18172.28 (17)
C16—C9—C10—O365.9 (3)O5—C17—C18—C19179.3 (2)
C8—C9—C10—O353.1 (3)O4—C17—C18—C191.1 (3)
C15—C9—C10—O3173.7 (2)O5—C17—C18—C232.0 (3)
C16—C9—C10—C11113.60 (18)O4—C17—C18—C23176.29 (19)
C8—C9—C10—C11127.42 (17)C23—C18—C19—C200.6 (3)
C15—C9—C10—C116.8 (2)C17—C18—C19—C20176.7 (2)
C14—N1—C11—C120.5 (2)C18—C19—C20—C210.3 (4)
C15—N1—C11—C12178.82 (17)C19—C20—C21—C220.6 (4)
C14—N1—C11—C10179.85 (17)C20—C21—C22—C230.1 (4)
C15—N1—C11—C101.9 (2)C21—C22—C23—C181.1 (4)
O3—C10—C11—N1177.2 (2)C19—C18—C23—C221.3 (3)
C9—C10—C11—N13.3 (2)C17—C18—C23—C22176.1 (2)
O3—C10—C11—C123.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.593.299 (3)133
C20—H20A···O3ii0.932.443.269 (3)149
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H19NO5
Mr389.39
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0438 (8), 11.9359 (13), 12.0614 (13)
α, β, γ (°)64.417 (2), 72.670 (2), 77.390 (2)
V3)991.65 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13906, 4932, 3206
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.161, 1.01
No. of reflections4932
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.593.299 (3)133
C20—H20A···O3ii0.932.443.269 (3)149
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z.
 

Acknowledgements

YA is grateful to the Industrial Linkage Program of the Pakistan Council of Scientific and Industrial Research, Tianjin University of Science & Technology, China, and the Higher Education Commission of Pakistan for financial support.

References

First citationAlbrecht, W., Unger, A., Nussler, A. K. & Laufer, S. (2008). Drug Metab. Dispos. 36, 894–903.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAli, Y., Peng, Y., Hua, E., Afza, N. & Khan, R. A. (2010a). Acta Cryst. E66, o1579–o1580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, Y., Peng, Y., Hua, E., Anwar, M. A. & Kalhoro, M. A. (2010b). Acta Cryst. E66, o2612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, Y., Yu, P., Hua, E., Rui, G. & Qi, S. (2010c). Acta Cryst. E66, o1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemo, G. R. & Ramage, G. R. (1931). J. Chem. Soc. 7, 49–55.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMeinwald, J. & Meinwald, Y. C. (1965). J. Am. Chem. Soc. 88, 1305–1310.  CrossRef Web of Science Google Scholar
First citationMishra, A., Veerasamy, R., Jain, P. K., Dixit, V. K. & Agrawal, R. K. (2008). Eur. J. Med. Chem. 43, 2464–2472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorúaa, A. G., Garcíaa, J. D. G., Montelongob, R. M. & Guerra, L. S. G. (2009). Actas Urol. Esp. 33, 1005–1010.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkvortsov, I. M. & Astakhova, L. N. (1992). Chem. Heterocycl. Compd, 28, 117–134.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds