organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5S)-4-(2,2-Di­methyl­prop­yl)-5-iso­propyl-1,3,4-oxadiazinan-2-one

aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: Ferrence@IllinoisState.edu

(Received 21 October 2010; accepted 22 November 2010; online 27 November 2010)

The title compound, C11H22N2O2, has one chiral center and packs in the monoclinic space group P21. The asymmetric unit has five crystallographically independent mol­ecules, four of which engage in inter­molecular N—H⋯O hydrogen bonding.

Related literature

For related structures and background, see: Addison et al. (2008[Addison, L. D., Dore, D. D., Hitchcock, S. R. & Ferrence, G. M. (2008). Acta Cryst. E64, o1040-o1041.]); Anderson et al. (2006[Anderson, K. M., Afarinkia, K., Yu, H., Goeta, A. E. & Steed, J. W. (2006). Cryst. Growth Des. 6, 2109-2113.]); Burgeson et al. (2004[Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727-734.]); Casper et al. (2002[Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem. 67, 8871-8876.]); Rodrigues et al. (2006[Rodrigues, A., Olivato, P. R., Zukerman-Schpector, J. & Rittner, R. (2006). Z. Kristallogr. 221, 226-230.]); Szczepura et al. (2004[Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467-o1469.]); Trepanier et al. (1968[Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357-361.]). The synthesis of the title compound is described by Casper et al. (2004[Casper, D. M., Kieser, D., Blackburn, J. R. & Hitchcock, S. R. (2004). Synth. Commun. 34, 835-843.]). For literature related to crystallographic analysis, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem., Int. Ed. Engl. 34, 1555-1573.]); Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]); Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Macrae et al. (2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C11H22N2O2

  • Mr = 214.3

  • Monoclinic, P 21

  • a = 17.0330 (18) Å

  • b = 11.2270 (12) Å

  • c = 17.404 (2) Å

  • β = 100.073 (2)°

  • V = 3276.9 (6) Å3

  • Z = 10

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 193 K

  • 0.6 × 0.32 × 0.27 mm

Data collection
  • Bruker P4/R4/SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.943

  • 16431 measured reflections

  • 7042 independent reflections

  • 4526 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.144

  • S = 1.03

  • 7042 reflections

  • 723 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N23—H23⋯O55i 0.78 (4) 2.16 (4) 2.937 (5) 177 (5)
N43—H43⋯O35ii 0.88 (4) 1.99 (4) 2.868 (5) 175 (3)
N63—H63⋯O95iii 0.84 (4) 2.13 (4) 2.949 (5) 163 (3)
N83—H83⋯O75iv 0.89 (4) 2.04 (4) 2.926 (4) 175 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x, y, z-1; (iv) x, y, z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.] and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Comment top

The fundamental structure of 1,3,4-oxadiazinan-2-one compounds has been known for nearly forty years (Trepanier et al., 1968). We are interested in studying the underlying factors for differing conformations of this heterocycle and for its use as a chiral auxiliary in aldol addition reactions (Casper et al., 2002; Burgeson et al., 2004).

The oxadiazinanone ring is well suited to accommodate H-bonded dimers of the R22(8) type (Bernstein et al., 1995; Etter et al., 1990). The H-bond occurs most naturally between the carbonyl oxygen on the first molecule and the nitrogen containing the hydrogen atom on the second molecule, and vice versa. The result is an eight-membered ring in which two of the connections are H-bonds. These H-bonded dimers have a strong propensity to form in the oxadiazinanone system (Anderson et al., 2006). A few examples of this type of H-bonding are seen in structures by Addison et al. (2008), Rodrigues et al. (2006), and Szczepura et al. (2004) (with REFCODES LOBVII, GEGZUO, and YAGJEW, respectively).

The title compound packs into a monoclinic, P21, space group. This compound is unusual in that there are five molecules in the asymmetric unit (see Figure 1). The best of these is illustrated in Figure 2. Of these five molecules, two pairs are engaged in R22(8) type H-bonding. The fifth molecule does not engage in H-bonding because the donor atom is surrounded by neopentyl substituents, effectively blocking any H-bonds to an acceptor atom. Figure 3 shows all five molecules in a wireframe style, with key atoms shown in a space-fill style, to highlight how the N—H is hemmed in by neopentyl substituents. Another, interactive, view in Figure 4 shows how inaccessible the donor N really is.

The number of crystallographically independent molecules in the asymmetric unit also warrants notice. Most of the structures in the Cambridge Structural Database have a Z' less than or equal to 1. According to the August 2010 edition of the CSD (Allen, 2002), 91.1% of the structures have a Z' less than or equal to 1. As Z' increases, the percentage of structures decreases (Z'=2, 7.7%; Z'=3, 0.42%; Z'=4, 0.40%). Only 0.014% (N=73) of structures in the CSD have a Z'=5, which is a property of this structure.

Since the conformation of the heterocycle is of some interest, structure overlays were conducted in Mercury (Macrae et al., 2008). Surprisingly, all five heterocycles exhibit the same conformation (seen in Figure 5); there is some swing observed in the isopropyl and neopentyl groups, but that deviation does not require the heterocycle to assume a different position in the crystal array. A Cremer-Pople ring analysis (Cremer & Pople, 1975; Boeyens, 1978), performed in PLATON (Spek, 2009), shows that all five molecules exhibit the 5E ring conformation, which is an envelope conformation with C5 as the flap apex. The data for the five oxadiazinanone rings are as follows: Ring 1 (O1—C6) - Q=0.511 (4); θ=56.7 (5)°; Φ=251.2 (5)°, Ring 2 (O21—C26) - Q=0.499 (4); θ=53.7 (5)°; Φ=253.9 (5)°, Ring 3 (O41—C46) - Q=0.510 (4); θ=56.7 (4)°; Φ=246.5 (5)°, Ring 4 (O61—C66) - Q=0.492 (5); θ=55.6 (5)°; Φ=239.9 (6)°, Ring 5 (O81—C86) - Q=0.500 (4); θ=55.9 (5)°; Φ=236.4 (5)°.

Upon conducting a Mogul geometry check (Bruno et al., 2004), the N4—C10 (1.490 (5) Å) and N24—C30 bonds (1.488 (5) Å) were flagged as being outside the typical range for a C—N bond (mean 1.46 ±0.01 Å). This bond is the one between the N atom of the heterocycle and the neopentyl substituent. This bond in the other three crystallographically independent molecules is not flagged. The bonds C50—C51 (1.508 (7) Å) and C90—C91 (1.507 (6) Å) were also flagged as unusual compared to the mean of 1.54 ±0.01 Å. One last bond, N84—C85, was considered unusual with a value of 1.463 (5) Å versus a mean of 1.49 ±0.01 Å. There is no obvious particular chemical or crystallographic explanation for these deviations. However, they still appear to be within an acceptable range. All angles were reported to be within normal limits.

Related literature top

For related structures and background, see: Addison et al. (2008); Anderson et al. (2006); Burgeson et al. (2004); Casper et al. (2002); Rodrigues et al. (2006); Szczepura et al. (2004); Trepanier et al. (1968). The synthesis of the title compound is described by Casper et al. (2004). For literature related to crystallographic analysis, see: Allen (2002); Bernstein et al. (1995); Boeyens (1978); Bruno et al. (2004); Cremer & Pople (1975); Etter et al. (1990); Macrae et al. (2008); Spek (2009).

Experimental top

The title compound was prepared as previously reported (Casper et al. 2004). Single crystals were grown by vapor diffusion of hexane into an ethyl acetate solution of the title compound.

Refinement top

All non-H atoms were refined anisotropically. All H atoms were initially identified through difference Fourier syntheses then removed and included in the refinement in the riding-model approximation (C–H = 0.98, 0.99 and 1.00 Å for CH3, CH2, and CH; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)).

Structure description top

The fundamental structure of 1,3,4-oxadiazinan-2-one compounds has been known for nearly forty years (Trepanier et al., 1968). We are interested in studying the underlying factors for differing conformations of this heterocycle and for its use as a chiral auxiliary in aldol addition reactions (Casper et al., 2002; Burgeson et al., 2004).

The oxadiazinanone ring is well suited to accommodate H-bonded dimers of the R22(8) type (Bernstein et al., 1995; Etter et al., 1990). The H-bond occurs most naturally between the carbonyl oxygen on the first molecule and the nitrogen containing the hydrogen atom on the second molecule, and vice versa. The result is an eight-membered ring in which two of the connections are H-bonds. These H-bonded dimers have a strong propensity to form in the oxadiazinanone system (Anderson et al., 2006). A few examples of this type of H-bonding are seen in structures by Addison et al. (2008), Rodrigues et al. (2006), and Szczepura et al. (2004) (with REFCODES LOBVII, GEGZUO, and YAGJEW, respectively).

The title compound packs into a monoclinic, P21, space group. This compound is unusual in that there are five molecules in the asymmetric unit (see Figure 1). The best of these is illustrated in Figure 2. Of these five molecules, two pairs are engaged in R22(8) type H-bonding. The fifth molecule does not engage in H-bonding because the donor atom is surrounded by neopentyl substituents, effectively blocking any H-bonds to an acceptor atom. Figure 3 shows all five molecules in a wireframe style, with key atoms shown in a space-fill style, to highlight how the N—H is hemmed in by neopentyl substituents. Another, interactive, view in Figure 4 shows how inaccessible the donor N really is.

The number of crystallographically independent molecules in the asymmetric unit also warrants notice. Most of the structures in the Cambridge Structural Database have a Z' less than or equal to 1. According to the August 2010 edition of the CSD (Allen, 2002), 91.1% of the structures have a Z' less than or equal to 1. As Z' increases, the percentage of structures decreases (Z'=2, 7.7%; Z'=3, 0.42%; Z'=4, 0.40%). Only 0.014% (N=73) of structures in the CSD have a Z'=5, which is a property of this structure.

Since the conformation of the heterocycle is of some interest, structure overlays were conducted in Mercury (Macrae et al., 2008). Surprisingly, all five heterocycles exhibit the same conformation (seen in Figure 5); there is some swing observed in the isopropyl and neopentyl groups, but that deviation does not require the heterocycle to assume a different position in the crystal array. A Cremer-Pople ring analysis (Cremer & Pople, 1975; Boeyens, 1978), performed in PLATON (Spek, 2009), shows that all five molecules exhibit the 5E ring conformation, which is an envelope conformation with C5 as the flap apex. The data for the five oxadiazinanone rings are as follows: Ring 1 (O1—C6) - Q=0.511 (4); θ=56.7 (5)°; Φ=251.2 (5)°, Ring 2 (O21—C26) - Q=0.499 (4); θ=53.7 (5)°; Φ=253.9 (5)°, Ring 3 (O41—C46) - Q=0.510 (4); θ=56.7 (4)°; Φ=246.5 (5)°, Ring 4 (O61—C66) - Q=0.492 (5); θ=55.6 (5)°; Φ=239.9 (6)°, Ring 5 (O81—C86) - Q=0.500 (4); θ=55.9 (5)°; Φ=236.4 (5)°.

Upon conducting a Mogul geometry check (Bruno et al., 2004), the N4—C10 (1.490 (5) Å) and N24—C30 bonds (1.488 (5) Å) were flagged as being outside the typical range for a C—N bond (mean 1.46 ±0.01 Å). This bond is the one between the N atom of the heterocycle and the neopentyl substituent. This bond in the other three crystallographically independent molecules is not flagged. The bonds C50—C51 (1.508 (7) Å) and C90—C91 (1.507 (6) Å) were also flagged as unusual compared to the mean of 1.54 ±0.01 Å. One last bond, N84—C85, was considered unusual with a value of 1.463 (5) Å versus a mean of 1.49 ±0.01 Å. There is no obvious particular chemical or crystallographic explanation for these deviations. However, they still appear to be within an acceptable range. All angles were reported to be within normal limits.

For related structures and background, see: Addison et al. (2008); Anderson et al. (2006); Burgeson et al. (2004); Casper et al. (2002); Rodrigues et al. (2006); Szczepura et al. (2004); Trepanier et al. (1968). The synthesis of the title compound is described by Casper et al. (2004). For literature related to crystallographic analysis, see: Allen (2002); Bernstein et al. (1995); Boeyens (1978); Bruno et al. (2004); Cremer & Pople (1975); Etter et al. (1990); Macrae et al. (2008); Spek (2009).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound showing the atomic numbering scheme of all five independent molecules in the asymmetric unit. Ellipsoids are shown at 50% probability displacement and hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. ORTEP view of the title compound showing the atomic numbering scheme for the best of the five independent molecules. Ellipsoids are shown at 50% probability displacement and hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. A view of the asymmetric unit in Mercury. The molecule that is not engaged in H-bonding has the N and H atoms shown in spacefill mode. Aliphatic substituents (C atoms shown in spacefill) surround this N–H and prohibit it from H-bonding with a carbonyl group.
[Figure 4] Fig. 4. The Jmol enhanced figure of the title compound. The H-bonding situation can clearly be seen by manipulating the various radiobuttons.
[Figure 5] Fig. 5. An overlay of the five molecules in the asymmetric unit shown in Mercury. There is no significant variation of the oxadiazinanone ring.
(5S)-4-(2,2-Dimethylpropyl)-5-isopropyl-1,3,4-oxadiazinan-2-one top
Crystal data top
C11H22N2O2F(000) = 1180
Mr = 214.3Dx = 1.086 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6729 reflections
a = 17.0330 (18) Åθ = 2.4–22.8°
b = 11.2270 (12) ŵ = 0.08 mm1
c = 17.404 (2) ÅT = 193 K
β = 100.073 (2)°Prism, colourless
V = 3276.9 (6) Å30.6 × 0.32 × 0.27 mm
Z = 10
Data collection top
Bruker P4/R4/SMART 1000 CCD
diffractometer
4526 reflections with I > 2σ(I)
ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 1999)
θmax = 26.4°, θmin = 1.2°
Tmin = 0.812, Tmax = 0.943h = 2121
16431 measured reflectionsk = 1114
7042 independent reflectionsl = 1921
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0763P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.27 e Å3
7042 reflectionsΔρmin = 0.17 e Å3
723 parameters
Crystal data top
C11H22N2O2V = 3276.9 (6) Å3
Mr = 214.3Z = 10
Monoclinic, P21Mo Kα radiation
a = 17.0330 (18) ŵ = 0.08 mm1
b = 11.2270 (12) ÅT = 193 K
c = 17.404 (2) Å0.6 × 0.32 × 0.27 mm
β = 100.073 (2)°
Data collection top
Bruker P4/R4/SMART 1000 CCD
diffractometer
7042 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 1999)
4526 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.943Rint = 0.044
16431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
7042 reflectionsΔρmin = 0.17 e Å3
723 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4885 (2)0.4683 (3)0.06758 (17)0.0693 (9)
C20.4247 (3)0.4157 (5)0.0465 (3)0.0679 (13)
N30.4016 (2)0.4554 (4)0.0188 (3)0.0625 (10)
N40.44061 (17)0.5387 (3)0.07359 (18)0.0427 (7)
C50.5244 (2)0.5438 (3)0.0642 (2)0.0418 (9)
H50.54890.61460.09410.05*
C60.5273 (3)0.5655 (4)0.0204 (2)0.0585 (11)
H6A0.50.64140.03730.07*
H6B0.58340.5720.02780.07*
C70.5696 (2)0.4339 (4)0.0995 (2)0.0472 (9)
H70.54190.36220.07370.057*
C80.6560 (2)0.4309 (5)0.0861 (3)0.0677 (13)
H8A0.68210.35860.10960.102*
H8B0.68450.50110.11020.102*
H8C0.65680.43110.02990.102*
C90.5678 (3)0.4252 (5)0.1864 (3)0.0690 (13)
H9A0.5970.35390.20780.103*
H9B0.51240.41990.19450.103*
H9C0.59290.49610.2130.103*
C100.3986 (2)0.6556 (3)0.0666 (2)0.0505 (10)
H10A0.35270.65170.0230.061*
H10B0.43540.71790.05390.061*
C110.3688 (2)0.6901 (3)0.1414 (2)0.0443 (9)
C120.3260 (3)0.8094 (4)0.1264 (3)0.0634 (12)
H12A0.28070.80090.08340.095*
H12B0.36310.86910.11240.095*
H12C0.30670.8350.17360.095*
C130.3113 (3)0.5967 (4)0.1610 (3)0.0792 (15)
H13A0.26680.58850.11740.119*
H13B0.2910.62090.2080.119*
H13C0.33910.52020.17050.119*
C140.4384 (3)0.7049 (5)0.2076 (3)0.0706 (13)
H14A0.47510.76510.19340.106*
H14B0.46650.62880.21750.106*
H14C0.41890.73040.25470.106*
O150.3927 (2)0.3348 (4)0.0854 (3)0.1060 (15)
H30.365 (3)0.416 (5)0.035 (3)0.073 (16)*
O210.60240 (16)0.0228 (3)0.35395 (17)0.0629 (8)
C220.6241 (2)0.0932 (4)0.4166 (2)0.0528 (11)
N230.56820 (19)0.1295 (3)0.4561 (2)0.0483 (9)
N240.48479 (16)0.1070 (3)0.43763 (17)0.0439 (7)
C250.4650 (2)0.0769 (4)0.3543 (2)0.0477 (10)
H250.40990.04290.34460.057*
C260.5212 (2)0.0197 (4)0.3368 (3)0.0602 (11)
H26A0.51530.0910.36880.072*
H26B0.50770.04250.28110.072*
C270.4643 (2)0.1884 (4)0.3030 (2)0.0557 (10)
H270.5190.22410.31280.067*
C280.4435 (3)0.1552 (6)0.2171 (3)0.0893 (17)
H28A0.48160.09580.20470.134*
H28B0.44610.22640.1850.134*
H28C0.38950.1220.20610.134*
C290.4062 (3)0.2798 (5)0.3235 (3)0.0782 (14)
H29A0.40670.35010.29020.117*
H29B0.42170.30290.37830.117*
H29C0.35240.24560.31520.117*
C300.4607 (3)0.0152 (4)0.4906 (3)0.0594 (11)
H30A0.50860.01210.5270.071*
H30B0.43830.05430.45920.071*
C310.3996 (2)0.0603 (4)0.5375 (2)0.0539 (11)
C320.3795 (3)0.0402 (6)0.5887 (3)0.0896 (17)
H32A0.42760.06410.6250.134*
H32B0.3590.10830.5560.134*
H32C0.33880.01330.61830.134*
C330.4337 (4)0.1663 (6)0.5866 (3)0.115 (3)
H33A0.48220.1420.62210.172*
H33B0.39430.19520.61710.172*
H33C0.44650.23010.55240.172*
C340.3249 (3)0.0960 (5)0.4830 (3)0.0831 (16)
H34A0.33680.16180.44990.125*
H34B0.28460.12150.51340.125*
H34C0.30460.02790.45020.125*
O350.69335 (16)0.1255 (4)0.43234 (17)0.0761 (10)
H230.584 (2)0.169 (4)0.492 (3)0.051 (13)*
O410.26808 (14)0.8230 (3)0.31233 (16)0.0557 (7)
C420.2958 (2)0.7617 (4)0.3774 (2)0.0442 (9)
N430.24610 (18)0.6941 (3)0.4097 (2)0.0474 (8)
N440.16241 (17)0.6874 (3)0.38521 (18)0.0481 (8)
C450.1355 (2)0.7981 (4)0.3434 (2)0.0526 (11)
H450.07870.78610.31810.063*
C460.1835 (2)0.8159 (5)0.2790 (2)0.0596 (11)
H46A0.17410.74860.24180.071*
H46B0.16640.89020.25020.071*
C470.1371 (2)0.9001 (4)0.4006 (3)0.0637 (12)
H470.1930.90720.42970.076*
C480.1156 (5)1.0160 (7)0.3609 (5)0.134 (3)
H48A0.11721.0790.40010.201*
H48B0.06171.01090.33010.201*
H48C0.15361.03450.32640.201*
C490.0835 (4)0.8758 (7)0.4601 (4)0.117 (2)
H49A0.09820.79950.4860.176*
H49B0.02780.87260.43350.176*
H49C0.08980.93970.4990.176*
C500.1397 (3)0.5776 (5)0.3403 (3)0.0758 (14)
H50A0.17910.56320.30570.091*
H50B0.08730.59060.30660.091*
C510.1346 (3)0.4674 (5)0.3887 (3)0.0726 (14)
C52A0.2148 (10)0.4158 (14)0.4062 (10)0.099 (5)0.5
H52A0.21360.34370.43760.148*0.5
H52B0.25150.47380.43520.148*0.5
H52C0.23280.39560.35730.148*0.5
C53A0.0741 (8)0.3832 (14)0.3425 (10)0.099 (5)0.5
H53A0.07010.31090.37310.149*0.5
H53B0.09140.3620.29340.149*0.5
H53C0.0220.42240.33120.149*0.5
C54A0.1074 (11)0.5004 (16)0.4667 (10)0.116 (6)0.5
H54A0.10440.42810.49750.175*0.5
H54B0.05470.53820.45560.175*0.5
H54C0.14580.55580.49610.175*0.5
C52B0.2081 (13)0.4386 (14)0.4517 (9)0.110 (6)0.5
H52D0.25490.4270.42680.164*0.5
H52E0.1980.36570.47940.164*0.5
H52F0.2180.50480.48890.164*0.5
C53B0.1269 (12)0.3535 (13)0.3335 (9)0.110 (5)0.5
H53D0.17540.3450.3110.164*0.5
H53E0.08080.36310.29140.164*0.5
H53F0.11950.28230.3640.164*0.5
C54B0.0622 (11)0.4802 (16)0.4233 (13)0.130 (7)0.5
H54D0.05630.41030.45560.196*0.5
H54E0.01550.48680.38170.196*0.5
H54F0.06650.5520.45580.196*0.5
O550.36702 (14)0.7706 (3)0.40520 (15)0.0533 (7)
H430.262 (2)0.673 (3)0.459 (2)0.041 (10)*
O610.06692 (15)0.3012 (3)0.09221 (17)0.0681 (9)
C620.0031 (2)0.3696 (4)0.0965 (3)0.0547 (11)
N630.0563 (2)0.3695 (3)0.03533 (19)0.0466 (8)
N640.05885 (16)0.3060 (3)0.03561 (18)0.0431 (7)
C650.0238 (2)0.2907 (4)0.0483 (3)0.0546 (11)
H650.02280.2340.09280.066*
C660.0709 (2)0.2334 (5)0.0230 (3)0.0670 (14)
H66A0.050.15220.02890.08*
H66B0.12730.22590.01650.08*
C670.0578 (2)0.4086 (4)0.0716 (3)0.0648 (13)
H670.06590.46190.02480.078*
C680.1395 (3)0.3876 (6)0.0954 (4)0.118 (3)
H68A0.17470.34670.0530.177*
H68B0.1630.46430.10570.177*
H68C0.13270.33830.14260.177*
C690.0022 (4)0.4701 (7)0.1355 (4)0.112 (2)
H69A0.02630.5450.14870.168*
H69B0.04830.48690.1180.168*
H69C0.00770.41870.18170.168*
C700.1029 (2)0.1934 (4)0.0357 (2)0.0482 (9)
H70A0.10850.17420.01860.058*
H70B0.07130.1290.05430.058*
C710.1850 (2)0.1955 (4)0.0860 (3)0.0574 (11)
C720.2217 (3)0.0725 (4)0.0846 (4)0.0850 (17)
H72A0.18690.01360.10310.128*
H72B0.2740.07170.11860.128*
H72C0.2280.05290.03110.128*
C730.2369 (3)0.2847 (6)0.0590 (6)0.135 (3)
H73A0.24330.26620.00540.203*
H73B0.28910.28380.09310.203*
H73C0.21290.36390.06040.203*
C740.1731 (5)0.2199 (8)0.1695 (4)0.151 (4)
H74A0.13810.15890.18550.227*
H74B0.14880.29850.17220.227*
H74C0.22480.21790.20450.227*
O750.00226 (17)0.4282 (4)0.15440 (18)0.0753 (10)
H630.092 (2)0.422 (4)0.030 (2)0.039 (11)*
O810.26791 (18)0.5980 (3)0.87572 (16)0.0671 (8)
C820.2004 (3)0.5404 (4)0.8848 (2)0.0540 (10)
N830.1615 (2)0.4771 (3)0.82481 (18)0.0471 (8)
N840.18487 (17)0.4653 (3)0.75098 (17)0.0410 (7)
C850.2253 (2)0.5750 (3)0.7346 (2)0.0445 (9)
H850.2480.56150.68620.053*
C860.2943 (3)0.5952 (4)0.8008 (3)0.0614 (12)
H86A0.33390.53050.8010.074*
H86B0.32070.67150.79260.074*
C870.1666 (3)0.6781 (4)0.7187 (3)0.0571 (11)
H870.1440.69270.76710.068*
C880.2050 (4)0.7922 (5)0.6981 (3)0.0865 (16)
H88A0.16460.85510.68820.13*
H88B0.22850.77980.65120.13*
H88C0.24680.81590.74150.13*
C890.0988 (3)0.6471 (5)0.6541 (4)0.111 (2)
H89A0.07410.57240.66680.167*
H89B0.11910.63760.60510.167*
H89C0.0590.7110.64840.167*
C900.2337 (2)0.3574 (4)0.7488 (3)0.0539 (10)
H90A0.26310.34150.80210.065*
H90B0.27360.37290.71490.065*
C910.1870 (3)0.2476 (4)0.7195 (3)0.0619 (12)
C920.2443 (4)0.1445 (5)0.7213 (5)0.114 (2)
H92A0.26510.12290.77570.172*
H92B0.28860.16760.69530.172*
H92C0.21640.0760.69420.172*
C930.1213 (5)0.2203 (5)0.7643 (5)0.126 (3)
H93A0.14420.20630.81920.189*
H93B0.09250.14890.74250.189*
H93C0.08430.28780.76030.189*
C940.1492 (5)0.2668 (7)0.6349 (4)0.129 (3)
H94A0.11890.19560.6150.193*
H94B0.19090.28180.60380.193*
H94C0.11310.33550.6310.193*
O950.1774 (2)0.5505 (3)0.94701 (17)0.0708 (9)
H830.111 (3)0.459 (4)0.828 (2)0.057 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.094 (2)0.066 (2)0.0474 (19)0.018 (2)0.0094 (16)0.0103 (16)
C20.062 (3)0.061 (3)0.071 (3)0.019 (3)0.016 (3)0.021 (3)
N30.0434 (19)0.051 (2)0.091 (3)0.0002 (18)0.008 (2)0.019 (2)
N40.0435 (17)0.0341 (17)0.0500 (19)0.0035 (14)0.0072 (14)0.0024 (14)
C50.046 (2)0.039 (2)0.042 (2)0.0077 (17)0.0120 (16)0.0003 (16)
C60.072 (3)0.057 (3)0.051 (3)0.009 (2)0.023 (2)0.007 (2)
C70.041 (2)0.052 (3)0.048 (2)0.0035 (18)0.0075 (17)0.0005 (18)
C80.044 (2)0.096 (4)0.065 (3)0.011 (2)0.016 (2)0.002 (3)
C90.073 (3)0.083 (3)0.056 (3)0.028 (3)0.024 (2)0.024 (2)
C100.061 (2)0.043 (2)0.045 (2)0.0172 (19)0.0050 (19)0.0033 (17)
C110.055 (2)0.035 (2)0.045 (2)0.0106 (18)0.0135 (17)0.0044 (17)
C120.085 (3)0.047 (2)0.063 (3)0.024 (2)0.025 (2)0.005 (2)
C130.085 (3)0.051 (3)0.115 (4)0.007 (3)0.054 (3)0.008 (3)
C140.090 (3)0.073 (3)0.047 (3)0.021 (3)0.004 (2)0.013 (2)
O150.095 (3)0.083 (3)0.121 (3)0.017 (2)0.034 (2)0.060 (2)
O210.0514 (16)0.087 (2)0.0508 (18)0.0006 (16)0.0119 (13)0.0258 (16)
C220.045 (2)0.077 (3)0.037 (2)0.001 (2)0.0083 (17)0.013 (2)
N230.0409 (18)0.066 (2)0.037 (2)0.0028 (17)0.0055 (15)0.0118 (17)
N240.0366 (16)0.054 (2)0.0412 (18)0.0047 (14)0.0076 (13)0.0021 (15)
C250.039 (2)0.056 (3)0.046 (2)0.0114 (18)0.0031 (16)0.0085 (18)
C260.057 (2)0.067 (3)0.057 (3)0.011 (2)0.011 (2)0.018 (2)
C270.050 (2)0.074 (3)0.040 (2)0.004 (2)0.0008 (17)0.000 (2)
C280.094 (4)0.119 (5)0.048 (3)0.002 (4)0.007 (3)0.007 (3)
C290.081 (3)0.081 (4)0.072 (3)0.015 (3)0.012 (3)0.017 (3)
C300.060 (2)0.057 (3)0.065 (3)0.006 (2)0.020 (2)0.011 (2)
C310.060 (3)0.054 (3)0.052 (2)0.013 (2)0.021 (2)0.0082 (19)
C320.108 (4)0.097 (4)0.075 (4)0.007 (4)0.049 (3)0.012 (3)
C330.141 (5)0.138 (6)0.080 (4)0.077 (5)0.061 (4)0.058 (4)
C340.056 (3)0.086 (4)0.115 (4)0.002 (3)0.036 (3)0.010 (3)
O350.0401 (16)0.135 (3)0.0543 (19)0.0083 (18)0.0124 (13)0.0325 (19)
O410.0426 (14)0.078 (2)0.0464 (16)0.0020 (14)0.0070 (12)0.0207 (14)
C420.038 (2)0.053 (2)0.042 (2)0.0055 (19)0.0077 (17)0.0018 (18)
N430.0388 (17)0.061 (2)0.041 (2)0.0029 (16)0.0049 (14)0.0135 (17)
N440.0369 (16)0.057 (2)0.047 (2)0.0061 (16)0.0007 (14)0.0031 (16)
C450.035 (2)0.064 (3)0.056 (3)0.0010 (19)0.0001 (17)0.008 (2)
C460.049 (2)0.075 (3)0.050 (3)0.004 (2)0.0031 (19)0.018 (2)
C470.043 (2)0.062 (3)0.086 (4)0.009 (2)0.009 (2)0.009 (3)
C480.167 (7)0.094 (5)0.138 (7)0.065 (5)0.018 (5)0.020 (5)
C490.125 (5)0.121 (6)0.124 (6)0.006 (4)0.071 (5)0.018 (4)
C500.088 (4)0.079 (4)0.055 (3)0.029 (3)0.003 (2)0.001 (3)
C510.089 (4)0.065 (3)0.059 (3)0.018 (3)0.003 (3)0.002 (3)
C52A0.108 (10)0.055 (7)0.118 (14)0.012 (7)0.021 (11)0.014 (9)
C53A0.088 (9)0.077 (11)0.121 (12)0.021 (8)0.014 (9)0.000 (8)
C54A0.135 (15)0.111 (12)0.113 (13)0.048 (11)0.048 (10)0.036 (10)
C52B0.179 (16)0.056 (9)0.082 (11)0.013 (9)0.010 (12)0.012 (7)
C53B0.176 (17)0.058 (8)0.084 (9)0.016 (11)0.005 (12)0.015 (6)
C54B0.124 (14)0.102 (11)0.18 (2)0.054 (11)0.081 (13)0.015 (13)
O550.0359 (14)0.0705 (19)0.0539 (17)0.0041 (13)0.0090 (12)0.0103 (14)
O610.0407 (15)0.103 (3)0.0592 (19)0.0076 (16)0.0054 (13)0.0175 (18)
C620.035 (2)0.079 (3)0.052 (3)0.012 (2)0.0137 (19)0.015 (2)
N630.0367 (17)0.058 (2)0.047 (2)0.0010 (18)0.0126 (15)0.0105 (16)
N640.0358 (16)0.0461 (19)0.0489 (19)0.0097 (14)0.0116 (13)0.0123 (14)
C650.040 (2)0.067 (3)0.060 (3)0.012 (2)0.0177 (19)0.029 (2)
C660.037 (2)0.083 (4)0.081 (3)0.004 (2)0.012 (2)0.022 (3)
C670.056 (2)0.083 (3)0.063 (3)0.034 (2)0.031 (2)0.032 (3)
C680.088 (4)0.130 (6)0.159 (6)0.046 (4)0.083 (4)0.063 (5)
C690.128 (5)0.125 (5)0.082 (4)0.071 (5)0.016 (4)0.016 (4)
C700.0370 (19)0.040 (2)0.067 (3)0.0046 (18)0.0091 (18)0.0033 (19)
C710.043 (2)0.047 (2)0.076 (3)0.014 (2)0.0071 (19)0.004 (2)
C720.052 (3)0.056 (3)0.138 (5)0.021 (2)0.011 (3)0.008 (3)
C730.045 (3)0.078 (4)0.267 (10)0.013 (3)0.019 (4)0.047 (5)
C740.173 (7)0.174 (8)0.083 (5)0.106 (7)0.041 (5)0.021 (5)
O750.0564 (17)0.121 (3)0.0505 (19)0.0068 (18)0.0150 (14)0.0320 (19)
O810.081 (2)0.073 (2)0.0465 (17)0.0336 (17)0.0100 (15)0.0064 (15)
C820.075 (3)0.046 (2)0.041 (2)0.014 (2)0.013 (2)0.0003 (19)
N830.053 (2)0.050 (2)0.0419 (19)0.0141 (17)0.0191 (15)0.0075 (15)
N840.0451 (16)0.0406 (17)0.0418 (18)0.0061 (15)0.0201 (13)0.0026 (14)
C850.050 (2)0.044 (2)0.044 (2)0.0114 (18)0.0204 (18)0.0033 (17)
C860.059 (3)0.067 (3)0.060 (3)0.026 (2)0.015 (2)0.001 (2)
C870.081 (3)0.043 (2)0.054 (3)0.001 (2)0.030 (2)0.0006 (19)
C880.118 (4)0.050 (3)0.086 (4)0.022 (3)0.004 (3)0.008 (3)
C890.077 (4)0.062 (4)0.177 (7)0.008 (3)0.027 (4)0.022 (4)
C900.050 (2)0.056 (3)0.058 (3)0.003 (2)0.0167 (19)0.004 (2)
C910.080 (3)0.048 (3)0.064 (3)0.001 (2)0.029 (2)0.001 (2)
C920.151 (6)0.057 (4)0.150 (6)0.030 (4)0.067 (5)0.006 (4)
C930.162 (6)0.064 (4)0.178 (7)0.050 (4)0.102 (6)0.033 (4)
C940.201 (8)0.088 (5)0.082 (5)0.001 (5)0.017 (5)0.028 (4)
O950.107 (2)0.068 (2)0.0438 (18)0.0209 (19)0.0316 (16)0.0081 (15)
Geometric parameters (Å, º) top
O1—C21.342 (6)C51—C52A1.465 (16)
O1—C61.453 (6)C51—C54B1.472 (17)
C2—O151.205 (5)C51—C53A1.521 (15)
C2—N31.342 (6)C51—C52B1.548 (18)
N3—N41.415 (5)C51—C54A1.554 (18)
N3—H30.85 (5)C51—C53B1.591 (15)
N4—C51.466 (4)C52A—H52A0.98
N4—C101.489 (5)C52A—H52B0.98
C5—C61.502 (5)C52A—H52C0.98
C5—C71.525 (5)C53A—H53A0.98
C5—H51C53A—H53B0.98
C6—H6A0.99C53A—H53C0.98
C6—H6B0.99C54A—H54A0.98
C7—C91.522 (6)C54A—H54B0.98
C7—C81.530 (5)C54A—H54C0.98
C7—H71C52B—H52D0.98
C8—H8A0.98C52B—H52E0.98
C8—H8B0.98C52B—H52F0.98
C8—H8C0.98C53B—H53D0.98
C9—H9A0.98C53B—H53E0.98
C9—H9B0.98C53B—H53F0.98
C9—H9C0.98C54B—H54D0.98
C10—C111.529 (5)C54B—H54E0.98
C10—H10A0.99C54B—H54F0.98
C10—H10B0.99O61—C621.343 (5)
C11—C141.511 (6)O61—C661.436 (5)
C11—C131.513 (6)C62—O751.206 (5)
C11—C121.526 (5)C62—N631.335 (5)
C12—H12A0.98N63—N641.420 (4)
C12—H12B0.98N63—H630.84 (4)
C12—H12C0.98N64—C701.470 (5)
C13—H13A0.98N64—C651.473 (4)
C13—H13B0.98C65—C661.501 (7)
C13—H13C0.98C65—C671.527 (6)
C14—H14A0.98C65—H651
C14—H14B0.98C66—H66A0.99
C14—H14C0.98C66—H66B0.99
O21—C221.345 (5)C67—C691.498 (8)
O21—C261.444 (5)C67—C681.538 (6)
C22—O351.219 (5)C67—H671
C22—N231.331 (5)C68—H68A0.98
N23—N241.423 (4)C68—H68B0.98
N23—H230.78 (4)C68—H68C0.98
N24—C251.469 (5)C69—H69A0.98
N24—C301.487 (5)C69—H69B0.98
C25—C261.511 (6)C69—H69C0.98
C25—C271.537 (6)C70—C711.514 (5)
C25—H251C70—H70A0.99
C26—H26A0.99C70—H70B0.99
C26—H26B0.99C71—C731.467 (8)
C27—C291.512 (7)C71—C721.518 (6)
C27—C281.521 (6)C71—C741.527 (8)
C27—H271C72—H72A0.98
C28—H28A0.98C72—H72B0.98
C28—H28B0.98C72—H72C0.98
C28—H28C0.98C73—H73A0.98
C29—H29A0.98C73—H73B0.98
C29—H29B0.98C73—H73C0.98
C29—H29C0.98C74—H74A0.98
C30—C311.517 (5)C74—H74B0.98
C30—H30A0.99C74—H74C0.98
C30—H30B0.99O81—C821.352 (5)
C31—C341.502 (7)O81—C861.452 (5)
C31—C321.513 (7)C82—O951.220 (5)
C31—C331.521 (7)C82—N831.339 (5)
C32—H32A0.98N83—N841.417 (4)
C32—H32B0.98N83—H830.89 (4)
C32—H32C0.98N84—C851.463 (5)
C33—H33A0.98N84—C901.473 (5)
C33—H33B0.98C85—C861.513 (6)
C33—H33C0.98C85—C871.522 (6)
C34—H34A0.98C85—H851
C34—H34B0.98C86—H86A0.99
C34—H34C0.98C86—H86B0.99
O41—C421.339 (4)C87—C891.504 (7)
O41—C461.459 (5)C87—C881.510 (7)
C42—O551.229 (4)C87—H871
C42—N431.332 (5)C88—H88A0.98
N43—N441.417 (4)C88—H88B0.98
N43—H430.88 (4)C88—H88C0.98
N44—C451.473 (5)C89—H89A0.98
N44—C501.473 (6)C89—H89B0.98
C45—C461.512 (6)C89—H89C0.98
C45—C471.513 (7)C90—C911.507 (6)
C45—H451C90—H90A0.99
C46—H46A0.99C90—H90B0.99
C46—H46B0.99C91—C931.503 (7)
C47—C481.489 (8)C91—C921.511 (7)
C47—C491.520 (8)C91—C941.516 (8)
C47—H471C92—H92A0.98
C48—H48A0.98C92—H92B0.98
C48—H48B0.98C92—H92C0.98
C48—H48C0.98C93—H93A0.98
C49—H49A0.98C93—H93B0.98
C49—H49B0.98C93—H93C0.98
C49—H49C0.98C94—H94A0.98
C50—C511.507 (7)C94—H94B0.98
C50—H50A0.99C94—H94C0.98
C50—H50B0.99
C2—O1—C6119.0 (3)C54B—C51—C53A74.9 (10)
O15—C2—N3123.8 (6)C50—C51—C53A108.4 (7)
O15—C2—O1119.1 (5)C54B—C51—C52B111.2 (12)
N3—C2—O1117.1 (4)C50—C51—C52B116.6 (7)
C2—N3—N4128.2 (4)C53A—C51—C52B129.3 (9)
C2—N3—H3117 (3)C52A—C51—C54A108.8 (10)
N4—N3—H3113 (4)C50—C51—C54A110.3 (7)
N3—N4—C5107.6 (3)C53A—C51—C54A109.4 (10)
N3—N4—C10111.4 (3)C52B—C51—C54A76.0 (10)
C5—N4—C10114.8 (3)C52A—C51—C53B77.5 (10)
N4—C5—C6108.3 (3)C54B—C51—C53B109.8 (11)
N4—C5—C7110.9 (3)C50—C51—C53B109.2 (7)
C6—C5—C7115.2 (3)C52B—C51—C53B103.4 (10)
N4—C5—H5107.4C54A—C51—C53B135.5 (9)
C6—C5—H5107.4C51—C52A—H52A109.5
C7—C5—H5107.4C51—C52A—H52B109.5
O1—C6—C5110.1 (3)H52A—C52A—H52B109.5
O1—C6—H6A109.6C51—C52A—H52C109.5
C5—C6—H6A109.6H52A—C52A—H52C109.5
O1—C6—H6B109.6H52B—C52A—H52C109.5
C5—C6—H6B109.6C51—C53A—H53A109.5
H6A—C6—H6B108.2C51—C53A—H53B109.5
C9—C7—C5110.8 (3)H53A—C53A—H53B109.5
C9—C7—C8109.7 (3)C51—C53A—H53C109.5
C5—C7—C8112.8 (3)H53A—C53A—H53C109.5
C9—C7—H7107.8H53B—C53A—H53C109.5
C5—C7—H7107.8C51—C54A—H54A109.5
C8—C7—H7107.8C51—C54A—H54B109.5
C7—C8—H8A109.5H54A—C54A—H54B109.5
C7—C8—H8B109.5C51—C54A—H54C109.5
H8A—C8—H8B109.5H54A—C54A—H54C109.5
C7—C8—H8C109.5H54B—C54A—H54C109.5
H8A—C8—H8C109.5C51—C52B—H52D109.5
H8B—C8—H8C109.5C51—C52B—H52E109.5
C7—C9—H9A109.5H52D—C52B—H52E109.5
C7—C9—H9B109.5C51—C52B—H52F109.5
H9A—C9—H9B109.5H52D—C52B—H52F109.5
C7—C9—H9C109.5H52E—C52B—H52F109.5
H9A—C9—H9C109.5C51—C53B—H53D109.5
H9B—C9—H9C109.5C51—C53B—H53E109.5
N4—C10—C11112.3 (3)H53D—C53B—H53E109.5
N4—C10—H10A109.1C51—C53B—H53F109.5
C11—C10—H10A109.1H53D—C53B—H53F109.5
N4—C10—H10B109.1H53E—C53B—H53F109.5
C11—C10—H10B109.1C51—C54B—H54D109.5
H10A—C10—H10B107.9C51—C54B—H54E109.5
C14—C11—C13110.9 (4)H54D—C54B—H54E109.5
C14—C11—C12108.8 (4)C51—C54B—H54F109.5
C13—C11—C12109.8 (3)H54D—C54B—H54F109.5
C14—C11—C10110.1 (3)H54E—C54B—H54F109.5
C13—C11—C10109.9 (4)C62—O61—C66120.5 (3)
C12—C11—C10107.2 (3)O75—C62—N63123.2 (4)
C11—C12—H12A109.5O75—C62—O61119.1 (4)
C11—C12—H12B109.5N63—C62—O61117.7 (4)
H12A—C12—H12B109.5C62—N63—N64126.6 (3)
C11—C12—H12C109.5C62—N63—H63122 (3)
H12A—C12—H12C109.5N64—N63—H63110 (3)
H12B—C12—H12C109.5N63—N64—C70111.7 (3)
C11—C13—H13A109.5N63—N64—C65107.8 (3)
C11—C13—H13B109.5C70—N64—C65113.6 (3)
H13A—C13—H13B109.5N64—C65—C66108.2 (3)
C11—C13—H13C109.5N64—C65—C67110.8 (4)
H13A—C13—H13C109.5C66—C65—C67114.8 (4)
H13B—C13—H13C109.5N64—C65—H65107.6
C11—C14—H14A109.5C66—C65—H65107.6
C11—C14—H14B109.5C67—C65—H65107.6
H14A—C14—H14B109.5O61—C66—C65111.7 (4)
C11—C14—H14C109.5O61—C66—H66A109.3
H14A—C14—H14C109.5C65—C66—H66A109.3
H14B—C14—H14C109.5O61—C66—H66B109.3
C22—O21—C26118.6 (3)C65—C66—H66B109.3
O35—C22—N23123.0 (4)H66A—C66—H66B107.9
O35—C22—O21118.3 (3)C69—C67—C65112.2 (4)
N23—C22—O21118.6 (4)C69—C67—C68110.8 (5)
C22—N23—N24127.2 (4)C65—C67—C68109.9 (5)
C22—N23—H23114 (3)C69—C67—H67107.9
N24—N23—H23118 (3)C65—C67—H67107.9
N23—N24—C25108.1 (3)C68—C67—H67107.9
N23—N24—C30110.9 (3)C67—C68—H68A109.5
C25—N24—C30114.3 (3)C67—C68—H68B109.5
N24—C25—C26108.7 (3)H68A—C68—H68B109.5
N24—C25—C27111.3 (3)C67—C68—H68C109.5
C26—C25—C27114.0 (3)H68A—C68—H68C109.5
N24—C25—H25107.5H68B—C68—H68C109.5
C26—C25—H25107.5C67—C69—H69A109.5
C27—C25—H25107.5C67—C69—H69B109.5
O21—C26—C25109.8 (3)H69A—C69—H69B109.5
O21—C26—H26A109.7C67—C69—H69C109.5
C25—C26—H26A109.7H69A—C69—H69C109.5
O21—C26—H26B109.7H69B—C69—H69C109.5
C25—C26—H26B109.7N64—C70—C71114.0 (3)
H26A—C26—H26B108.2N64—C70—H70A108.8
C29—C27—C28110.4 (4)C71—C70—H70A108.8
C29—C27—C25110.7 (3)N64—C70—H70B108.8
C28—C27—C25110.4 (4)C71—C70—H70B108.8
C29—C27—H27108.4H70A—C70—H70B107.7
C28—C27—H27108.4C73—C71—C70111.9 (4)
C25—C27—H27108.4C73—C71—C72110.0 (4)
C27—C28—H28A109.5C70—C71—C72108.5 (4)
C27—C28—H28B109.5C73—C71—C74111.7 (6)
H28A—C28—H28B109.5C70—C71—C74106.9 (4)
C27—C28—H28C109.5C72—C71—C74107.5 (5)
H28A—C28—H28C109.5C71—C72—H72A109.5
H28B—C28—H28C109.5C71—C72—H72B109.5
C27—C29—H29A109.5H72A—C72—H72B109.5
C27—C29—H29B109.5C71—C72—H72C109.5
H29A—C29—H29B109.5H72A—C72—H72C109.5
C27—C29—H29C109.5H72B—C72—H72C109.5
H29A—C29—H29C109.5C71—C73—H73A109.5
H29B—C29—H29C109.5C71—C73—H73B109.5
N24—C30—C31113.1 (3)H73A—C73—H73B109.5
N24—C30—H30A109C71—C73—H73C109.5
C31—C30—H30A109H73A—C73—H73C109.5
N24—C30—H30B109H73B—C73—H73C109.5
C31—C30—H30B109C71—C74—H74A109.5
H30A—C30—H30B107.8C71—C74—H74B109.5
C34—C31—C32108.5 (4)H74A—C74—H74B109.5
C34—C31—C30109.5 (4)C71—C74—H74C109.5
C32—C31—C30108.4 (4)H74A—C74—H74C109.5
C34—C31—C33110.1 (5)H74B—C74—H74C109.5
C32—C31—C33110.9 (4)C82—O81—C86119.8 (3)
C30—C31—C33109.5 (4)O95—C82—N83123.3 (4)
C31—C32—H32A109.5O95—C82—O81118.1 (4)
C31—C32—H32B109.5N83—C82—O81118.6 (4)
H32A—C32—H32B109.5C82—N83—N84125.2 (3)
C31—C32—H32C109.5C82—N83—H83115 (3)
H32A—C32—H32C109.5N84—N83—H83118 (3)
H32B—C32—H32C109.5N83—N84—C85108.3 (3)
C31—C33—H33A109.5N83—N84—C90110.5 (3)
C31—C33—H33B109.5C85—N84—C90113.6 (3)
H33A—C33—H33B109.5N84—C85—C86107.9 (3)
C31—C33—H33C109.5N84—C85—C87111.1 (3)
H33A—C33—H33C109.5C86—C85—C87115.0 (4)
H33B—C33—H33C109.5N84—C85—H85107.5
C31—C34—H34A109.5C86—C85—H85107.5
C31—C34—H34B109.5C87—C85—H85107.5
H34A—C34—H34B109.5O81—C86—C85111.4 (3)
C31—C34—H34C109.5O81—C86—H86A109.3
H34A—C34—H34C109.5C85—C86—H86A109.3
H34B—C34—H34C109.5O81—C86—H86B109.3
C42—O41—C46119.1 (3)C85—C86—H86B109.3
O55—C42—N43122.5 (4)H86A—C86—H86B108
O55—C42—O41118.0 (3)C89—C87—C88109.1 (4)
N43—C42—O41119.6 (3)C89—C87—C85110.7 (4)
C42—N43—N44125.8 (3)C88—C87—C85113.0 (4)
C42—N43—H43117 (2)C89—C87—H87108
N44—N43—H43113 (2)C88—C87—H87108
N43—N44—C45108.2 (3)C85—C87—H87108
N43—N44—C50111.2 (4)C87—C88—H88A109.5
C45—N44—C50114.5 (3)C87—C88—H88B109.5
N44—C45—C46108.4 (3)H88A—C88—H88B109.5
N44—C45—C47110.2 (3)C87—C88—H88C109.5
C46—C45—C47116.0 (4)H88A—C88—H88C109.5
N44—C45—H45107.3H88B—C88—H88C109.5
C46—C45—H45107.3C87—C89—H89A109.5
C47—C45—H45107.3C87—C89—H89B109.5
O41—C46—C45109.6 (3)H89A—C89—H89B109.5
O41—C46—H46A109.7C87—C89—H89C109.5
C45—C46—H46A109.7H89A—C89—H89C109.5
O41—C46—H46B109.7H89B—C89—H89C109.5
C45—C46—H46B109.7N84—C90—C91114.5 (3)
H46A—C46—H46B108.2N84—C90—H90A108.6
C48—C47—C45112.4 (5)C91—C90—H90A108.6
C48—C47—C49110.1 (5)N84—C90—H90B108.6
C45—C47—C49111.6 (4)C91—C90—H90B108.6
C48—C47—H47107.5H90A—C90—H90B107.6
C45—C47—H47107.5C93—C91—C90112.8 (4)
C49—C47—H47107.5C93—C91—C92111.7 (5)
C47—C48—H48A109.5C90—C91—C92108.6 (4)
C47—C48—H48B109.5C93—C91—C94107.7 (6)
H48A—C48—H48B109.5C90—C91—C94108.8 (4)
C47—C48—H48C109.5C92—C91—C94107.0 (5)
H48A—C48—H48C109.5C91—C92—H92A109.5
H48B—C48—H48C109.5C91—C92—H92B109.5
C47—C49—H49A109.5H92A—C92—H92B109.5
C47—C49—H49B109.5C91—C92—H92C109.5
H49A—C49—H49B109.5H92A—C92—H92C109.5
C47—C49—H49C109.5H92B—C92—H92C109.5
H49A—C49—H49C109.5C91—C93—H93A109.5
H49B—C49—H49C109.5C91—C93—H93B109.5
N44—C50—C51115.2 (4)H93A—C93—H93B109.5
N44—C50—H50A108.5C91—C93—H93C109.5
C51—C50—H50A108.5H93A—C93—H93C109.5
N44—C50—H50B108.5H93B—C93—H93C109.5
C51—C50—H50B108.5C91—C94—H94A109.5
H50A—C50—H50B107.5C91—C94—H94B109.5
C52A—C51—C54B140.4 (13)H94A—C94—H94B109.5
C52A—C51—C50107.3 (8)C91—C94—H94C109.5
C54B—C51—C50106.5 (9)H94A—C94—H94C109.5
C52A—C51—C53A112.6 (9)H94B—C94—H94C109.5
C6—O1—C2—O15179.7 (4)N44—C45—C47—C48176.2 (5)
C6—O1—C2—N31.4 (6)C46—C45—C47—C4852.6 (6)
O15—C2—N3—N4171.3 (4)N44—C45—C47—C4959.5 (5)
O1—C2—N3—N46.9 (7)C46—C45—C47—C49176.8 (4)
C2—N3—N4—C520.3 (6)N43—N44—C50—C5181.6 (5)
C2—N3—N4—C10106.3 (5)C45—N44—C50—C51155.4 (4)
N3—N4—C5—C652.0 (4)N44—C50—C51—C52A86.4 (8)
C10—N4—C5—C672.6 (4)N44—C50—C51—C54B72.6 (10)
N3—N4—C5—C775.3 (4)N44—C50—C51—C53A151.8 (8)
C10—N4—C5—C7160.1 (3)N44—C50—C51—C52B52.1 (10)
C2—O1—C6—C535.1 (5)N44—C50—C51—C54A32.0 (9)
N4—C5—C6—O161.2 (4)N44—C50—C51—C53B168.8 (9)
C7—C5—C6—O163.5 (4)C66—O61—C62—O75178.0 (4)
N4—C5—C7—C960.6 (4)C66—O61—C62—N631.6 (6)
C6—C5—C7—C9176.0 (4)O75—C62—N63—N64178.0 (4)
N4—C5—C7—C8175.9 (3)O61—C62—N63—N641.5 (6)
C6—C5—C7—C852.6 (5)C62—N63—N64—C7097.4 (4)
N3—N4—C10—C11118.9 (4)C62—N63—N64—C6528.1 (5)
C5—N4—C10—C11118.5 (4)N63—N64—C65—C6654.1 (4)
N4—C10—C11—C1462.7 (4)C70—N64—C65—C6670.2 (4)
N4—C10—C11—C1359.7 (4)N63—N64—C65—C6772.5 (4)
N4—C10—C11—C12179.0 (3)C70—N64—C65—C67163.2 (3)
C26—O21—C22—O35177.6 (4)C62—O61—C66—C6528.0 (6)
C26—O21—C22—N236.0 (6)N64—C65—C66—O6156.3 (4)
O35—C22—N23—N24173.1 (4)C67—C65—C66—O6168.0 (4)
O21—C22—N23—N243.2 (6)N64—C65—C67—C6948.6 (5)
C22—N23—N24—C2521.1 (5)C66—C65—C67—C69171.5 (4)
C22—N23—N24—C30104.9 (5)N64—C65—C67—C68172.3 (4)
N23—N24—C25—C2650.9 (4)C66—C65—C67—C6864.8 (5)
C30—N24—C25—C2673.1 (4)N63—N64—C70—C71105.7 (4)
N23—N24—C25—C2775.6 (4)C65—N64—C70—C71132.2 (4)
C30—N24—C25—C27160.5 (3)N64—C70—C71—C7361.7 (6)
C22—O21—C26—C2537.7 (5)N64—C70—C71—C72176.7 (4)
N24—C25—C26—O2160.8 (4)N64—C70—C71—C7461.0 (6)
C27—C25—C26—O2164.0 (4)C86—O81—C82—O95175.7 (4)
N24—C25—C27—C2957.2 (4)C86—O81—C82—N833.1 (6)
C26—C25—C27—C29179.3 (4)O95—C82—N83—N84178.4 (4)
N24—C25—C27—C28179.8 (3)O81—C82—N83—N840.4 (6)
C26—C25—C27—C2856.8 (5)C82—N83—N84—C8531.3 (5)
N23—N24—C30—C31120.1 (4)C82—N83—N84—C9093.7 (4)
C25—N24—C30—C31117.4 (4)N83—N84—C85—C8656.7 (4)
N24—C30—C31—C3461.6 (5)C90—N84—C85—C8666.5 (4)
N24—C30—C31—C32179.8 (4)N83—N84—C85—C8770.3 (4)
N24—C30—C31—C3359.2 (5)C90—N84—C85—C87166.5 (3)
C46—O41—C42—O55178.8 (4)C82—O81—C86—C8525.6 (6)
C46—O41—C42—N431.0 (6)N84—C85—C86—O8155.8 (4)
O55—C42—N43—N44174.1 (4)C87—C85—C86—O8168.9 (4)
O41—C42—N43—N445.7 (6)N84—C85—C87—C8954.8 (5)
C42—N43—N44—C4523.6 (5)C86—C85—C87—C89177.8 (4)
C42—N43—N44—C50102.9 (5)N84—C85—C87—C88177.5 (4)
N43—N44—C45—C4654.1 (4)C86—C85—C87—C8859.5 (5)
C50—N44—C45—C4670.5 (4)N83—N84—C90—C9191.5 (4)
N43—N44—C45—C4773.9 (4)C85—N84—C90—C91146.5 (4)
C50—N44—C45—C47161.6 (4)N84—C90—C91—C9355.0 (6)
C42—O41—C46—C4531.4 (5)N84—C90—C91—C92179.4 (4)
N44—C45—C46—O4159.2 (5)N84—C90—C91—C9464.5 (5)
C47—C45—C46—O4165.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O55i0.78 (4)2.16 (4)2.937 (5)177 (5)
N43—H43···O35ii0.88 (4)1.99 (4)2.868 (5)175 (3)
N63—H63···O95iii0.84 (4)2.13 (4)2.949 (5)163 (3)
N83—H83···O75iv0.89 (4)2.04 (4)2.926 (4)175 (4)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x, y, z1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H22N2O2
Mr214.3
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)17.0330 (18), 11.2270 (12), 17.404 (2)
β (°) 100.073 (2)
V3)3276.9 (6)
Z10
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.6 × 0.32 × 0.27
Data collection
DiffractometerBruker P4/R4/SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS in SAINT-Plus; Bruker, 1999)
Tmin, Tmax0.812, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
16431, 7042, 4526
Rint0.044
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.144, 1.03
No. of reflections7042
No. of parameters723
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O55i0.78 (4)2.16 (4)2.937 (5)177 (5)
N43—H43···O35ii0.88 (4)1.99 (4)2.868 (5)175 (3)
N63—H63···O95iii0.84 (4)2.13 (4)2.949 (5)163 (3)
N83—H83···O75iv0.89 (4)2.04 (4)2.926 (4)175 (4)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x, y, z1; (iv) x, y, z+1.
 

Acknowledgements

This material is based upon work supported by the US National Science Foundation (CHE-0348158) (to GMF) and the American Chemical Society Petroleum Research Fund (#407771B) (to SRH). GMF thanks Dr Robert McDonald, Dr Michael Ferguson, and the University of Alberta X-ray Crystallography Laboratory for the data collection.

References

First citationAddison, L. D., Dore, D. D., Hitchcock, S. R. & Ferrence, G. M. (2008). Acta Cryst. E64, o1040–o1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAnderson, K. M., Afarinkia, K., Yu, H., Goeta, A. E. & Steed, J. W. (2006). Cryst. Growth Des. 6, 2109–2113.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem., Int. Ed. Engl. 34, 1555–1573.  Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727–734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem. 67, 8871–8876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasper, D. M., Kieser, D., Blackburn, J. R. & Hitchcock, S. R. (2004). Synth. Commun. 34, 835–843.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRodrigues, A., Olivato, P. R., Zukerman-Schpector, J. & Rittner, R. (2006). Z. Kristallogr. 221, 226–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357–361.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds