metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[lead(II)-bis­­(μ-2-amino-1,3-benzo­thia­zole-6-carboxyl­ato)]

aCollege of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
*Correspondence e-mail: wangjd@fzu.edu.cn

(Received 28 October 2010; accepted 25 November 2010; online 30 November 2010)

The title complex, [Pb(C8H5N2O2S)2]n, consists of one PbII ion located on a crystallographic twofold axis and two symmetry-related 2-amino-1,3-benzothia­zole-6-carboxyl­ate (ABTC) ligands. The central PbII ion has a (4 + 2) coordination by four O atoms of the two ABTC ligands and two weaker Pb—S bonding inter­actions (Pb—S secondary bonds) from S atoms of other two neighbouring ABTC ligands. These bonds link the metal ions into zigzag chains along the c axis, which, in turn, aggregate through ππ inter­actions [centroid–centroid distance = 3.7436 Å] between ABTC rings and N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For applications of benzothia­zole and its derivatives, see: Petkova et al. (2000[Petkova, I., Nikolov, P. & Dryanska, V. (2000). J. Photochem. Photobiol. A, 133, 21-25.]); Leng et al. (2001[Leng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253-9259.]); Karlsson et al. (2003[Karlsson, H. J., Lincoln, P. & Westman, G. (2003). Bioorg. Med. Chem. 11, 1035-1040.]); Ćaleta et al. (2009[Ćaleta, I., Kralj, M., Marjanović, M., Bertoša, B., Tomić, S., Pavlović, G., Pavelić, K. & Karminski-Zamola, G. (2009). J. Med. Chem. 52, 1744-1756.]); Tzanopoulou et al. (2010[Tzanopoulou, S., Sagnou, M., Paravatou-Petsotas, M., Gourni, E., Loudos, G., Xanthopoulos, S., Lafkas, D., Kiaris, H., Varvarigou, A., Pirmettis, I. C., Papadopoulos, M. & Pelecanou, M. (2010). J. Med. Chem. 53, 4633-4641.]). For the use of benzothia­zoles in building novel complexes, see: Vuoti et al. (2007[Vuoti, S., Haukka, M. & Pursiainen, J. (2007). Acta Cryst. C63, m601-m603.]); Zou et al. (2004[Zou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des. 4, 79-84.]); Ng et al. (2008[Ng, S. Y., Tan, J., Fan, W. Y., Leong, W. K., Goh, L. Y. & Webster, R. D. (2008). Eur. J. Inorg. Chem. pp. 144-151.]); Chen et al. (2010[Chen, S. C., Yu, R. M., Zhao, Z. G., Chen, S. M., Zhang, Q. S., Wu, X. Y., Wang, F. & Lu, C. Z. (2010). Cryst. Growth Des. 10, 1155-1160.]); For our recent work on the design and synthesis of benzothia­zole derivatives, see: Fang et al. (2010[Fang, X., Lei, C., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o1239-o1240.]); Lei et al. (2010[Lei, C., Fang, X., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o914.]). For secondary Pb—S bonds, see: Chan & Rossi (1997[Chan, M. L. & Rossi, M. (1997). Inorg. Chem. 36, 3609-3615.]); Turner et al. (2008[Turner, D. L., Vaid, T. P., Stephens, P. W., Stone, K. H., DiPasquale, A. G. & Rheingold, A. L. (2008). J. Am. Chem. Soc. 130, 14-15.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For (4 + 2) coordination, see: Chan & Rossi (1997[Chan, M. L. & Rossi, M. (1997). Inorg. Chem. 36, 3609-3615.]); Calatayud et al. (2007[Calatayud, D. G., Lopez-Torres, E. & Mendiola, M. A. (2007). Inorg. Chem. 46, 10434-10443.]); Turner et al. (2008[Turner, D. L., Vaid, T. P., Stephens, P. W., Stone, K. H., DiPasquale, A. G. & Rheingold, A. L. (2008). J. Am. Chem. Soc. 130, 14-15.]); Pena-Hueso et al. (2008[Pena-Hueso, A., Esparza-Ruiz, A., Ramos-Garcia-, I., Flores-Parra, A. & Contreras, R. (2008). J. Organomet. Chem. 693, 492-504.]). For ππ inter­actions, see: Sredojević et al. (2010[Sredojević, D. N., Tomić, Z. D. & Zarić, S. D. (2010). Cryst. Growth Des. 10, 3901-3908.]). For the preparation of the 2-amino­benzothia­zole-6-carb­oxy­lic acid ligand, see: Das et al. (2003[Das, J., Lin, J., Moquin, R. V., Shen, Z., Spergel, S. H., Wityak, J., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L. & Barrish, J. C. (2003). Bioorg. Med. Chem. Lett. 13, 2145-2149.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C8H5N2O2S)2]

  • Mr = 593.59

  • Monoclinic, P 2/c

  • a = 10.909 (2) Å

  • b = 4.8271 (10) Å

  • c = 15.980 (3) Å

  • β = 100.02 (3)°

  • V = 828.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.47 mm−1

  • T = 293 K

  • 0.39 × 0.29 × 0.15 mm

Data collection
  • Rigaku Saturn 724 CCD area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 2000)[Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.] Tmin = 0.378, Tmax = 1.000

  • 6088 measured reflections

  • 1890 independent reflections

  • 1871 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.11

  • 1890 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 2.13 e Å−3

  • Δρmin = −2.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.86 2.11 2.973 (7) 179
N1—H1A⋯N2ii 0.86 2.09 2.934 (7) 168
Symmetry codes: (i) [x, -y-1, z-{\script{1\over 2}}]; (ii) -x+2, -y-2, -z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, benzothiazole and its derivatives have been attracting more attention because they exhibit interesting optical and biological activities, which made them widely used in many fields, such as fluorescent materials, nonlinear optical materials, pesticides, anti-tumor and anti-microbial drugs, etc. (Petkova et al., 2000; Leng et al., 2001; Karlsson et al., 2003; Ćaleta et al., 2009). Related structural studies are partly focused on the fact that the benzothiazole ring contains N, S and O as potential donor atoms, which exhibit good coordination capacity, and so are propitious to build novel complexes (Zou et al.,2004; Vuoti et al., 2007; Ng et al., 2008; Chen et al.,2010;). By reviewing their metal complexes (Cambridge Structural Datebase, Version of 5.31 of August 2010; Allen, 2002), it was found that most metal atoms only match with N atom of thiazole ring, but not the S atom (because the coordination capacity of S is much weaker than N), as long as these metal atoms have interaction with the thiazole ring. In our recent work, accompanied with the design and synthesis of benzothiazole derivatives (Lei et al., 2010; Fang et al., 2010), complexes of benzothiazole derivatives with metal atoms were composed and structurally analyzed to explore their coordination behaviors. In this paper, we report the structure of a coordination polymer of lead and 2-amino-1,3-benzothiazole-6-carboxylate ligand (ABTC), where the coordination mode of S with Pb is seen as a secondary Pb—S bond (Chan et al., 1997; Turner et al., 2008).

The asymmetric unit of the complex contains a PbII ion located on a two fold axis and one independent 2-amino-1,3-benzothiazole-6-carboxylate (ABTC) ligand (Figure 1). The central PbII ion is coordinated by four O atoms of two ABTC ligands in a pyramid fashion with the PbII ion at the apex, covalently bounded to the four O atoms making up the base of the pyramid. The four Pb—O bonds are Pb1—O1 and Pb1—O1iii, (iii): -x+1, -y, -z+1, with a distance of 2.395 (5) Å, and Pb1—O2 and Pb1—O2ii, (ii) -x+1, y, -z+3/2; with a distance of 2.366 (4) Å. The stereochemistry of the distorted pyramid is described by angles of O1—Pb—O1iii, 106.4 (3)°, and O2—Pb—O2iii, 102.8 (3)°, and the sides of the base defined by O1—O2 and O1iii—O2iii, distanced 2.1708 (60) Å, and O1—O2iii and O2—O1iii, distanced 3.081 (7) Å .

In the crystal, two S atoms also interacte with the apical PbII ion with so-called secondary bonds, where the Pb—S distance [Pb1—S1i ( (i) x, -y, z+1/2) and Pb1—S1ii, with a distance of 3.3894 (17) Å] is shorter than the corresponding sum of the van der Waals radii (3.80 Å) of Pb and S atoms (Bondi, 1964). So the PbII ion in this structure should be described as (4 + 2) coordinated (Chan et al.,1997; Calatayud et al.,2007; Turner et al., 2008; Pena-Hueso et al., 2008). Under this coordination mode, each ABTC ligand acts as a linear linker to coordinate two metal centers, while each metal ion is linked to four ABTC ligands, then, along the c axis, one-dimensional zigzag chains are formed (Figure 2).

Along the b axis, neighboring chains are linked by N—H···O H-bonds and π-π interactions between the thiazole and benzene rings [with perpendicular distance of 3.4184Å and centroid-centroid distance of 3.7436 Å]. Simultaneously, there is an interaction between the benzene ring and the carboxyl group coordinated on the PbII ion, described by the 4-membered ring of O1—C8—O2—Pb1, with a perpendicular distance of 3.5021Å and centroid-centroid distance of 3.5740 Å (Sredojević et al.,2010).

Finally, along the a axis, neighboring chains are further connected to each other by N—H··· N hydrogen bonds which complete an infinite three-dimensional framework of the structure (Table 1 and Figure 3).

It is worth noting that S secondary bonds were also present in the previously reported complex of Ag and a benzothiazole derivative (Zou et al., 2004) through the weak interaction between Ag and the S atom of the thiozole ring. Also here these secondary Ag—S bonds play an important role in building the crystal framework, cooperating with the hydrogen bonds and π-π interactions to build the supramolecular structure.

Related literature top

For applications of benzothiazole and its derivatives, see: Petkova et al. (2000); Leng et al. (2001); Karlsson et al. (2003); Ćaleta et al. (2009); Tzanopoulou et al. (2010). For the use of benzothiazoles in building novel complexes, see: Vuoti et al. (2007); Zou et al. (2004); Ng et al. (2008); Chen et al. (2010); For our recent work on the design and synthesis of benzothiazole derivatives, see: Fang et al. (2010); Lei et al. (2010). For secondary Pb—S bonds, see: Chan & Rossi (1997); Turner et al. (2008). For van der Waals radii, see: Bondi (1964). For (4 + 2) coordination, see: Chan & Rossi (1997); Calatayud et al. (2007); Turner et al. (2008); Pena-Hueso et al. (2008). For ππ interactions, see: Sredojević et al. (2010). For the preparation of the 2-aminobenzothiazole-6-carboxylic acid ligand, see: Das et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The 2-aminobenzothiazole-6-carboxylic acid ligand was obtained by hydrolyzing ethyl 2-amino-1,3-benzothiazole-6-carboxylate (Das et al. 2003). The mixture of lead acetate (0.0379 g, 0.10 mmol), 2-aminobenzothiazole-6-carboxylic acid (0.0194 g, 0.1 mmol), and H2O (5 ml) was sealed in a 15 ml stainless-steel reactor with Teflon liner and heated (10°C per hour) from room temperature to 140°C and kept at 140°C for 96 h, then cooled to room temperature again at a similar rate. Brown crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

All H atoms bound to C and N atoms were located in difference Fourier syntheses and were refined as riding, with C—H distances of 0.93 Å and and N—H distances of 0.86 Å . All U iso(H) were kept at 1.2Ueq(Host).

Structure description top

In recent years, benzothiazole and its derivatives have been attracting more attention because they exhibit interesting optical and biological activities, which made them widely used in many fields, such as fluorescent materials, nonlinear optical materials, pesticides, anti-tumor and anti-microbial drugs, etc. (Petkova et al., 2000; Leng et al., 2001; Karlsson et al., 2003; Ćaleta et al., 2009). Related structural studies are partly focused on the fact that the benzothiazole ring contains N, S and O as potential donor atoms, which exhibit good coordination capacity, and so are propitious to build novel complexes (Zou et al.,2004; Vuoti et al., 2007; Ng et al., 2008; Chen et al.,2010;). By reviewing their metal complexes (Cambridge Structural Datebase, Version of 5.31 of August 2010; Allen, 2002), it was found that most metal atoms only match with N atom of thiazole ring, but not the S atom (because the coordination capacity of S is much weaker than N), as long as these metal atoms have interaction with the thiazole ring. In our recent work, accompanied with the design and synthesis of benzothiazole derivatives (Lei et al., 2010; Fang et al., 2010), complexes of benzothiazole derivatives with metal atoms were composed and structurally analyzed to explore their coordination behaviors. In this paper, we report the structure of a coordination polymer of lead and 2-amino-1,3-benzothiazole-6-carboxylate ligand (ABTC), where the coordination mode of S with Pb is seen as a secondary Pb—S bond (Chan et al., 1997; Turner et al., 2008).

The asymmetric unit of the complex contains a PbII ion located on a two fold axis and one independent 2-amino-1,3-benzothiazole-6-carboxylate (ABTC) ligand (Figure 1). The central PbII ion is coordinated by four O atoms of two ABTC ligands in a pyramid fashion with the PbII ion at the apex, covalently bounded to the four O atoms making up the base of the pyramid. The four Pb—O bonds are Pb1—O1 and Pb1—O1iii, (iii): -x+1, -y, -z+1, with a distance of 2.395 (5) Å, and Pb1—O2 and Pb1—O2ii, (ii) -x+1, y, -z+3/2; with a distance of 2.366 (4) Å. The stereochemistry of the distorted pyramid is described by angles of O1—Pb—O1iii, 106.4 (3)°, and O2—Pb—O2iii, 102.8 (3)°, and the sides of the base defined by O1—O2 and O1iii—O2iii, distanced 2.1708 (60) Å, and O1—O2iii and O2—O1iii, distanced 3.081 (7) Å .

In the crystal, two S atoms also interacte with the apical PbII ion with so-called secondary bonds, where the Pb—S distance [Pb1—S1i ( (i) x, -y, z+1/2) and Pb1—S1ii, with a distance of 3.3894 (17) Å] is shorter than the corresponding sum of the van der Waals radii (3.80 Å) of Pb and S atoms (Bondi, 1964). So the PbII ion in this structure should be described as (4 + 2) coordinated (Chan et al.,1997; Calatayud et al.,2007; Turner et al., 2008; Pena-Hueso et al., 2008). Under this coordination mode, each ABTC ligand acts as a linear linker to coordinate two metal centers, while each metal ion is linked to four ABTC ligands, then, along the c axis, one-dimensional zigzag chains are formed (Figure 2).

Along the b axis, neighboring chains are linked by N—H···O H-bonds and π-π interactions between the thiazole and benzene rings [with perpendicular distance of 3.4184Å and centroid-centroid distance of 3.7436 Å]. Simultaneously, there is an interaction between the benzene ring and the carboxyl group coordinated on the PbII ion, described by the 4-membered ring of O1—C8—O2—Pb1, with a perpendicular distance of 3.5021Å and centroid-centroid distance of 3.5740 Å (Sredojević et al.,2010).

Finally, along the a axis, neighboring chains are further connected to each other by N—H··· N hydrogen bonds which complete an infinite three-dimensional framework of the structure (Table 1 and Figure 3).

It is worth noting that S secondary bonds were also present in the previously reported complex of Ag and a benzothiazole derivative (Zou et al., 2004) through the weak interaction between Ag and the S atom of the thiozole ring. Also here these secondary Ag—S bonds play an important role in building the crystal framework, cooperating with the hydrogen bonds and π-π interactions to build the supramolecular structure.

For applications of benzothiazole and its derivatives, see: Petkova et al. (2000); Leng et al. (2001); Karlsson et al. (2003); Ćaleta et al. (2009); Tzanopoulou et al. (2010). For the use of benzothiazoles in building novel complexes, see: Vuoti et al. (2007); Zou et al. (2004); Ng et al. (2008); Chen et al. (2010); For our recent work on the design and synthesis of benzothiazole derivatives, see: Fang et al. (2010); Lei et al. (2010). For secondary Pb—S bonds, see: Chan & Rossi (1997); Turner et al. (2008). For van der Waals radii, see: Bondi (1964). For (4 + 2) coordination, see: Chan & Rossi (1997); Calatayud et al. (2007); Turner et al. (2008); Pena-Hueso et al. (2008). For ππ interactions, see: Sredojević et al. (2010). For the preparation of the 2-aminobenzothiazole-6-carboxylic acid ligand, see: Das et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of (I),drawn with 40% probability displacement ellipsoids. H atoms have been omitted for clarify. Symmetry codes: (i) 1 - x, -y,1 - z; (ii)x,-y,1/2 + z; (iii)1 - x, y, 3/2 - z.
[Figure 2] Fig. 2. A view of the one-dimensional chain formed by Pb—S secondary bonds in (I).All H atoms have been omitted and all C atoms are shown as wires or sticks for clarify.
[Figure 3] Fig. 3. A packing diagram for (I), showing some of the hydrogen bonds (blue and red dashed lines) and π-π interactions along the b direction. Most of the H atoms have been omitted except those involved in the weak interactions. All C atoms are shown as wires or sticks for clarify.
catena-Poly[lead(II)-bis(µ-2-amino-1,3-benzothiazole-6-carboxylato)] top
Crystal data top
[Pb(C8H5N2O2S)2]F(000) = 560
Mr = 593.59Dx = 2.379 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3030 reflections
a = 10.909 (2) Åθ = 3.5–27.6°
b = 4.8271 (10) ŵ = 10.47 mm1
c = 15.980 (3) ÅT = 293 K
β = 100.02 (3)°Prism, brown
V = 828.6 (3) Å30.39 × 0.29 × 0.15 mm
Z = 2
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
1890 independent reflections
Radiation source: fine-focus sealed tube1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.5°
dtprofit.ref scansh = 1412
Absorption correction: numerical
(NUMABS; Higashi, 2000)
k = 66
Tmin = 0.378, Tmax = 1.000l = 2020
6088 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.8091P]
where P = (Fo2 + 2Fc2)/3
1890 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 2.13 e Å3
0 restraintsΔρmin = 2.56 e Å3
Crystal data top
[Pb(C8H5N2O2S)2]V = 828.6 (3) Å3
Mr = 593.59Z = 2
Monoclinic, P2/cMo Kα radiation
a = 10.909 (2) ŵ = 10.47 mm1
b = 4.8271 (10) ÅT = 293 K
c = 15.980 (3) Å0.39 × 0.29 × 0.15 mm
β = 100.02 (3)°
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
1890 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 2000)
1871 reflections with I > 2σ(I)
Tmin = 0.378, Tmax = 1.000Rint = 0.075
6088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.11Δρmax = 2.13 e Å3
1890 reflectionsΔρmin = 2.56 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.50000.46437 (5)0.75000.02893 (13)
S10.68171 (12)0.6475 (3)0.43591 (9)0.0341 (3)
N10.8579 (6)1.0111 (11)0.4062 (4)0.0358 (12)
H1A0.92861.09400.41770.043*
H1B0.80611.05450.36110.043*
N20.9003 (4)0.7340 (11)0.5281 (3)0.0314 (10)
O10.6764 (4)0.1672 (12)0.7523 (3)0.0456 (12)
O20.5321 (4)0.1587 (10)0.6401 (3)0.0400 (10)
C10.8286 (5)0.8158 (13)0.4580 (3)0.0293 (10)
C20.7228 (6)0.4520 (10)0.5281 (4)0.0269 (11)
C30.6541 (5)0.2540 (12)0.5620 (3)0.0293 (11)
H30.57540.20210.53410.035*
C40.7070 (5)0.1345 (12)0.6396 (3)0.0303 (11)
C50.8264 (5)0.2125 (15)0.6806 (4)0.0382 (13)
H50.86030.13250.73240.046*
C60.8940 (6)0.4066 (16)0.6445 (4)0.0401 (14)
H60.97400.45300.67120.048*
C70.8425 (6)0.5332 (12)0.5682 (4)0.0301 (12)
C80.6357 (6)0.0758 (12)0.6796 (4)0.0295 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.03445 (19)0.02334 (18)0.0291 (2)0.0000.00589 (12)0.000
S10.0295 (6)0.0391 (8)0.0308 (7)0.0058 (6)0.0030 (5)0.0049 (6)
N10.033 (3)0.042 (3)0.030 (3)0.005 (2)0.001 (2)0.010 (2)
N20.0270 (19)0.036 (3)0.030 (2)0.0052 (19)0.0017 (17)0.0053 (19)
O10.052 (3)0.055 (3)0.028 (2)0.021 (2)0.0025 (18)0.007 (2)
O20.034 (2)0.042 (3)0.042 (2)0.0081 (19)0.0009 (17)0.013 (2)
C10.026 (2)0.033 (3)0.029 (2)0.004 (2)0.0043 (19)0.003 (2)
C20.028 (3)0.027 (3)0.025 (3)0.0007 (19)0.002 (2)0.0008 (19)
C30.026 (2)0.030 (3)0.032 (3)0.003 (2)0.0063 (19)0.005 (2)
C40.032 (2)0.028 (3)0.032 (3)0.005 (2)0.009 (2)0.000 (2)
C50.035 (3)0.050 (4)0.027 (3)0.008 (3)0.000 (2)0.009 (3)
C60.032 (3)0.050 (3)0.034 (3)0.012 (3)0.005 (2)0.009 (3)
C70.029 (3)0.032 (3)0.029 (3)0.005 (2)0.004 (2)0.001 (2)
C80.037 (3)0.025 (2)0.030 (3)0.002 (2)0.014 (2)0.003 (2)
Geometric parameters (Å, º) top
Pb1—O22.366 (4)N2—C71.375 (7)
Pb1—O2i2.366 (4)O1—C81.251 (8)
Pb1—O1i2.395 (5)O2—C81.259 (8)
Pb1—O12.395 (5)C2—C31.382 (8)
Pb1—C82.749 (6)C2—C71.406 (8)
Pb1—C8i2.749 (6)C3—C41.399 (8)
Pb1—S1ii3.3894 (17)C3—H30.9300
Pb1—S1iii3.3894 (17)C4—C51.404 (8)
S1—C21.741 (6)C4—C81.489 (8)
S1—C11.776 (5)C5—C61.378 (9)
N1—C11.330 (8)C5—H50.9300
N1—H1A0.8600C6—C71.392 (9)
N1—H1B0.8600C6—H60.9300
N2—C11.310 (7)
O2—Pb1—O2i102.8 (3)H1A—N1—H1B120.0
O2—Pb1—O1i80.64 (17)C1—N2—C7110.9 (5)
O2i—Pb1—O1i54.26 (15)C8—O1—Pb192.4 (4)
O2—Pb1—O154.26 (15)C8—O2—Pb193.6 (4)
O2i—Pb1—O180.64 (17)N2—C1—N1125.0 (5)
O1i—Pb1—O1106.4 (3)N2—C1—S1114.6 (4)
O2—Pb1—C827.21 (17)N1—C1—S1120.4 (4)
O2i—Pb1—C892.19 (17)C3—C2—C7122.5 (5)
O1i—Pb1—C894.21 (19)C3—C2—S1129.0 (5)
O1—Pb1—C827.04 (17)C7—C2—S1108.5 (4)
O2—Pb1—C8i92.19 (17)C2—C3—C4117.7 (5)
O2i—Pb1—C8i27.21 (17)C2—C3—H3121.2
O1i—Pb1—C8i27.04 (17)C4—C3—H3121.2
O1—Pb1—C8i94.21 (19)C3—C4—C5120.6 (5)
C8—Pb1—C8i93.9 (2)C3—C4—C8119.7 (5)
O2—Pb1—S1ii132.35 (10)C5—C4—C8119.7 (5)
O2i—Pb1—S1ii69.61 (11)C6—C5—C4120.5 (6)
O1i—Pb1—S1ii121.04 (10)C6—C5—H5119.7
O1—Pb1—S1ii78.27 (11)C4—C5—H5119.7
C8—Pb1—S1ii105.21 (14)C5—C6—C7120.1 (6)
C8i—Pb1—S1ii95.37 (14)C5—C6—H6120.0
O2—Pb1—S1iii69.61 (11)C7—C6—H6120.0
O2i—Pb1—S1iii132.35 (11)N2—C7—C6124.8 (6)
O1i—Pb1—S1iii78.27 (11)N2—C7—C2116.7 (6)
O1—Pb1—S1iii121.04 (10)C6—C7—C2118.6 (6)
C8—Pb1—S1iii95.37 (14)O1—C8—O2119.7 (5)
C8i—Pb1—S1iii105.21 (14)O1—C8—C4120.8 (6)
S1ii—Pb1—S1iii149.76 (6)O2—C8—C4119.5 (6)
C2—S1—C189.4 (3)O1—C8—Pb160.5 (3)
C1—N1—H1A120.0O2—C8—Pb159.2 (3)
C1—N1—H1B120.0C4—C8—Pb1178.7 (5)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+1/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1iv0.862.112.973 (7)179
N1—H1A···N2v0.862.092.934 (7)168
Symmetry codes: (iv) x, y1, z1/2; (v) x+2, y2, z+1.

Experimental details

Crystal data
Chemical formula[Pb(C8H5N2O2S)2]
Mr593.59
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)10.909 (2), 4.8271 (10), 15.980 (3)
β (°) 100.02 (3)
V3)828.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)10.47
Crystal size (mm)0.39 × 0.29 × 0.15
Data collection
DiffractometerRigaku Saturn 724 CCD area-detector
Absorption correctionNumerical
(NUMABS; Higashi, 2000)
Tmin, Tmax0.378, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6088, 1890, 1871
Rint0.075
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.11
No. of reflections1890
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.13, 2.56

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.862.112.973 (7)178.6
N1—H1A···N2ii0.862.092.934 (7)167.8
Symmetry codes: (i) x, y1, z1/2; (ii) x+2, y2, z+1.
 

Acknowledgements

This work was supported by the Foundations of Fuzhou University (No.s XRC0924, 2010-XQ-06, 826682), the Fujian Institute of Research on the Structure of Matter (CAS) (No. SZD08003) and the NSFC (No. 30811130467).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCalatayud, D. G., Lopez-Torres, E. & Mendiola, M. A. (2007). Inorg. Chem. 46, 10434–10443.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationĆaleta, I., Kralj, M., Marjanović, M., Bertoša, B., Tomić, S., Pavlović, G., Pavelić, K. & Karminski-Zamola, G. (2009). J. Med. Chem. 52, 1744–1756.  Web of Science PubMed Google Scholar
First citationChan, M. L. & Rossi, M. (1997). Inorg. Chem. 36, 3609–3615.  PubMed Google Scholar
First citationChen, S. C., Yu, R. M., Zhao, Z. G., Chen, S. M., Zhang, Q. S., Wu, X. Y., Wang, F. & Lu, C. Z. (2010). Cryst. Growth Des. 10, 1155–1160.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, J., Lin, J., Moquin, R. V., Shen, Z., Spergel, S. H., Wityak, J., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L. & Barrish, J. C. (2003). Bioorg. Med. Chem. Lett. 13, 2145–2149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFang, X., Lei, C., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o1239–o1240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKarlsson, H. J., Lincoln, P. & Westman, G. (2003). Bioorg. Med. Chem. 11, 1035–1040.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLei, C., Fang, X., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, o914.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLeng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253–9259.  Web of Science CrossRef CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationNg, S. Y., Tan, J., Fan, W. Y., Leong, W. K., Goh, L. Y. & Webster, R. D. (2008). Eur. J. Inorg. Chem. pp. 144–151.  Web of Science CSD CrossRef Google Scholar
First citationPena-Hueso, A., Esparza-Ruiz, A., Ramos-Garcia-, I., Flores-Parra, A. & Contreras, R. (2008). J. Organomet. Chem. 693, 492–504.  Web of Science CrossRef CAS Google Scholar
First citationPetkova, I., Nikolov, P. & Dryanska, V. (2000). J. Photochem. Photobiol. A, 133, 21–25.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSredojević, D. N., Tomić, Z. D. & Zarić, S. D. (2010). Cryst. Growth Des. 10, 3901–3908.  Google Scholar
First citationTurner, D. L., Vaid, T. P., Stephens, P. W., Stone, K. H., DiPasquale, A. G. & Rheingold, A. L. (2008). J. Am. Chem. Soc. 130, 14–15.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTzanopoulou, S., Sagnou, M., Paravatou-Petsotas, M., Gourni, E., Loudos, G., Xanthopoulos, S., Lafkas, D., Kiaris, H., Varvarigou, A., Pirmettis, I. C., Papadopoulos, M. & Pelecanou, M. (2010). J. Med. Chem. 53, 4633–4641.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVuoti, S., Haukka, M. & Pursiainen, J. (2007). Acta Cryst. C63, m601–m603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des. 4, 79–84.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds