metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine)­platinum(II) chloride toluene monosolvate

aDepartment of Chemistry, Austin College, 900 North Grand, Sherman, TX 75090-4400, USA, and bDepartment of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5070, USA
*Correspondence e-mail: bsmucker@austincollege.edu

(Received 5 October 2010; accepted 22 November 2010; online 30 November 2010)

In the title compound, [PtCl(C27H35N3)]Cl·C7H8, the PtII atom is coordinated in a pseudo-square-planar fashion by the N atoms of a 4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine (tbtrpy) ligand and a Cl atom. The Pt—N distance of the N atom on the central pyridine is 1.941 (4) Å, while the peripheral N atoms have Pt—N distances of 2.015 (4) and 2.013 (4) Å. The Pt—Cl bond distance is 2.3070 (10) Å. The cations pack as dimers in a head-to-tail orientation with an inter­molecular Pt⋯Pt distance of 3.2774 (3) Å and Pt⋯N distances of 3.599 (4), 3.791 (4) and 4.115 (4) Å. The solvent mol­ecule is disordered and occupies two positions with a ratio of 0.553 (6):0.447 (6).

Related literature

For crystal structures of the title cation, [(tbtrpy)PtCl]+, see: Batrice et al. (2010)[Batrice, R. J., Smucker, B. W. & Nesterov, V. N. (2010). Acta Cryst. E66, m1702-m1703.]; Lai et al. (1999[Lai, S.-W., Chan, M. C. W., Cheung, K.-K. & Che, C.-M. (1999). Inorg. Chem. 38, 4262-4267.]). For head-to-tail packing of related terpyridine complexes with close Pt⋯Pt distances, see: Bailey et al. (1995[Bailey, J. A., Hill, M. G., Marsh, R. E., Miskowski, V. M., Schaefer, W. P. & Gray, H. B. (1995). Inorg. Chem. 34, 4591-4599.]); Sengul (2004[Sengul, A. (2004). Turk. J. Chem. 28, 667-672.]). For the synthesis of [(tbtrpy)PtCl]Cl, see: Howe-Grant & Lippard (1980[Howe-Grant, M. & Lippard, S. J. (1980). Inorg. Synth. 20, 101-105.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl(C27H35N3)]Cl·C7H8

  • Mr = 759.70

  • Monoclinic, P 21 /c

  • a = 9.4418 (3) Å

  • b = 20.0002 (7) Å

  • c = 17.2321 (6) Å

  • β = 91.948 (1)°

  • V = 3252.19 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.51 mm−1

  • T = 100 K

  • 0.26 × 0.21 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.387, Tmax = 0.677

  • 37919 measured reflections

  • 6647 independent reflections

  • 6232 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.108

  • S = 1.05

  • 6647 reflections

  • 358 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −2.78 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bond distances and angles around the platinum atom in the title structure are all similar to the structures of the perchlorate (Lai, et al., 1999) and tetrafluoroborate salts (Batrice et al. 2010) of the [(tbtrpy)PtCl]+ complex. The cations in these structures all pack in head-to-tail dimers. Interestingly, the interplanar (Pt, Cl and N atoms) distance between the two cations seems to be related to the size of the anion with the Cl-, BF4-, and ClO4- being 3.283, 3.390, and 3.536 Å, respectively. In addition to a smaller counterion, the structure of the title complex contains a toluene molecule. This suggests that the solvent molecule may also influence the ability of these types of complexes to interact significantly with each other (Bailey, et al., 1995).

The short Pt(1)—Pt(1') distance, 3.2774 (3) Å, of the title complex is similar to the intermolecular Pt—Pt distance in the structures of [(trpy)PtCl]Cl, 3.397 Å, (Sengul, 2004) and [(trpy)PtCl]ClO4, 3.269 Å, (Bailey et al., 1995). This indicates that the bulky tert-Butyl groups of the tbtrpy ligand do not appear to restrict the ability of this complex to form suitable M—M and/or π-π interactions between the two molecules of the dimer.

The solvent molecule is disordered and occupies two positions with a ratio of 0.553 (6):0.447 (6).

Related literature top

For crystal structures of the title cation, [(tbtrpy)PtCl]+, see: Batrice et al. (2010); Lai et al. (1999). For head-to-tail packing of related terpyridine complexes with close Pt···Pt distances see: Bailey et al. (1995); Sengul (2004). For the synthesis of [(tbtrpy)PtCl]Cl, see: Howe-Grant & Lippard (1980).

Experimental top

[(tbtrpy)PtCl]Cl was synthesized according to modifications on a published procedure (Howe-Grant et al., 1980). This [(tbtrpy)PtCl]+ complex was reacted with various aromatic thiol ligands (SAr). Crystals of the title compound were grown from the slow evaporation of an acetonitrile/toluene solution containing [(tbtrpy)Pt(SAr)]Cl and [(tbtrpy)PtCl]Cl.

Refinement top

H atoms attached to C atoms were placed in idealized positions (C—H = 0.95–0.98 Å) and allowed to ride on their parent atoms. All H atoms were constrained so that Uiso(H) were equal to 1.2Ueq or 1.5Ueq of their respective parent atoms. The solvent molecule is disordered and occupies two positions with a ratio of 0.553 (6): 0.447 (6). Aromatic C atoms were fitted to a regular hexagon with default distances 1.390 Å (AFIX 66) and refined anisotropically. Both CH3 groups were refined anisotropically with fixed C—C distances as 1.51 Å. The largest peak in the final Fourier difference map (1.51 e Å-3) was located 1.40 Å from the several disordered C atoms of the solvent.

Structure description top

The bond distances and angles around the platinum atom in the title structure are all similar to the structures of the perchlorate (Lai, et al., 1999) and tetrafluoroborate salts (Batrice et al. 2010) of the [(tbtrpy)PtCl]+ complex. The cations in these structures all pack in head-to-tail dimers. Interestingly, the interplanar (Pt, Cl and N atoms) distance between the two cations seems to be related to the size of the anion with the Cl-, BF4-, and ClO4- being 3.283, 3.390, and 3.536 Å, respectively. In addition to a smaller counterion, the structure of the title complex contains a toluene molecule. This suggests that the solvent molecule may also influence the ability of these types of complexes to interact significantly with each other (Bailey, et al., 1995).

The short Pt(1)—Pt(1') distance, 3.2774 (3) Å, of the title complex is similar to the intermolecular Pt—Pt distance in the structures of [(trpy)PtCl]Cl, 3.397 Å, (Sengul, 2004) and [(trpy)PtCl]ClO4, 3.269 Å, (Bailey et al., 1995). This indicates that the bulky tert-Butyl groups of the tbtrpy ligand do not appear to restrict the ability of this complex to form suitable M—M and/or π-π interactions between the two molecules of the dimer.

The solvent molecule is disordered and occupies two positions with a ratio of 0.553 (6):0.447 (6).

For crystal structures of the title cation, [(tbtrpy)PtCl]+, see: Batrice et al. (2010); Lai et al. (1999). For head-to-tail packing of related terpyridine complexes with close Pt···Pt distances see: Bailey et al. (1995); Sengul (2004). For the synthesis of [(tbtrpy)PtCl]Cl, see: Howe-Grant & Lippard (1980).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of title complex (50% probability displacement ellipsoids) without the toluene solvate.
[Figure 2] Fig. 2. Mercury (Macrae, et al., 2008) rendition of head-to-tail packing with Pt—Pt' distance in 3.2774 (3) Å
Chlorido(4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine)platinum chloride toluene monosolvate top
Crystal data top
[PtCl(C27H35N3)]Cl·C7H8F(000) = 1520
Mr = 759.70Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9878 reflections
a = 9.4418 (3) Åθ = 2.4–27.2°
b = 20.0002 (7) ŵ = 4.51 mm1
c = 17.2321 (6) ÅT = 100 K
β = 91.948 (1)°Plate, yellow
V = 3252.19 (19) Å30.26 × 0.21 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6647 independent reflections
Radiation source: fine-focus sealed tube6232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.387, Tmax = 0.677k = 2424
37919 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.080P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
6647 reflections(Δ/σ)max = 0.008
358 parametersΔρmax = 1.47 e Å3
14 restraintsΔρmin = 2.78 e Å3
Crystal data top
[PtCl(C27H35N3)]Cl·C7H8V = 3252.19 (19) Å3
Mr = 759.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4418 (3) ŵ = 4.51 mm1
b = 20.0002 (7) ÅT = 100 K
c = 17.2321 (6) Å0.26 × 0.21 × 0.09 mm
β = 91.948 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6232 reflections with I > 2σ(I)
Tmin = 0.387, Tmax = 0.677Rint = 0.030
37919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03214 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 1.47 e Å3
6647 reflectionsΔρmin = 2.78 e Å3
358 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.588936 (16)0.429628 (7)0.502253 (9)0.01709 (9)
Cl10.80289 (11)0.48538 (5)0.50311 (6)0.0234 (2)
N10.5430 (5)0.43245 (16)0.3872 (2)0.0212 (8)
N20.4112 (3)0.38083 (19)0.50120 (19)0.0192 (8)
N30.5802 (4)0.40887 (18)0.6163 (2)0.0176 (7)
C10.4201 (6)0.3997 (3)0.3663 (3)0.0343 (7)
C20.3788 (6)0.3916 (3)0.2892 (3)0.0343 (7)
H2A0.29300.36900.27590.041*
C30.4636 (7)0.4170 (2)0.2303 (3)0.0317 (11)
C40.5847 (6)0.4531 (3)0.2542 (3)0.0346 (12)
H4A0.64200.47340.21660.041*
C50.6209 (5)0.4591 (2)0.3320 (3)0.0276 (10)
H5A0.70430.48310.34680.033*
C60.3424 (5)0.3720 (2)0.4324 (2)0.0189 (8)
C70.2114 (5)0.3402 (2)0.4302 (3)0.0210 (9)
H7A0.16190.33280.38200.025*
C80.1530 (4)0.3190 (2)0.4998 (2)0.0190 (8)
C90.2314 (4)0.3270 (2)0.5698 (3)0.0197 (8)
H9A0.19570.31100.61710.024*
C100.3625 (4)0.3590 (2)0.5688 (2)0.0171 (8)
C110.4619 (4)0.3728 (2)0.6359 (2)0.0177 (8)
C120.4448 (4)0.3510 (2)0.7101 (2)0.0194 (8)
H12A0.36200.32670.72220.023*
C130.5482 (5)0.3639 (2)0.7686 (2)0.0204 (8)
C140.6643 (5)0.4025 (2)0.7476 (3)0.0232 (9)
H14A0.73480.41440.78580.028*
C150.6773 (5)0.4234 (2)0.6722 (3)0.0211 (9)
H15A0.75790.44890.65920.025*
C160.4265 (8)0.4015 (3)0.1449 (3)0.0423 (15)
C170.4511 (8)0.3261 (3)0.1326 (3)0.0464 (15)
H17A0.38920.30060.16610.070*
H17B0.55030.31530.14570.070*
H17C0.42960.31470.07820.070*
C180.2729 (9)0.4188 (3)0.1272 (4)0.058 (2)
H18A0.25540.46530.14210.087*
H18B0.21190.38910.15650.087*
H18C0.25200.41330.07150.087*
C190.5205 (11)0.4413 (4)0.0910 (3)0.072 (3)
H19A0.50570.48920.09920.109*
H19B0.49590.42990.03690.109*
H19C0.62010.43020.10240.109*
C200.0069 (5)0.2843 (2)0.4993 (3)0.0242 (9)
C210.0735 (5)0.3042 (3)0.5714 (3)0.0385 (13)
H21A0.16530.28140.57080.058*
H21B0.08850.35270.57130.058*
H21C0.01810.29140.61810.058*
C220.0365 (7)0.2091 (3)0.5021 (5)0.061 (2)
H22A0.05320.18480.50530.092*
H22B0.09720.19880.54780.092*
H22C0.08430.19560.45500.092*
C230.0820 (5)0.3035 (3)0.4267 (3)0.0364 (12)
H23A0.17830.28590.43100.055*
H23B0.03890.28460.38070.055*
H23C0.08570.35230.42220.055*
C240.5345 (5)0.3346 (2)0.8503 (3)0.0256 (9)
C250.3910 (5)0.3546 (3)0.8826 (3)0.0318 (11)
H25A0.38470.33800.93590.048*
H25B0.31430.33520.85020.048*
H25C0.38240.40350.88250.048*
C260.6550 (5)0.3573 (3)0.9056 (3)0.0318 (11)
H26A0.64200.33780.95710.048*
H26B0.65440.40610.90950.048*
H26C0.74580.34240.88580.048*
C270.5403 (6)0.2585 (3)0.8428 (3)0.0352 (12)
H27A0.53930.23820.89460.053*
H27B0.62740.24560.81730.053*
H27C0.45800.24290.81170.053*
Cl20.14340 (13)0.24444 (6)0.74948 (7)0.0315 (3)
C1A0.9381 (7)0.0032 (4)0.6429 (3)0.067 (4)0.553 (6)
C2A0.9481 (12)0.0561 (3)0.6952 (5)0.081 (5)0.553 (6)
H2AA0.94710.10080.67680.097*0.553 (6)
C3A0.9594 (12)0.0434 (4)0.7745 (4)0.068 (4)0.553 (6)
H3AA0.96620.07950.81030.081*0.553 (6)
C4A0.9608 (9)0.0221 (5)0.8015 (3)0.050 (4)0.553 (6)
H4AA0.96860.03070.85570.060*0.553 (6)
C5A0.9509 (11)0.0749 (3)0.7492 (5)0.049 (3)0.553 (6)
H5AA0.95180.11970.76760.059*0.553 (6)
C6A0.9395 (10)0.0623 (3)0.6699 (4)0.059 (3)0.553 (6)
H6AA0.93270.09840.63420.070*0.553 (6)
C7A0.9269 (10)0.0104 (4)0.5583 (4)0.0343 (7)0.553 (6)
H7AA0.84820.01700.53780.051*0.553 (6)
H7AB1.01540.00450.53570.051*0.553 (6)
H7AC0.90970.05740.54490.051*0.553 (6)
C1B0.9217 (9)0.0531 (4)0.6741 (5)0.067 (4)0.447 (6)
C2B0.9072 (14)0.0135 (5)0.6522 (5)0.081 (5)0.447 (6)
H2BA0.88060.02450.60010.097*0.447 (6)
C3B0.9319 (16)0.0640 (4)0.7064 (7)0.068 (4)0.447 (6)
H3BA0.92200.10950.69140.081*0.447 (6)
C4B0.9709 (13)0.0479 (5)0.7826 (6)0.050 (4)0.447 (6)
H4BA0.98770.08240.81970.060*0.447 (6)
C5B0.9853 (13)0.0187 (5)0.8046 (4)0.049 (3)0.447 (6)
H5BA1.01200.02970.85670.059*0.447 (6)
C6B0.9607 (12)0.0692 (4)0.7504 (5)0.059 (3)0.447 (6)
H6BA0.97060.11470.76540.070*0.447 (6)
C7B0.8956 (12)0.1064 (5)0.6175 (6)0.0343 (7)0.447 (6)
H7BA0.98560.12030.59590.051*0.447 (6)
H7BB0.85200.14460.64310.051*0.447 (6)
H7BC0.83180.09010.57570.051*0.447 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01831 (12)0.01521 (12)0.01768 (12)0.00046 (5)0.00049 (7)0.00152 (5)
Cl10.0202 (5)0.0217 (5)0.0284 (5)0.0019 (4)0.0007 (4)0.0000 (4)
N10.030 (2)0.0149 (18)0.0188 (19)0.0005 (13)0.0009 (16)0.0026 (13)
N20.023 (2)0.0140 (18)0.0207 (19)0.0014 (13)0.0033 (15)0.0005 (12)
N30.0180 (17)0.0145 (16)0.0199 (17)0.0012 (14)0.0036 (14)0.0012 (14)
C10.0421 (19)0.0285 (16)0.0320 (16)0.0018 (14)0.0020 (14)0.0033 (13)
C20.0421 (19)0.0285 (16)0.0320 (16)0.0018 (14)0.0020 (14)0.0033 (13)
C30.052 (3)0.020 (2)0.022 (2)0.005 (2)0.006 (2)0.0014 (19)
C40.058 (3)0.024 (2)0.022 (2)0.006 (2)0.006 (2)0.0009 (19)
C50.035 (3)0.023 (2)0.025 (2)0.0054 (19)0.0051 (19)0.0019 (18)
C60.022 (2)0.0164 (19)0.0178 (19)0.0026 (16)0.0045 (16)0.0031 (15)
C70.024 (2)0.0129 (19)0.026 (2)0.0012 (16)0.0086 (17)0.0027 (16)
C80.017 (2)0.0133 (19)0.026 (2)0.0001 (16)0.0061 (16)0.0029 (16)
C90.018 (2)0.016 (2)0.025 (2)0.0008 (16)0.0044 (16)0.0028 (16)
C100.018 (2)0.0146 (19)0.0185 (19)0.0003 (15)0.0031 (15)0.0009 (15)
C110.0162 (19)0.0140 (19)0.023 (2)0.0018 (15)0.0022 (16)0.0024 (15)
C120.020 (2)0.0142 (19)0.024 (2)0.0014 (16)0.0033 (16)0.0012 (16)
C130.022 (2)0.020 (2)0.019 (2)0.0005 (16)0.0052 (16)0.0010 (16)
C140.025 (2)0.021 (2)0.023 (2)0.0040 (18)0.0066 (17)0.0028 (17)
C150.021 (2)0.019 (2)0.024 (2)0.0023 (16)0.0040 (18)0.0015 (16)
C160.085 (5)0.024 (3)0.018 (2)0.020 (3)0.005 (3)0.000 (2)
C170.085 (5)0.030 (3)0.025 (3)0.018 (3)0.009 (3)0.006 (2)
C180.098 (6)0.037 (3)0.037 (3)0.009 (3)0.031 (4)0.002 (3)
C190.150 (8)0.052 (4)0.016 (3)0.061 (5)0.006 (4)0.000 (3)
C200.017 (2)0.019 (2)0.036 (2)0.0056 (17)0.0070 (18)0.0045 (18)
C210.023 (2)0.060 (4)0.032 (3)0.010 (2)0.003 (2)0.005 (2)
C220.038 (3)0.020 (3)0.124 (7)0.009 (2)0.016 (4)0.002 (3)
C230.021 (2)0.057 (4)0.031 (3)0.009 (2)0.005 (2)0.010 (2)
C240.031 (2)0.024 (2)0.021 (2)0.0055 (18)0.0064 (18)0.0030 (18)
C250.034 (3)0.042 (3)0.019 (2)0.008 (2)0.0038 (19)0.000 (2)
C260.036 (3)0.038 (3)0.021 (2)0.006 (2)0.0103 (19)0.006 (2)
C270.051 (3)0.026 (3)0.027 (2)0.004 (2)0.015 (2)0.010 (2)
Cl20.0288 (6)0.0344 (6)0.0309 (6)0.0016 (5)0.0036 (4)0.0147 (5)
C1A0.078 (8)0.071 (8)0.051 (6)0.039 (8)0.012 (6)0.013 (5)
C2A0.108 (12)0.087 (10)0.047 (6)0.017 (9)0.014 (7)0.031 (6)
C3A0.049 (7)0.065 (7)0.090 (11)0.009 (5)0.001 (6)0.052 (8)
C4A0.022 (4)0.087 (12)0.043 (6)0.032 (5)0.017 (4)0.013 (7)
C5A0.042 (6)0.052 (6)0.055 (6)0.007 (4)0.007 (5)0.009 (5)
C6A0.042 (6)0.049 (6)0.086 (9)0.014 (4)0.018 (6)0.024 (5)
C7A0.0421 (19)0.0285 (16)0.0320 (16)0.0018 (14)0.0020 (14)0.0033 (13)
C1B0.078 (8)0.071 (8)0.051 (6)0.039 (8)0.012 (6)0.013 (5)
C2B0.108 (12)0.087 (10)0.047 (6)0.017 (9)0.014 (7)0.031 (6)
C3B0.049 (7)0.065 (7)0.090 (11)0.009 (5)0.001 (6)0.052 (8)
C4B0.022 (4)0.087 (12)0.043 (6)0.032 (5)0.017 (4)0.013 (7)
C5B0.042 (6)0.052 (6)0.055 (6)0.007 (4)0.007 (5)0.009 (5)
C6B0.042 (6)0.049 (6)0.086 (9)0.014 (4)0.018 (6)0.024 (5)
C7B0.0421 (19)0.0285 (16)0.0320 (16)0.0018 (14)0.0020 (14)0.0033 (13)
Geometric parameters (Å, º) top
Pt1—N21.941 (4)C21—H21A0.9800
Pt1—N32.013 (4)C21—H21B0.9800
Pt1—N12.015 (4)C21—H21C0.9800
Pt1—Cl12.3070 (10)C22—H22A0.9800
Pt1—Pt1i3.2774 (3)C22—H22B0.9800
N1—C51.333 (6)C22—H22C0.9800
N1—C11.371 (7)C23—H23A0.9800
N2—C101.340 (5)C23—H23B0.9800
N2—C61.344 (5)C23—H23C0.9800
N3—C151.338 (6)C24—C271.528 (7)
N3—C111.381 (5)C24—C261.529 (6)
C1—C21.381 (7)C24—C251.536 (7)
C1—C61.483 (7)C25—H25A0.9800
C2—C31.408 (8)C25—H25B0.9800
C2—H2A0.9500C25—H25C0.9800
C3—C41.402 (8)C26—H26A0.9800
C3—C161.531 (7)C26—H26B0.9800
C4—C51.378 (7)C26—H26C0.9800
C4—H4A0.9500C27—H27A0.9800
C5—H5A0.9500C27—H27B0.9800
C6—C71.391 (6)C27—H27C0.9800
C7—C81.402 (6)C1A—C2A1.3900
C7—H7A0.9500C1A—C6A1.3900
C8—C91.403 (6)C1A—C7A1.465 (6)
C8—C201.544 (6)C2A—C3A1.3900
C9—C101.393 (6)C2A—H2AA0.9500
C9—H9A0.9500C3A—C4A1.3900
C10—C111.490 (5)C3A—H3AA0.9500
C11—C121.365 (6)C4A—C5A1.3900
C12—C131.404 (6)C4A—H4AA0.9500
C12—H12A0.9500C5A—C6A1.3900
C13—C141.398 (6)C5A—H5AA0.9500
C13—C241.534 (6)C6A—H6AA0.9500
C14—C151.375 (7)C7A—H7AA0.9800
C14—H14A0.9500C7A—H7AB0.9800
C15—H15A0.9500C7A—H7AC0.9800
C16—C181.511 (11)C1B—C2B1.3900
C16—C191.530 (8)C1B—C6B1.3900
C16—C171.541 (8)C1B—C7B1.461 (6)
C17—H17A0.9800C2B—C3B1.3900
C17—H17B0.9800C2B—H2BA0.9500
C17—H17C0.9800C3B—C4B1.3900
C18—H18A0.9800C3B—H3BA0.9500
C18—H18B0.9800C4B—C5B1.3900
C18—H18C0.9800C4B—H4BA0.9500
C19—H19A0.9800C5B—C6B1.3900
C19—H19B0.9800C5B—H5BA0.9500
C19—H19C0.9800C6B—H6BA0.9500
C20—C221.529 (7)C7B—H7BA0.9800
C20—C211.530 (7)C7B—H7BB0.9800
C20—C231.532 (7)C7B—H7BC0.9800
N2—Pt1—N380.87 (14)C22—C20—C8106.3 (4)
N2—Pt1—N181.25 (15)C21—C20—C8110.2 (4)
N3—Pt1—N1162.06 (16)C23—C20—C8110.8 (4)
N2—Pt1—Cl1178.70 (11)C20—C21—H21A109.5
N3—Pt1—Cl199.11 (10)C20—C21—H21B109.5
N1—Pt1—Cl198.72 (12)H21A—C21—H21B109.5
C5—N1—C1119.1 (4)C20—C21—H21C109.5
C5—N1—Pt1127.4 (3)H21A—C21—H21C109.5
C1—N1—Pt1113.4 (3)H21B—C21—H21C109.5
C10—N2—C6123.7 (4)C20—C22—H22A109.5
C10—N2—Pt1118.5 (3)C20—C22—H22B109.5
C6—N2—Pt1117.8 (3)H22A—C22—H22B109.5
C15—N3—C11118.5 (4)C20—C22—H22C109.5
C15—N3—Pt1127.4 (3)H22A—C22—H22C109.5
C11—N3—Pt1114.0 (3)H22B—C22—H22C109.5
N1—C1—C2121.2 (5)C20—C23—H23A109.5
N1—C1—C6114.4 (4)C20—C23—H23B109.5
C2—C1—C6124.4 (5)H23A—C23—H23B109.5
C1—C2—C3120.2 (5)C20—C23—H23C109.5
C1—C2—H2A119.9H23A—C23—H23C109.5
C3—C2—H2A119.9H23B—C23—H23C109.5
C4—C3—C2116.8 (5)C27—C24—C26108.7 (4)
C4—C3—C16122.9 (5)C27—C24—C13107.4 (4)
C2—C3—C16120.2 (5)C26—C24—C13112.0 (4)
C5—C4—C3120.3 (5)C27—C24—C25109.0 (4)
C5—C4—H4A119.9C26—C24—C25110.1 (4)
C3—C4—H4A119.9C13—C24—C25109.6 (4)
N1—C5—C4122.3 (5)C24—C25—H25A109.5
N1—C5—H5A118.8C24—C25—H25B109.5
C4—C5—H5A118.8H25A—C25—H25B109.5
N2—C6—C7119.1 (4)C24—C25—H25C109.5
N2—C6—C1113.1 (4)H25A—C25—H25C109.5
C7—C6—C1127.8 (4)H25B—C25—H25C109.5
C6—C7—C8119.3 (4)C24—C26—H26A109.5
C6—C7—H7A120.3C24—C26—H26B109.5
C8—C7—H7A120.3H26A—C26—H26B109.5
C7—C8—C9119.3 (4)C24—C26—H26C109.5
C7—C8—C20120.6 (4)H26A—C26—H26C109.5
C9—C8—C20120.1 (4)H26B—C26—H26C109.5
C10—C9—C8119.1 (4)C24—C27—H27A109.5
C10—C9—H9A120.5C24—C27—H27B109.5
C8—C9—H9A120.5H27A—C27—H27B109.5
N2—C10—C9119.4 (4)C24—C27—H27C109.5
N2—C10—C11112.9 (4)H27A—C27—H27C109.5
C9—C10—C11127.7 (4)H27B—C27—H27C109.5
C12—C11—N3121.2 (4)C2A—C1A—C6A120.0
C12—C11—C10125.2 (4)C2A—C1A—C7A124.9 (5)
N3—C11—C10113.6 (4)C6A—C1A—C7A115.1 (5)
C11—C12—C13120.8 (4)C3A—C2A—C1A120.0
C11—C12—H12A119.6C3A—C2A—H2AA120.0
C13—C12—H12A119.6C1A—C2A—H2AA120.0
C14—C13—C12116.6 (4)C4A—C3A—C2A120.0
C14—C13—C24122.7 (4)C4A—C3A—H3AA120.0
C12—C13—C24120.7 (4)C2A—C3A—H3AA120.0
C15—C14—C13120.5 (4)C3A—C4A—C5A120.0
C15—C14—H14A119.7C3A—C4A—H4AA120.0
C13—C14—H14A119.7C5A—C4A—H4AA120.0
N3—C15—C14122.2 (4)C4A—C5A—C6A120.0
N3—C15—H15A118.9C4A—C5A—H5AA120.0
C14—C15—H15A118.9C6A—C5A—H5AA120.0
C18—C16—C19109.3 (6)C5A—C6A—C1A120.0
C18—C16—C3109.6 (5)C5A—C6A—H6AA120.0
C19—C16—C3111.1 (5)C1A—C6A—H6AA120.0
C18—C16—C17110.2 (5)C2B—C1B—C6B120.0
C19—C16—C17109.3 (6)C2B—C1B—C7B120.3 (5)
C3—C16—C17107.4 (4)C6B—C1B—C7B119.7 (5)
C16—C17—H17A109.5C1B—C2B—C3B120.0
C16—C17—H17B109.5C1B—C2B—H2BA120.0
H17A—C17—H17B109.5C3B—C2B—H2BA120.0
C16—C17—H17C109.5C4B—C3B—C2B120.0
H17A—C17—H17C109.5C4B—C3B—H3BA120.0
H17B—C17—H17C109.5C2B—C3B—H3BA120.0
C16—C18—H18A109.5C3B—C4B—C5B120.0
C16—C18—H18B109.5C3B—C4B—H4BA120.0
H18A—C18—H18B109.5C5B—C4B—H4BA120.0
C16—C18—H18C109.5C4B—C5B—C6B120.0
H18A—C18—H18C109.5C4B—C5B—H5BA120.0
H18B—C18—H18C109.5C6B—C5B—H5BA120.0
C16—C19—H19A109.5C5B—C6B—C1B120.0
C16—C19—H19B109.5C5B—C6B—H6BA120.0
H19A—C19—H19B109.5C1B—C6B—H6BA120.0
C16—C19—H19C109.5C1B—C7B—H7BA109.5
H19A—C19—H19C109.5C1B—C7B—H7BB109.5
H19B—C19—H19C109.5H7BA—C7B—H7BB109.5
C22—C20—C21109.1 (5)C1B—C7B—H7BC109.5
C22—C20—C23111.5 (5)H7BA—C7B—H7BC109.5
C21—C20—C23108.9 (4)H7BB—C7B—H7BC109.5
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[PtCl(C27H35N3)]Cl·C7H8
Mr759.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4418 (3), 20.0002 (7), 17.2321 (6)
β (°) 91.948 (1)
V3)3252.19 (19)
Z4
Radiation typeMo Kα
µ (mm1)4.51
Crystal size (mm)0.26 × 0.21 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.387, 0.677
No. of measured, independent and
observed [I > 2σ(I)] reflections
37919, 6647, 6232
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.108, 1.05
No. of reflections6647
No. of parameters358
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 2.78

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae, et al., 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Welch Foundation (AD-0007) for a chemistry department grant supporting undergraduate research.

References

First citationBailey, J. A., Hill, M. G., Marsh, R. E., Miskowski, V. M., Schaefer, W. P. & Gray, H. B. (1995). Inorg. Chem. 34, 4591–4599.  CSD CrossRef CAS Web of Science Google Scholar
First citationBatrice, R. J., Smucker, B. W. & Nesterov, V. N. (2010). Acta Cryst. E66, m1702–m1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHowe-Grant, M. & Lippard, S. J. (1980). Inorg. Synth. 20, 101–105.  CrossRef Google Scholar
First citationLai, S.-W., Chan, M. C. W., Cheung, K.-K. & Che, C.-M. (1999). Inorg. Chem. 38, 4262–4267.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSengul, A. (2004). Turk. J. Chem. 28, 667–672.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds