organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyridinium 6-carb­­oxy­pyridine-2-carboxyl­ate methanol monosolvate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 21 November 2010; accepted 1 December 2010; online 8 December 2010)

In the title solvated molecular salt, C6H9N2+·C7H4NO4·CH4O, the pyridine N atom of 2-amino-4-methyl­pyridine is protonated and one carboxyl group of pyridine-2,6-dicarb­oxy­lic acid is deprotonated. The dihedral angles between the –CO2 and –COH groups and the pyridine ring are 0.65 (13) and 7.4°. The crystal packing is stabilized by inter­molecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related structures, see: Aakeröy et al. (1998[Aakeröy, C. B., Hughes, D. P., McCabe, J. M. & Nieuwenhuyzen, M. (1998). Supramol. Chem. 9, 127-135.]); Aghabozorg et al. (2006[Aghabozorg, H., Ghadermazi, M. & Sadr-Khanlou, E. (2006). Anal. Sci. 22, x253-x254.]); Al-Allaf et al. (2003[Al-Allaf, T. A. K., Rashan, L. J., Stelzner, A. & Powell, D. R. (2003). Appl. Organomet. Chem. 17, 891-897.]); Fu et al. (2005[Fu, A.-Y., Wang, D.-Q. & Zhang, C.-L. (2005). Acta Cryst. E61, o3119-o3121.]); Linden et al. (2003[Linden, A., Petridis, A. & James, B. D. (2003). Helv. Chim. Acta, 86, 711-725.]); Moghimi et al. (2004[Moghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790-o1792.]); Sheshmani et al. (2006[Sheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst. E62, o3620-o3622.]); Thanigaimani et al. (2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. C63, o295-o300.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4NO4·CH4O

  • Mr = 307.31

  • Triclinic, [P \overline 1]

  • a = 7.2191 (14) Å

  • b = 9.5095 (19) Å

  • c = 11.139 (2) Å

  • α = 94.44 (3)°

  • β = 99.76 (3)°

  • γ = 92.50 (3)°

  • V = 750.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.4 × 0.25 × 0.2 mm

Data collection
  • Stoe IPDS II diffractometer

  • 8658 measured reflections

  • 4005 independent reflections

  • 2697 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.216

  • S = 1.17

  • 4005 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14C⋯O2i 0.96 2.59 3.488 (5) 157
O5—H5A⋯O3ii 0.78 (5) 2.02 (5) 2.796 (3) 170 (4)
N3—H3B⋯O4iii 0.83 (4) 1.95 (4) 2.764 (3) 166 (3)
N3—H3A⋯O2i 0.87 (4) 2.30 (4) 3.122 (3) 158 (3)
N2—H2⋯O3iii 0.85 (3) 1.87 (3) 2.723 (3) 173 (3)
O1—H1⋯O5iv 0.87 (4) 1.87 (4) 2.689 (3) 156 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x-1, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Continuing the path to synthesize proton transfer compounds, our group have been focused on forming ion pairs between 2,6-pydcH2 and various organic bases (Aghabozorg et al., 2008). Due to its flat and symmetric structure and two proton donor sites, 2,6-pydcH2 has a potential of constructing supramolecular networks. Proton transfer compounds of 2,6-pydcH2 with nitrogen donor molecules such as 2-chloro-benzylamine (Aakeröy et al.,1998), piperazine (Aghabozorg et al., 2006 & Sheshmani et al., 2006), phenanthroline (Fu et al., 2005), creatinine (Moghimi et al., 2004) and 2-amino-4,6-dimethoxypyrimidine (Thanigaimani et al., 2007) have been synthesized and characterized by single-crystal X-ray diffraction method. In addition, the formation of monoprotonated 2-amino-4-methylpyridine (2a4mpH) has been reported in several proton transfer systems (Al-Allaf et al., 2003; Linden et al. 2003).

The title compound, (2a4mpH)(2,6-pydcH).CH3OH, consist of one mono deprotonated 2,6-pydcH2 unit, one mono protonated 2a4mp, and one methanol molecule. The asymmetric unit of the title compound is shown in Fig. 1. The title compound, was formed from the reaction between 2,6-pydcH2 as a proton donor and 2a4mp as a proton acceptor. There are several N—H···O, O—H···O and weak C—H···O hydrogen bonds, in crystal structure of the title compound (Table 1 & Fig. 2). The crystal structure shows that one of the protons of carboxylic groups has been transferred to Npyridine of 2a4mp. Indeed, the structure formed self-assembled supramolecular network through noncovalent interactions.

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aakeröy et al. (1998); Aghabozorg et al. (2006); Al-Allaf et al. (2003); Fu et al. (2005); Linden et al. (2003); Moghimi et al. (2004); Sheshmani et al. (2006); Thanigaimani et al. (2007).

Experimental top

The reaction between a solution of 2,6-pydcH2 (0.1671 mg, 1 mmol) in 10 ml water and 2a4mp (0.2163 mg, 2 mmol) in 10 ml methanol in 1:2 molar ratios gave block colorless crystals of the title compound after slow evaporation of the solvent at room temperature (m.p: 267).

Refinement top

The hydrogen atoms bonded to N and O were found in a difference Fourier map and refined isotropically. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups and C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for methyl group.

Structure description top

Continuing the path to synthesize proton transfer compounds, our group have been focused on forming ion pairs between 2,6-pydcH2 and various organic bases (Aghabozorg et al., 2008). Due to its flat and symmetric structure and two proton donor sites, 2,6-pydcH2 has a potential of constructing supramolecular networks. Proton transfer compounds of 2,6-pydcH2 with nitrogen donor molecules such as 2-chloro-benzylamine (Aakeröy et al.,1998), piperazine (Aghabozorg et al., 2006 & Sheshmani et al., 2006), phenanthroline (Fu et al., 2005), creatinine (Moghimi et al., 2004) and 2-amino-4,6-dimethoxypyrimidine (Thanigaimani et al., 2007) have been synthesized and characterized by single-crystal X-ray diffraction method. In addition, the formation of monoprotonated 2-amino-4-methylpyridine (2a4mpH) has been reported in several proton transfer systems (Al-Allaf et al., 2003; Linden et al. 2003).

The title compound, (2a4mpH)(2,6-pydcH).CH3OH, consist of one mono deprotonated 2,6-pydcH2 unit, one mono protonated 2a4mp, and one methanol molecule. The asymmetric unit of the title compound is shown in Fig. 1. The title compound, was formed from the reaction between 2,6-pydcH2 as a proton donor and 2a4mp as a proton acceptor. There are several N—H···O, O—H···O and weak C—H···O hydrogen bonds, in crystal structure of the title compound (Table 1 & Fig. 2). The crystal structure shows that one of the protons of carboxylic groups has been transferred to Npyridine of 2a4mp. Indeed, the structure formed self-assembled supramolecular network through noncovalent interactions.

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aakeröy et al. (1998); Aghabozorg et al. (2006); Al-Allaf et al. (2003); Fu et al. (2005); Linden et al. (2003); Moghimi et al. (2004); Sheshmani et al. (2006); Thanigaimani et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. The intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds are shown as blue dashed lines.
2-Amino-4-methylpyridinium 6-carboxypyridine-2-carboxylate methanol monosolvate top
Crystal data top
C6H9N2+·C7H4NO4·CH4OZ = 2
Mr = 307.31F(000) = 324.0
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2191 (14) ÅCell parameters from 4005 reflections
b = 9.5095 (19) Åθ = 2.2–29.2°
c = 11.139 (2) ŵ = 0.11 mm1
α = 94.44 (3)°T = 298 K
β = 99.76 (3)°Block, colorless
γ = 92.50 (3)°0.4 × 0.25 × 0.2 mm
V = 750.1 (3) Å3
Data collection top
Stoe IPDS II
diffractometer
2697 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 29.2°, θmin = 2.2°
Detector resolution: 0.15 mm pixels mm-1h = 99
rotation method scansk = 1213
8658 measured reflectionsl = 1515
4005 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.0939P)2 + 0.144P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
4005 reflectionsΔρmax = 0.44 e Å3
222 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.07 (2)
Crystal data top
C6H9N2+·C7H4NO4·CH4Oγ = 92.50 (3)°
Mr = 307.31V = 750.1 (3) Å3
Triclinic, P1Z = 2
a = 7.2191 (14) ÅMo Kα radiation
b = 9.5095 (19) ŵ = 0.11 mm1
c = 11.139 (2) ÅT = 298 K
α = 94.44 (3)°0.4 × 0.25 × 0.2 mm
β = 99.76 (3)°
Data collection top
Stoe IPDS II
diffractometer
2697 reflections with I > 2σ(I)
8658 measured reflectionsRint = 0.058
4005 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.44 e Å3
4005 reflectionsΔρmin = 0.26 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0312 (3)0.1514 (2)0.73074 (19)0.0679 (6)
O20.2937 (3)0.1669 (2)0.8602 (2)0.0686 (6)
O30.3748 (2)0.20309 (19)0.76854 (17)0.0544 (5)
O40.2965 (3)0.3911 (2)0.9022 (2)0.0730 (7)
O50.7131 (3)0.9637 (2)0.6320 (2)0.0685 (6)
N10.0374 (3)0.09454 (18)0.84467 (16)0.0381 (4)
N20.2829 (3)0.3098 (2)0.70000 (18)0.0424 (5)
N30.3671 (4)0.5125 (3)0.8268 (3)0.0689 (8)
C20.1276 (3)0.0410 (2)0.8845 (2)0.0415 (5)
C30.2618 (4)0.1087 (3)0.9759 (3)0.0567 (7)
H30.37480.06781.00170.068*
C40.2249 (4)0.2381 (3)1.0281 (3)0.0587 (7)
H40.31350.28721.08900.070*
C50.0548 (4)0.2936 (2)0.9886 (2)0.0501 (6)
H50.02640.38061.02290.060*
C60.0741 (3)0.2185 (2)0.8971 (2)0.0386 (5)
C10.1592 (4)0.1007 (3)0.8243 (2)0.0495 (6)
C70.2648 (3)0.2756 (2)0.8524 (2)0.0455 (5)
C80.2394 (3)0.4369 (2)0.7460 (2)0.0447 (5)
C90.0583 (3)0.4838 (3)0.7033 (2)0.0509 (6)
H90.02480.57120.73370.061*
C100.0679 (3)0.4020 (3)0.6179 (2)0.0478 (6)
C110.0140 (4)0.2706 (3)0.5725 (2)0.0545 (6)
H110.09720.21360.51380.065*
C120.1599 (4)0.2277 (3)0.6147 (2)0.0515 (6)
H120.19530.14080.58480.062*
C130.2608 (4)0.4518 (4)0.5746 (3)0.0691 (8)
H13A0.34980.40750.61680.104*
H13B0.29640.42720.48820.104*
H13C0.25920.55250.59100.104*
C140.5526 (5)0.8734 (4)0.6264 (4)0.0877 (11)
H14A0.58330.77750.60970.132*
H14B0.45560.89790.56250.132*
H14C0.50880.88310.70320.132*
H5A0.700 (6)1.030 (5)0.676 (4)0.097 (14)*
H20.392 (5)0.282 (3)0.727 (3)0.058 (8)*
H10.058 (6)0.094 (4)0.713 (4)0.095 (12)*
H3A0.338 (5)0.595 (4)0.855 (3)0.084 (11)*
H3B0.465 (5)0.479 (4)0.861 (3)0.068 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0737 (14)0.0578 (11)0.0673 (13)0.0256 (10)0.0023 (10)0.0158 (9)
O20.0602 (12)0.0590 (11)0.0874 (14)0.0301 (9)0.0100 (10)0.0034 (10)
O30.0426 (9)0.0509 (9)0.0627 (11)0.0152 (7)0.0078 (8)0.0096 (8)
O40.0609 (12)0.0584 (11)0.0882 (15)0.0281 (9)0.0126 (10)0.0246 (10)
O50.0592 (12)0.0678 (13)0.0696 (13)0.0078 (10)0.0027 (10)0.0227 (10)
N10.0377 (9)0.0360 (9)0.0402 (9)0.0065 (7)0.0046 (7)0.0020 (7)
N20.0400 (10)0.0427 (10)0.0432 (10)0.0103 (8)0.0031 (8)0.0000 (8)
N30.0466 (13)0.0550 (13)0.0925 (19)0.0163 (11)0.0104 (12)0.0305 (13)
C20.0390 (11)0.0390 (10)0.0482 (12)0.0102 (8)0.0089 (9)0.0069 (9)
C30.0380 (12)0.0537 (14)0.0738 (17)0.0107 (10)0.0055 (11)0.0060 (12)
C40.0488 (14)0.0515 (14)0.0654 (16)0.0006 (11)0.0137 (12)0.0053 (12)
C50.0527 (14)0.0368 (11)0.0546 (14)0.0052 (10)0.0049 (11)0.0040 (10)
C60.0381 (11)0.0355 (10)0.0408 (11)0.0061 (8)0.0020 (8)0.0031 (8)
C10.0512 (14)0.0451 (12)0.0546 (14)0.0161 (10)0.0137 (11)0.0014 (10)
C70.0418 (12)0.0420 (11)0.0506 (13)0.0132 (9)0.0021 (9)0.0014 (9)
C80.0387 (11)0.0413 (11)0.0526 (13)0.0072 (9)0.0058 (9)0.0029 (9)
C90.0421 (12)0.0462 (12)0.0648 (15)0.0127 (10)0.0091 (11)0.0011 (11)
C100.0370 (11)0.0550 (13)0.0519 (13)0.0036 (10)0.0043 (10)0.0136 (10)
C110.0503 (14)0.0585 (15)0.0491 (14)0.0037 (11)0.0016 (11)0.0042 (11)
C120.0538 (14)0.0449 (12)0.0530 (14)0.0051 (10)0.0067 (11)0.0077 (10)
C130.0419 (14)0.081 (2)0.083 (2)0.0088 (13)0.0001 (13)0.0215 (16)
C140.078 (2)0.076 (2)0.106 (3)0.0007 (18)0.012 (2)0.003 (2)
Geometric parameters (Å, º) top
O1—C11.315 (3)C4—C51.375 (4)
O1—H10.87 (4)C4—H40.9300
O2—C11.208 (3)C5—C61.386 (3)
O3—C71.257 (3)C5—H50.9300
O4—C71.240 (3)C6—C71.520 (3)
O5—C141.401 (4)C8—C91.417 (3)
O5—H5A0.78 (5)C9—C101.367 (4)
N1—C61.332 (3)C9—H90.9300
N1—C21.335 (3)C10—C111.407 (4)
N2—C81.347 (3)C10—C131.504 (4)
N2—C121.356 (3)C11—C121.356 (4)
N2—H20.85 (3)C11—H110.9300
N3—C81.318 (3)C12—H120.9300
N3—H3A0.87 (4)C13—H13A0.9600
N3—H3B0.83 (4)C13—H13B0.9600
C2—C31.378 (4)C13—H13C0.9600
C2—C11.503 (3)C14—H14A0.9600
C3—C41.376 (4)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C1—O1—H1112 (3)O3—C7—C6117.74 (19)
C14—O5—H5A106 (3)N3—C8—N2118.9 (2)
C6—N1—C2118.17 (19)N3—C8—C9123.1 (2)
C8—N2—C12122.1 (2)N2—C8—C9118.0 (2)
C8—N2—H2118 (2)C10—C9—C8120.7 (2)
C12—N2—H2120 (2)C10—C9—H9119.6
C8—N3—H3A118 (2)C8—C9—H9119.6
C8—N3—H3B123 (2)C9—C10—C11118.7 (2)
H3A—N3—H3B118 (3)C9—C10—C13120.3 (3)
N1—C2—C3123.2 (2)C11—C10—C13121.0 (3)
N1—C2—C1115.8 (2)C12—C11—C10119.6 (2)
C3—C2—C1121.0 (2)C12—C11—H11120.2
C4—C3—C2118.5 (2)C10—C11—H11120.2
C4—C3—H3120.8C11—C12—N2120.9 (2)
C2—C3—H3120.8C11—C12—H12119.5
C5—C4—C3118.9 (2)N2—C12—H12119.5
C5—C4—H4120.6C10—C13—H13A109.5
C3—C4—H4120.6C10—C13—H13B109.5
C4—C5—C6119.3 (2)H13A—C13—H13B109.5
C4—C5—H5120.3C10—C13—H13C109.5
C6—C5—H5120.3H13A—C13—H13C109.5
N1—C6—C5122.0 (2)H13B—C13—H13C109.5
N1—C6—C7117.22 (19)O5—C14—H14A109.5
C5—C6—C7120.77 (19)O5—C14—H14B109.5
O2—C1—O1121.0 (2)H14A—C14—H14B109.5
O2—C1—C2122.2 (2)O5—C14—H14C109.5
O1—C1—C2116.8 (2)H14A—C14—H14C109.5
O4—C7—O3125.9 (2)H14B—C14—H14C109.5
O4—C7—C6116.3 (2)
C6—N1—C2—C30.8 (3)N1—C6—C7—O4180.0 (2)
C6—N1—C2—C1178.48 (19)C5—C6—C7—O40.1 (4)
N1—C2—C3—C40.5 (4)N1—C6—C7—O30.6 (3)
C1—C2—C3—C4179.8 (2)C5—C6—C7—O3179.4 (2)
C2—C3—C4—C51.1 (4)C12—N2—C8—N3178.6 (3)
C3—C4—C5—C60.4 (4)C12—N2—C8—C90.4 (4)
C2—N1—C6—C51.5 (3)N3—C8—C9—C10178.9 (3)
C2—N1—C6—C7178.5 (2)N2—C8—C9—C100.0 (4)
C4—C5—C6—N10.9 (4)C8—C9—C10—C110.5 (4)
C4—C5—C6—C7179.1 (2)C8—C9—C10—C13179.1 (2)
N1—C2—C1—O2172.4 (2)C9—C10—C11—C120.5 (4)
C3—C2—C1—O26.9 (4)C13—C10—C11—C12179.0 (3)
N1—C2—C1—O16.6 (3)C10—C11—C12—N20.1 (4)
C3—C2—C1—O1174.1 (2)C8—N2—C12—C110.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···O2i0.962.593.488 (5)157
O5—H5A···O3ii0.78 (5)2.02 (5)2.796 (3)170 (4)
N3—H3B···O4iii0.83 (4)1.95 (4)2.764 (3)166 (3)
N3—H3A···O2i0.87 (4)2.30 (4)3.122 (3)158 (3)
N2—H2···O3iii0.85 (3)1.87 (3)2.723 (3)173 (3)
O1—H1···O5iv0.87 (4)1.87 (4)2.689 (3)156 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H4NO4·CH4O
Mr307.31
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2191 (14), 9.5095 (19), 11.139 (2)
α, β, γ (°)94.44 (3), 99.76 (3), 92.50 (3)
V3)750.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.4 × 0.25 × 0.2
Data collection
DiffractometerStoe IPDS II
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8658, 4005, 2697
Rint0.058
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.216, 1.17
No. of reflections4005
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.26

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···O2i0.962.593.488 (5)156.8
O5—H5A···O3ii0.78 (5)2.02 (5)2.796 (3)170 (4)
N3—H3B···O4iii0.83 (4)1.95 (4)2.764 (3)166 (3)
N3—H3A···O2i0.87 (4)2.30 (4)3.122 (3)158 (3)
N2—H2···O3iii0.85 (3)1.87 (3)2.723 (3)173 (3)
O1—H1···O5iv0.87 (4)1.87 (4)2.689 (3)156 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAakeröy, C. B., Hughes, D. P., McCabe, J. M. & Nieuwenhuyzen, M. (1998). Supramol. Chem. 9, 127–135.  Google Scholar
First citationAghabozorg, H., Ghadermazi, M. & Sadr-Khanlou, E. (2006). Anal. Sci. 22, x253–x254.  CAS Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAl-Allaf, T. A. K., Rashan, L. J., Stelzner, A. & Powell, D. R. (2003). Appl. Organomet. Chem. 17, 891–897.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFu, A.-Y., Wang, D.-Q. & Zhang, C.-L. (2005). Acta Cryst. E61, o3119–o3121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A., Petridis, A. & James, B. D. (2003). Helv. Chim. Acta, 86, 711–725.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790–o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst. E62, o3620–o3622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. C63, o295–o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds