organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-(2,4-Di­chloro­pbenzyl­­idene)amino]­benzoic acid

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 November 2010; accepted 8 December 2010; online 18 December 2010)

In the crystal of the title compound, C14H9Cl2NO2, inversion-related dimers with R22(8) ring motifs are formed by inter­molecular O—H⋯O hydrogen bonding. The 3-amino­benzoic acid group and the 2,4-dichlobenzaldehyde moiety subtend a dihedral angle of 55.10 (2)°. The H atom of the carboxyl group is disordered over two sites with equal occupancies.

Related literature

For our project on the synthesis of various Schiff bases of 2,4-dichloro­benzaldehyde, see: Hayat et al. (2010[Hayat, U., Siddiqui, W. A., Tahir, M. N. & Hussain, G. (2010). Acta Cryst. E66, o2523.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl2NO2

  • Mr = 294.12

  • Triclinic, [P \overline 1]

  • a = 7.4065 (2) Å

  • b = 7.6176 (3) Å

  • c = 11.5330 (4) Å

  • α = 86.946 (2)°

  • β = 80.433 (1)°

  • γ = 85.833 (2)°

  • V = 639.38 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.932

  • 9596 measured reflections

  • 2293 independent reflections

  • 2048 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.05

  • 2293 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.6364 (17) 170
O2—H2⋯O1i 0.82 1.84 2.6364 (17) 162
Symmetry code: (i) -x-1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is being reported as a part of our project related to the synthesis of various Schiff bases of 2,4-dichlorobenzaldehyde (Hayat et al., 2010) and then their metal complexation.

In the title compound, C14H9Cl2NO2, the 3-aminobenzoic group A (C1—C7/N1/O1/O2, ring centroid Cg1) and 2,4-dichlobenzaldehyde moiety B (C7—C14/CL1/CL2, ring centroid Cg2) are planar with r. m. s. deviation of 0.0200 and 0.0352 Å, respectively. The A/B dihedral angle is 55.10 (2)°. An S(5) ring motif is formed due to an intramolecular H-bond of the C—H···Cl type (Fig. 1 and Table 1). The title compound consists of H-bonded dimers due to intermolecular H-bondings of the O—H···O type (Table 1, Fig. 1) with R22(8) ring motifs (Bernstein et al., 1995). There exist ππ interactions between phenyl rings, connecting dimers into a 3D arrangement. The ring in the aminobenzoic group (Cg1) interacts with its symmetrry related ones Cg1i and Cg1ii, (i: -x, -y, - z, ii: -x, 1 - y, -z, intercentroid distances 4.1122 (9), 4.4517 (9)Å; interplanar separations: 3.3935 (6), 3.4518 (6)Å, respectively); the one in the dichlobenzaldehyde group (Cg2), in turn, interacts with Cg2iii and Cg2iv, (iii: -x, -y, 1 - z, iv: 1- x, -y, 1 - z; intercentroid distances 4.2926 (9), 4.0256 (9) Å; interplanar separations: 3.5346 (6), 3.5224 (6) Å, respectively). The H-atom of the carboxylate group is disordered over two sites with equal occupancy ratio.

Related literature top

For our project on the synthesis of various Schiff bases of 2,4-dichlorobenzaldehyde, see: Hayat et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of m-aminobenzoic acid (0.25 g, 1.82 mmol) and 2,4-dichlorobenzaldehyde (0.32 g, 1.82 mmol) in absolute ethanol (20 ml) with few drops of acetic acid was heated to reflux (2 h), cooled to room temperature and filtered. The yellow precipitates were washed with the same solvent and dried at room temperature to get 0.47 g of the title compound (1.62 mmol, 89%). The crude material was dissolved in methanol and subjected to slow evaporation. Light yellow prisms of (I) were obtained after 48 h.

Refinement top

The H-atom of carboxylate is disordered over two sites with equal occupancy ratio. Initially the coordinates and multiplicity of both H-atoms were refined, which resulted with equal occupancy ratio.

The C–H atoms were positioned geometrically (O—H = 0.82, C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, O), where x = 1.2 for all H-atoms.

Structure description top

The title compound (I, Fig. 1) is being reported as a part of our project related to the synthesis of various Schiff bases of 2,4-dichlorobenzaldehyde (Hayat et al., 2010) and then their metal complexation.

In the title compound, C14H9Cl2NO2, the 3-aminobenzoic group A (C1—C7/N1/O1/O2, ring centroid Cg1) and 2,4-dichlobenzaldehyde moiety B (C7—C14/CL1/CL2, ring centroid Cg2) are planar with r. m. s. deviation of 0.0200 and 0.0352 Å, respectively. The A/B dihedral angle is 55.10 (2)°. An S(5) ring motif is formed due to an intramolecular H-bond of the C—H···Cl type (Fig. 1 and Table 1). The title compound consists of H-bonded dimers due to intermolecular H-bondings of the O—H···O type (Table 1, Fig. 1) with R22(8) ring motifs (Bernstein et al., 1995). There exist ππ interactions between phenyl rings, connecting dimers into a 3D arrangement. The ring in the aminobenzoic group (Cg1) interacts with its symmetrry related ones Cg1i and Cg1ii, (i: -x, -y, - z, ii: -x, 1 - y, -z, intercentroid distances 4.1122 (9), 4.4517 (9)Å; interplanar separations: 3.3935 (6), 3.4518 (6)Å, respectively); the one in the dichlobenzaldehyde group (Cg2), in turn, interacts with Cg2iii and Cg2iv, (iii: -x, -y, 1 - z, iv: 1- x, -y, 1 - z; intercentroid distances 4.2926 (9), 4.0256 (9) Å; interplanar separations: 3.5346 (6), 3.5224 (6) Å, respectively). The H-atom of the carboxylate group is disordered over two sites with equal occupancy ratio.

For our project on the synthesis of various Schiff bases of 2,4-dichlorobenzaldehyde, see: Hayat et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the H-bonded dimeric unit, with the atom numbering scheme. Only one of the two disordered carboxylate hydrogens is shown (the one attached to O1, in broken circles; the one attached to O2, omited for clarity). Thermal ellipsoids are drawn at the 50% probability level. Thin dotted lines represent intramolecular H-bonds, while intermoleculer ones, linking dimers through an R22(8) ring motif are shown as thick broken lines.
3-[(E)-(2,4-Dichloropbenzylidene)amino]benzoic acid top
Crystal data top
C14H9Cl2NO2Z = 2
Mr = 294.12F(000) = 300
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4065 (2) ÅCell parameters from 2048 reflections
b = 7.6176 (3) Åθ = 2.7–25.2°
c = 11.5330 (4) ŵ = 0.50 mm1
α = 86.946 (2)°T = 296 K
β = 80.433 (1)°Prism, light yellow
γ = 85.833 (2)°0.32 × 0.24 × 0.20 mm
V = 639.38 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2293 independent reflections
Radiation source: fine-focus sealed tube2048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 2.7°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.903, Tmax = 0.932l = 1313
9596 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.1996P]
where P = (Fo2 + 2Fc2)/3
2293 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H9Cl2NO2γ = 85.833 (2)°
Mr = 294.12V = 639.38 (4) Å3
Triclinic, P1Z = 2
a = 7.4065 (2) ÅMo Kα radiation
b = 7.6176 (3) ŵ = 0.50 mm1
c = 11.5330 (4) ÅT = 296 K
α = 86.946 (2)°0.32 × 0.24 × 0.20 mm
β = 80.433 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2293 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2048 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.932Rint = 0.023
9596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2293 reflectionsΔρmin = 0.31 e Å3
175 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.14614 (7)0.31116 (6)0.46678 (5)0.0613 (2)
Cl20.34568 (7)0.30520 (8)0.66465 (4)0.0699 (2)
O10.31523 (16)0.47023 (16)0.11702 (10)0.0495 (4)
O20.35921 (16)0.36164 (19)0.06779 (10)0.0561 (4)
N10.24397 (17)0.05365 (17)0.13189 (12)0.0410 (4)
C10.2595 (2)0.3841 (2)0.03090 (13)0.0380 (5)
C20.0681 (2)0.30632 (19)0.04703 (13)0.0366 (5)
C30.0469 (2)0.3230 (2)0.15456 (14)0.0428 (5)
C40.2252 (2)0.2494 (2)0.16592 (15)0.0473 (5)
C50.2899 (2)0.1604 (2)0.07207 (15)0.0447 (5)
C60.1764 (2)0.14779 (19)0.03695 (14)0.0378 (5)
C70.0034 (2)0.21942 (19)0.04811 (13)0.0376 (5)
C80.2038 (2)0.1171 (2)0.23329 (14)0.0409 (5)
C90.24798 (19)0.0188 (2)0.33878 (14)0.0377 (5)
C100.2208 (2)0.0909 (2)0.44960 (14)0.0407 (5)
C110.2511 (2)0.0074 (2)0.54930 (14)0.0462 (6)
C120.3130 (2)0.1807 (2)0.53859 (14)0.0457 (5)
C130.3461 (2)0.2580 (2)0.43038 (15)0.0454 (5)
C140.3120 (2)0.1581 (2)0.33285 (14)0.0413 (5)
H10.420240.511690.096270.0594*0.500
H20.458840.416080.067630.0674*0.500
H30.004660.382910.218220.0514*
H40.302520.260120.237860.0568*
H50.408980.109050.081580.0536*
H70.080950.208970.119980.0450*
H80.144850.228940.240790.0491*
H110.230000.043010.622420.0555*
H130.390520.375080.423990.0545*
H140.332130.210060.260250.0496*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0635 (3)0.0463 (3)0.0721 (3)0.0077 (2)0.0049 (2)0.0192 (2)
Cl20.0718 (3)0.0863 (4)0.0455 (3)0.0067 (3)0.0032 (2)0.0180 (2)
O10.0445 (7)0.0579 (7)0.0441 (7)0.0117 (5)0.0093 (5)0.0021 (5)
O20.0403 (7)0.0810 (9)0.0423 (7)0.0139 (6)0.0025 (5)0.0040 (6)
N10.0351 (7)0.0435 (8)0.0434 (8)0.0036 (5)0.0063 (5)0.0009 (6)
C10.0381 (8)0.0398 (8)0.0363 (8)0.0016 (6)0.0077 (6)0.0052 (6)
C20.0359 (8)0.0355 (8)0.0392 (8)0.0010 (6)0.0073 (6)0.0061 (6)
C30.0436 (9)0.0471 (9)0.0375 (9)0.0008 (7)0.0067 (7)0.0014 (7)
C40.0417 (9)0.0584 (10)0.0388 (9)0.0000 (7)0.0017 (7)0.0041 (8)
C50.0354 (8)0.0494 (10)0.0474 (10)0.0042 (7)0.0027 (7)0.0062 (7)
C60.0372 (8)0.0345 (8)0.0417 (9)0.0007 (6)0.0070 (6)0.0033 (6)
C70.0357 (8)0.0385 (8)0.0373 (8)0.0003 (6)0.0028 (6)0.0038 (6)
C80.0363 (8)0.0374 (8)0.0480 (10)0.0025 (6)0.0059 (7)0.0019 (7)
C90.0302 (7)0.0396 (8)0.0420 (9)0.0012 (6)0.0022 (6)0.0033 (7)
C100.0317 (8)0.0407 (9)0.0484 (9)0.0013 (6)0.0010 (6)0.0087 (7)
C110.0404 (9)0.0592 (11)0.0379 (9)0.0044 (8)0.0003 (7)0.0088 (8)
C120.0379 (8)0.0575 (10)0.0393 (9)0.0034 (7)0.0018 (7)0.0048 (7)
C130.0444 (9)0.0416 (9)0.0470 (9)0.0018 (7)0.0010 (7)0.0012 (7)
C140.0416 (8)0.0426 (9)0.0380 (8)0.0009 (7)0.0016 (7)0.0064 (7)
Geometric parameters (Å, º) top
Cl1—C101.7391 (16)C8—C91.466 (2)
Cl2—C121.7345 (16)C9—C141.397 (2)
O1—C11.2708 (19)C9—C101.396 (2)
O2—C11.2603 (19)C10—C111.379 (2)
O1—H10.8200C11—C121.371 (2)
O2—H20.8200C12—C131.386 (2)
N1—C61.418 (2)C13—C141.372 (2)
N1—C81.270 (2)C3—H30.9300
C1—C21.482 (2)C4—H40.9300
C2—C71.387 (2)C5—H50.9300
C2—C31.388 (2)C7—H70.9300
C3—C41.385 (2)C8—H80.9300
C4—C51.381 (2)C11—H110.9300
C5—C61.394 (2)C13—H130.9300
C6—C71.390 (2)C14—H140.9300
Cl1···C12i3.6226 (16)C12···C10ix3.594 (2)
Cl1···Cl1ii3.5113 (7)C12···C11ix3.596 (2)
Cl2···O2i3.1100 (12)C12···Cl1i3.6226 (16)
Cl1···H82.7100C1···H2v2.5700
Cl1···H13iii3.0700C1···H1v2.6600
Cl2···H7i2.9900C4···H11x2.9700
Cl2···H13iv3.1200C7···H82.6400
O1···O2v2.6364 (17)C8···H72.6900
O1···C6vi3.3784 (19)C14···H4viii2.9500
O2···C1v3.380 (2)H1···H21.9700
O2···O1v2.6364 (17)H1···O1v2.8800
O2···Cl2i3.1100 (12)H1···O2v1.8300
O1···H2v1.8400H1···C1v2.6600
O1···H32.5200H2···H11.9700
O1···H1v2.8800H2···O1v1.8400
O1···H8vi2.8900H2···O2v2.6800
O1···H14vii2.6700H2···C1v2.5700
O2···H72.4400H3···O12.5200
O2···H1v1.8300H4···H11x2.5100
O2···H2v2.6800H4···C14viii2.9500
N1···C2vii3.377 (2)H5···N1viii2.7600
N1···H142.5400H7···O22.4400
N1···H5viii2.7600H7···C82.6900
C1···O2v3.380 (2)H7···H82.3700
C2···C2vi3.470 (2)H7···Cl2i2.9900
C2···C6vii3.599 (2)H8···Cl12.7100
C2···N1vii3.377 (2)H8···C72.6400
C6···C2vii3.599 (2)H8···H72.3700
C6···C7vii3.415 (2)H8···O1vi2.8900
C6···O1vi3.3784 (19)H11···C4xi2.9700
C7···C7vii3.572 (2)H11···H4xi2.5100
C7···C6vii3.415 (2)H13···Cl1xii3.0700
C10···C12ix3.594 (2)H13···Cl2iv3.1200
C10···C11i3.596 (2)H14···N12.5400
C11···C12ix3.596 (2)H14···O1vii2.6700
C11···C10i3.596 (2)
C1—O1—H1109.00C10—C11—C12118.77 (15)
C1—O2—H2109.00Cl2—C12—C13119.88 (12)
C6—N1—C8117.97 (13)Cl2—C12—C11118.61 (12)
O1—C1—O2123.13 (14)C11—C12—C13121.50 (15)
O1—C1—C2118.55 (13)C12—C13—C14118.57 (14)
O2—C1—C2118.32 (14)C9—C14—C13122.33 (15)
C1—C2—C3120.96 (13)C2—C3—H3120.00
C3—C2—C7120.10 (14)C4—C3—H3120.00
C1—C2—C7118.93 (13)C3—C4—H4119.00
C2—C3—C4119.23 (15)C5—C4—H4120.00
C3—C4—C5121.03 (15)C4—C5—H5120.00
C4—C5—C6119.87 (14)C6—C5—H5120.00
N1—C6—C7121.59 (14)C2—C7—H7120.00
N1—C6—C5119.16 (13)C6—C7—H7120.00
C5—C6—C7119.16 (14)N1—C8—H8119.00
C2—C7—C6120.56 (14)C9—C8—H8119.00
N1—C8—C9121.74 (14)C10—C11—H11121.00
C8—C9—C14120.23 (14)C12—C11—H11121.00
C8—C9—C10123.03 (14)C12—C13—H13121.00
C10—C9—C14116.66 (14)C14—C13—H13121.00
Cl1—C10—C11117.26 (12)C9—C14—H14119.00
Cl1—C10—C9120.59 (12)C13—C14—H14119.00
C9—C10—C11122.16 (14)
C8—N1—C6—C5139.76 (15)C5—C6—C7—C21.6 (2)
C8—N1—C6—C743.9 (2)N1—C8—C9—C10174.01 (15)
C6—N1—C8—C9172.33 (13)N1—C8—C9—C149.3 (2)
O1—C1—C2—C31.6 (2)C8—C9—C10—Cl14.6 (2)
O1—C1—C2—C7176.92 (14)C8—C9—C10—C11175.35 (14)
O2—C1—C2—C3178.44 (15)C14—C9—C10—Cl1178.61 (11)
O2—C1—C2—C73.0 (2)C14—C9—C10—C111.5 (2)
C1—C2—C3—C4179.60 (14)C8—C9—C14—C13176.55 (14)
C7—C2—C3—C41.1 (2)C10—C9—C14—C130.4 (2)
C1—C2—C7—C6178.74 (14)Cl1—C10—C11—C12178.91 (12)
C3—C2—C7—C60.2 (2)C9—C10—C11—C121.2 (2)
C2—C3—C4—C50.1 (2)C10—C11—C12—Cl2178.48 (12)
C3—C4—C5—C61.7 (2)C10—C11—C12—C130.3 (2)
C4—C5—C6—N1179.03 (14)Cl2—C12—C13—C14177.42 (12)
C4—C5—C6—C72.6 (2)C11—C12—C13—C141.3 (2)
N1—C6—C7—C2178.01 (14)C12—C13—C14—C91.0 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y1, z+1; (v) x1, y+1, z; (vi) x, y+1, z; (vii) x, y, z; (viii) x+1, y, z; (ix) x+1, y, z+1; (x) x, y, z1; (xi) x, y, z+1; (xii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2v0.821.832.6364 (17)170
O2—H2···O1v0.821.842.6364 (17)162
C8—H8···Cl10.932.713.0934 (17)105
Symmetry code: (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H9Cl2NO2
Mr294.12
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4065 (2), 7.6176 (3), 11.5330 (4)
α, β, γ (°)86.946 (2), 80.433 (1), 85.833 (2)
V3)639.38 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.903, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
9596, 2293, 2048
Rint0.023
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.05
No. of reflections2293
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.6364 (17)170
O2—H2···O1i0.821.842.6364 (17)162
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHayat, U., Siddiqui, W. A., Tahir, M. N. & Hussain, G. (2010). Acta Cryst. E66, o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds