metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{6-meth­­oxy-2-[(4-methyl­phen­yl)iminiometh­yl]phenolate-κ2O,O′}tris­­(nitrato-κ2O,O′)holmium(III) mono­hydrate

aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 12 October 2010; accepted 15 November 2010; online 20 November 2010)

The crystal structure of the title compound, [Ho(NO3)3(C15H15NO2)2]·H2O, contains two Schiff base 6-meth­oxy-2-[(4-methyl­phen­yl)iminiometh­yl]phenolate (L) ligands, three independent nitrate ions that chelate to the HoIII ion with O atoms and a hydrate water mol­ecule. The coordination environment of the HoIII ion is ten-coordinate. The L ligands chelate with a strong Ho—O(phenolate) bond and weaker Ho—O(meth­oxy) contacts. The latter can be inter­preted as the apices of the bicapped square–anti­prismatic [HoO10] polyhedron. Inter­molecular N—H⋯O hydrogen bonds occur. Intra­molecular O—H⋯O inter­actions link the complex mol­ecules and uncoordinated water mol­ecules.

Related literature

For the crystal structure of a zinc(II) complex with the same the same ligands as in the title compound,, see: Xian et al. (2008[Xian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.]). For the crystal structure of a terbium(III) complex related to the title compound, see: Zhao et al. (2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]). For an ytterbium(III) complex, see: Liu et al. (2009[Liu, J.-F., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1385-m1386.]). For a zigzag chain cadmium(II) complex bridged by chloride, see: Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593-m1594.]). For iron(III) and cobalt(III) complexes of some N-salicyl­idene­amino acids in the form of a powder, see: Burrows & Bailar (1966[Burrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150-4152.]). For the syntheses of rare earth complexes with Schiff base ligands derived from o-vanillin and adamantane­amine, see: Zhao et al. (2005[Zhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421-424.]).

[Scheme 1]

Experimental

Crystal data
  • [Ho(NO3)3(C15H15NO2)2]·H2O

  • Mr = 851.54

  • Triclinic, [P \overline 1]

  • a = 9.7646 (4) Å

  • b = 9.9813 (4) Å

  • c = 18.4281 (11) Å

  • α = 97.862 (3)°

  • β = 101.688 (3)°

  • γ = 106.270 (2)°

  • V = 1652.21 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 296 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.558, Tmax = 0.781

  • 20799 measured reflections

  • 5775 independent reflections

  • 5426 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.059

  • S = 1.05

  • 5775 reflections

  • 455 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Ho1—O2 2.2734 (18)
Ho1—O3 2.2787 (18)
Ho1—O12 2.388 (2)
Ho1—O10 2.414 (2)
Ho1—O7 2.418 (2)
Ho1—O6 2.435 (2)
Ho1—O13 2.483 (2)
Ho1—O9 2.519 (2)
Ho1—O4 2.742 (2)
Ho1—O1 2.803 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O10i 0.88 2.11 2.996 (6) 177
O1W—H1WB⋯O11ii 0.88 1.94 2.817 (6) 177
N1—H111⋯O2 0.86 1.98 2.655 (3) 135
N2—H222⋯O3 0.86 1.88 2.588 (3) 138
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has been well confirmed that Schiff bases are important in multiple fields such as chemistry and biochemistry owing to their biological activities (Zhao et al., 2005). Schiff base complexes prepared by ligands from substituted o-vanillin have attracted considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis (Burrows & Bailar, 1966). As part of our interest in theis field, we have been engaged in a major effort directed toward the development of syntheses of new analogous Schiff bases derived from o-vanillin and their rare metal complexes. In a few articles we have reported part of our research results (Zhao et al., 2007; Xian et al., 2008; Li et al., 2008; Liu et al., 2009). Herein, we describe the structure of a new HoIII complex.

The structure of the title complex is shown in Fig. 1, and the coordination environment of HoIII is shown in Fig. 2. In this complex the HoIII is ten-coordinated by O atoms, six of which come from three nitrate ions and two come from the Schiff base ligands (HL). The HL ligands coordinate to the HoIII ion using oxygen atoms from deprotonated phenolic hydroxyl groups. Two longer bonds are provided by the two methoxy groups. The ten Ho—O bond distances are listed in Table 1 (including weak Ho—O interactions). The distances between HoIII and methoxy O atoms (2.803Å and 2.740Å for Ho—O1 and Ho—O4) are shorter than similar reported complexes (Liu et al., 2009), and even shorter than the distances between Ho and nitrate N, indicating their interactions are strong. The distances Ho—O(nitrate) bonds are in the range 2.388–2.522 Å. In contrast, in the YbIII complex (Liu et al., 2009), the Yb—O (methoxy) bonds are longer and weaker (2.833Å and 2.927 Å), which can be attributed to the ionic radii increase from HoIII to YbIII due to the lanthanide contraction.

The hydrogen bonds and π···π weak non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 3. Complex molecules are linked in a line through water molecules by hydrogen bonds and different lines are interlocked with benzene rings of Schiff base using π···π stacking. In HL ligands, the proton of the phenolic hydroxyl group is considered to have transferred to N-imine atom, which involving in an intramolecular hydrogen bond (Table 2).

Related literature top

For the crystal structure of a zinc(II) complex with two chelating title ligands, see: Xian et al. (2008). For the crystal structure of a terbium(III) complex related to the title compound, see: Zhao et al. (2007). For an ytterbium(III) complex, see: Liu et al. (2009). For a zigzag chain cadmium(II) complex bridged by chloride, see: Li et al. (2008). For iron(III) and cobalt(III) complexes of some N-salicylideneamino acids in the form of a powder, see: Burrows & Bailar (1966). For the syntheses of rare earth complexes with Schiff base ligands derived from o-vanillin and adamantaneamine, see: Zhao et al. (2005).

Experimental top

Reagents and solvents used were of commercially available quality and used without further purification. The Schiff base ligand 2-[(4- methylphenyl)iminomethyl]-6-methoxy-phenol was prepared by condensation of o-vanillin and p-methylaniline with a high yield and was purified by recrystallization in ethanol. The compound was obtained by adding Ho2O3 (1 mmol, dissolved in methanol) to N-salicylidene-p-toluidine (3 mmol) in methanol solution. The mixture solution was stirred at room temperature for 8 h to obtain a purplish red solution. At last, the deposit was filtered out and the solution was kept for evaporating. The orange crystal was formed after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N). The H atoms bonded to water O atoms were located in difference Fourier maps and refined with O—H distance restraints of 0.83 (2) and Uiso(H) = 1.5Ueq(O).

Structure description top

It has been well confirmed that Schiff bases are important in multiple fields such as chemistry and biochemistry owing to their biological activities (Zhao et al., 2005). Schiff base complexes prepared by ligands from substituted o-vanillin have attracted considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis (Burrows & Bailar, 1966). As part of our interest in theis field, we have been engaged in a major effort directed toward the development of syntheses of new analogous Schiff bases derived from o-vanillin and their rare metal complexes. In a few articles we have reported part of our research results (Zhao et al., 2007; Xian et al., 2008; Li et al., 2008; Liu et al., 2009). Herein, we describe the structure of a new HoIII complex.

The structure of the title complex is shown in Fig. 1, and the coordination environment of HoIII is shown in Fig. 2. In this complex the HoIII is ten-coordinated by O atoms, six of which come from three nitrate ions and two come from the Schiff base ligands (HL). The HL ligands coordinate to the HoIII ion using oxygen atoms from deprotonated phenolic hydroxyl groups. Two longer bonds are provided by the two methoxy groups. The ten Ho—O bond distances are listed in Table 1 (including weak Ho—O interactions). The distances between HoIII and methoxy O atoms (2.803Å and 2.740Å for Ho—O1 and Ho—O4) are shorter than similar reported complexes (Liu et al., 2009), and even shorter than the distances between Ho and nitrate N, indicating their interactions are strong. The distances Ho—O(nitrate) bonds are in the range 2.388–2.522 Å. In contrast, in the YbIII complex (Liu et al., 2009), the Yb—O (methoxy) bonds are longer and weaker (2.833Å and 2.927 Å), which can be attributed to the ionic radii increase from HoIII to YbIII due to the lanthanide contraction.

The hydrogen bonds and π···π weak non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 3. Complex molecules are linked in a line through water molecules by hydrogen bonds and different lines are interlocked with benzene rings of Schiff base using π···π stacking. In HL ligands, the proton of the phenolic hydroxyl group is considered to have transferred to N-imine atom, which involving in an intramolecular hydrogen bond (Table 2).

For the crystal structure of a zinc(II) complex with two chelating title ligands, see: Xian et al. (2008). For the crystal structure of a terbium(III) complex related to the title compound, see: Zhao et al. (2007). For an ytterbium(III) complex, see: Liu et al. (2009). For a zigzag chain cadmium(II) complex bridged by chloride, see: Li et al. (2008). For iron(III) and cobalt(III) complexes of some N-salicylideneamino acids in the form of a powder, see: Burrows & Bailar (1966). For the syntheses of rare earth complexes with Schiff base ligands derived from o-vanillin and adamantaneamine, see: Zhao et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the holmium(III) atom, showing the bicapped square antiprism.
[Figure 3] Fig. 3. The stacking plot of the title compound, showing H-bond interactions (dashed lines) and π···π stacking interactions.
Bis{6-methoxy-2-[(4-methylphenyl)iminiomethyl]phenolate- κ2O,O'}tris(nitrato-κ2O,O')holmium(III) monohydrate top
Crystal data top
[Ho(NO3)3(C15H15NO2)2]·H2OZ = 2
Mr = 851.54F(000) = 852
Triclinic, P1Dx = 1.712 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7646 (4) ÅCell parameters from 9964 reflections
b = 9.9813 (4) Åθ = 2.2–25.0°
c = 18.4281 (11) ŵ = 2.47 mm1
α = 97.862 (3)°T = 296 K
β = 101.688 (3)°Block, orange
γ = 106.270 (2)°0.3 × 0.2 × 0.1 mm
V = 1652.21 (14) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
5775 independent reflections
Radiation source: fine-focus sealed tube5426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 2.2°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.558, Tmax = 0.781l = 2121
20799 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.7101P]
where P = (Fo2 + 2Fc2)/3
5775 reflections(Δ/σ)max = 0.002
455 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ho(NO3)3(C15H15NO2)2]·H2Oγ = 106.270 (2)°
Mr = 851.54V = 1652.21 (14) Å3
Triclinic, P1Z = 2
a = 9.7646 (4) ÅMo Kα radiation
b = 9.9813 (4) ŵ = 2.47 mm1
c = 18.4281 (11) ÅT = 296 K
α = 97.862 (3)°0.3 × 0.2 × 0.1 mm
β = 101.688 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
5775 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5426 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.781Rint = 0.025
20799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
5775 reflectionsΔρmin = 0.67 e Å3
455 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho10.032728 (12)0.190747 (11)0.250433 (7)0.03820 (6)
O10.1169 (2)0.0481 (2)0.13382 (13)0.0576 (6)
O1W0.8410 (5)0.5859 (5)0.1785 (3)0.1571 (18)
H1WA0.87900.51530.17640.236*
H1WB0.91730.65280.20970.236*
N10.4860 (2)0.5264 (2)0.27705 (13)0.0429 (5)
H1110.39860.48030.27920.051*
C10.7960 (5)0.5809 (4)0.0191 (2)0.0840 (12)
H1B0.89880.59830.01660.126*
H1C0.76610.65760.03590.126*
H1D0.77990.57490.03020.126*
O20.2460 (2)0.3010 (2)0.22126 (12)0.0488 (5)
N20.4577 (2)0.0518 (2)0.22195 (13)0.0429 (5)
H2220.36940.01790.21720.051*
C20.7585 (4)0.3897 (3)0.1328 (2)0.0600 (8)
H20.84960.44120.13870.072*
O30.2055 (2)0.1476 (2)0.25753 (11)0.0463 (5)
N30.1560 (3)0.2742 (3)0.41019 (16)0.0543 (7)
C30.7064 (4)0.4420 (3)0.0742 (2)0.0583 (8)
O40.0393 (2)0.4044 (2)0.32834 (13)0.0542 (5)
N40.1212 (3)0.2407 (3)0.11050 (15)0.0559 (7)
C40.5716 (4)0.3636 (4)0.0673 (2)0.0682 (10)
H40.53450.39750.02850.082*
O50.2029 (4)0.3157 (3)0.47773 (14)0.0887 (9)
N50.0696 (4)0.0759 (3)0.27028 (17)0.0607 (7)
C50.4893 (4)0.2356 (4)0.1164 (2)0.0618 (9)
H50.39800.18430.11070.074*
O60.0375 (2)0.1711 (2)0.38113 (12)0.0540 (5)
C60.5439 (3)0.1848 (3)0.17382 (16)0.0426 (6)
O70.2202 (2)0.3316 (2)0.36292 (13)0.0549 (5)
C70.6776 (3)0.2625 (3)0.18245 (19)0.0536 (7)
H70.71360.22930.22190.064*
O80.1796 (3)0.2690 (3)0.05278 (15)0.0806 (8)
C80.4950 (3)0.0250 (3)0.27212 (16)0.0439 (6)
H80.58820.00980.28030.053*
O90.1354 (3)0.1161 (3)0.11876 (14)0.0641 (6)
C90.4003 (3)0.1600 (3)0.31529 (16)0.0413 (6)
O100.0408 (3)0.3393 (3)0.16740 (14)0.0634 (6)
C100.4509 (3)0.2397 (3)0.36775 (18)0.0501 (7)
H100.54480.20190.37460.060*
O110.0788 (4)0.1926 (3)0.2780 (2)0.0990 (10)
C110.3641 (4)0.3698 (3)0.40763 (19)0.0561 (8)
H110.39730.41980.44290.067*
O120.0555 (2)0.0614 (2)0.24037 (14)0.0576 (6)
C120.2232 (4)0.4306 (3)0.39622 (17)0.0518 (7)
H120.16480.52140.42310.062*
O130.1781 (3)0.0331 (3)0.28993 (15)0.0627 (6)
C130.1728 (3)0.3566 (3)0.34584 (16)0.0433 (6)
C140.2581 (3)0.2170 (3)0.30408 (15)0.0393 (6)
C150.0485 (4)0.5489 (4)0.3605 (3)0.0801 (12)
H15A0.01090.61000.35200.120*
H15B0.12890.57480.33720.120*
H15C0.08660.55900.41390.120*
C160.7697 (5)1.0471 (4)0.4971 (2)0.0764 (11)
H16A0.87231.05680.51430.115*
H16B0.72541.04360.53910.115*
H16C0.76011.12730.47550.115*
C170.6933 (4)0.9118 (3)0.43819 (19)0.0548 (8)
C180.5595 (4)0.8179 (4)0.4393 (2)0.0661 (9)
H180.51360.84050.47660.079*
C190.4920 (4)0.6914 (4)0.3863 (2)0.0603 (8)
H190.40260.62960.38860.072*
C200.5581 (3)0.6576 (3)0.33011 (17)0.0438 (6)
C210.6907 (3)0.7501 (3)0.32734 (18)0.0517 (7)
H210.73530.72860.28920.062*
C220.7568 (4)0.8744 (3)0.38118 (19)0.0544 (7)
H220.84700.93510.37920.065*
C230.5374 (3)0.4682 (3)0.22570 (17)0.0463 (7)
H230.63050.51780.22130.056*
C240.4619 (3)0.3351 (3)0.17619 (16)0.0431 (6)
C250.5347 (4)0.2803 (4)0.1256 (2)0.0606 (8)
H250.62840.33450.12440.073*
C260.4695 (4)0.1506 (4)0.0794 (2)0.0655 (9)
H260.51890.11610.04690.079*
C270.3283 (4)0.0675 (3)0.08004 (18)0.0536 (7)
H270.28410.02180.04810.064*
C280.2556 (3)0.1182 (3)0.12795 (16)0.0440 (6)
C290.3184 (3)0.2540 (3)0.17693 (15)0.0396 (6)
C300.0412 (4)0.0894 (3)0.0856 (2)0.0599 (8)
H30A0.03220.08140.03370.090*
H30B0.05520.12560.09390.090*
H30C0.09590.15350.09710.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.02926 (8)0.03535 (8)0.04532 (9)0.00330 (5)0.01079 (6)0.00560 (5)
O10.0416 (11)0.0540 (12)0.0632 (14)0.0006 (10)0.0172 (10)0.0069 (10)
O1W0.123 (3)0.135 (4)0.193 (5)0.017 (3)0.047 (3)0.008 (3)
N10.0330 (11)0.0453 (12)0.0471 (13)0.0060 (10)0.0115 (10)0.0104 (10)
C10.092 (3)0.051 (2)0.077 (3)0.000 (2)0.008 (2)0.0038 (18)
O20.0399 (10)0.0468 (11)0.0582 (13)0.0073 (9)0.0236 (9)0.0034 (9)
N20.0319 (11)0.0442 (12)0.0471 (13)0.0067 (10)0.0089 (10)0.0044 (10)
C20.0469 (18)0.0458 (16)0.076 (2)0.0018 (14)0.0081 (16)0.0121 (16)
O30.0337 (10)0.0489 (11)0.0516 (12)0.0096 (8)0.0138 (9)0.0018 (9)
N30.0600 (17)0.0523 (15)0.0489 (16)0.0259 (14)0.0057 (13)0.0001 (12)
C30.060 (2)0.0410 (15)0.058 (2)0.0056 (15)0.0045 (16)0.0090 (14)
O40.0412 (11)0.0450 (11)0.0667 (14)0.0009 (9)0.0135 (10)0.0073 (10)
N40.0475 (15)0.081 (2)0.0475 (16)0.0273 (15)0.0177 (13)0.0160 (14)
C40.078 (2)0.0536 (19)0.062 (2)0.0093 (18)0.0233 (19)0.0056 (16)
O50.122 (2)0.0850 (19)0.0443 (15)0.0339 (18)0.0016 (15)0.0045 (13)
N50.084 (2)0.0528 (16)0.0702 (19)0.0367 (16)0.0435 (16)0.0253 (14)
C50.0524 (19)0.0562 (19)0.067 (2)0.0031 (15)0.0231 (17)0.0011 (16)
O60.0557 (13)0.0512 (12)0.0545 (13)0.0116 (11)0.0193 (10)0.0120 (10)
C60.0375 (14)0.0402 (14)0.0436 (15)0.0073 (12)0.0037 (12)0.0070 (12)
O70.0391 (11)0.0573 (12)0.0570 (13)0.0042 (10)0.0116 (10)0.0009 (10)
C70.0484 (17)0.0487 (16)0.060 (2)0.0093 (14)0.0151 (15)0.0101 (14)
O80.0852 (18)0.118 (2)0.0553 (15)0.0523 (17)0.0167 (13)0.0323 (15)
C80.0343 (14)0.0505 (16)0.0467 (16)0.0136 (12)0.0109 (12)0.0085 (13)
O90.0726 (16)0.0697 (16)0.0537 (14)0.0343 (13)0.0126 (12)0.0048 (11)
C90.0363 (14)0.0445 (14)0.0430 (15)0.0134 (12)0.0093 (12)0.0084 (12)
O100.0539 (13)0.0643 (14)0.0691 (16)0.0104 (11)0.0129 (12)0.0261 (12)
C100.0438 (16)0.0590 (18)0.0512 (17)0.0193 (14)0.0180 (14)0.0087 (14)
O110.143 (3)0.0614 (16)0.132 (3)0.0567 (18)0.070 (2)0.0455 (17)
C110.064 (2)0.0538 (18)0.0557 (19)0.0268 (16)0.0213 (16)0.0013 (15)
O120.0578 (13)0.0410 (11)0.0769 (16)0.0092 (10)0.0330 (12)0.0109 (10)
C120.0572 (18)0.0426 (15)0.0493 (17)0.0160 (14)0.0056 (14)0.0006 (13)
O130.0536 (13)0.0584 (14)0.0823 (17)0.0222 (12)0.0222 (12)0.0184 (12)
C130.0376 (14)0.0412 (14)0.0490 (16)0.0105 (12)0.0079 (12)0.0107 (12)
C140.0361 (13)0.0417 (14)0.0405 (15)0.0140 (12)0.0083 (11)0.0082 (11)
C150.064 (2)0.0429 (18)0.126 (4)0.0051 (17)0.024 (2)0.018 (2)
C160.080 (3)0.066 (2)0.068 (2)0.014 (2)0.010 (2)0.0016 (18)
C170.0561 (19)0.0502 (17)0.0542 (19)0.0169 (15)0.0054 (15)0.0103 (14)
C180.059 (2)0.075 (2)0.063 (2)0.0185 (18)0.0241 (17)0.0003 (18)
C190.0449 (17)0.065 (2)0.066 (2)0.0076 (15)0.0227 (16)0.0065 (17)
C200.0383 (14)0.0441 (14)0.0480 (16)0.0103 (12)0.0103 (12)0.0134 (12)
C210.0481 (17)0.0509 (16)0.0527 (18)0.0066 (14)0.0177 (14)0.0113 (14)
C220.0486 (17)0.0489 (16)0.0577 (19)0.0024 (14)0.0130 (15)0.0134 (14)
C230.0383 (15)0.0494 (16)0.0546 (18)0.0114 (13)0.0177 (13)0.0186 (13)
C240.0395 (14)0.0468 (15)0.0460 (16)0.0138 (12)0.0154 (12)0.0121 (12)
C250.0513 (18)0.066 (2)0.070 (2)0.0146 (16)0.0346 (17)0.0114 (17)
C260.067 (2)0.064 (2)0.072 (2)0.0207 (18)0.0410 (19)0.0033 (18)
C270.0568 (18)0.0526 (17)0.0520 (18)0.0170 (15)0.0202 (15)0.0034 (14)
C280.0407 (15)0.0485 (15)0.0429 (16)0.0127 (13)0.0110 (12)0.0123 (12)
C290.0360 (14)0.0446 (14)0.0411 (15)0.0131 (12)0.0127 (12)0.0135 (12)
C300.0573 (19)0.0480 (17)0.060 (2)0.0055 (15)0.0093 (16)0.0027 (15)
Geometric parameters (Å, º) top
Ho1—O22.2734 (18)C5—H50.9300
Ho1—O32.2787 (18)C6—C71.371 (4)
Ho1—O122.388 (2)C7—H70.9300
Ho1—O102.414 (2)C8—C91.419 (4)
Ho1—O72.418 (2)C8—H80.9300
Ho1—O62.435 (2)C9—C141.414 (4)
Ho1—O132.483 (2)C9—C101.420 (4)
Ho1—O92.519 (2)C10—C111.347 (4)
Ho1—O42.742 (2)C10—H100.9300
Ho1—O12.803 (2)C11—C121.410 (5)
Ho1—N52.846 (3)C11—H110.9300
Ho1—N32.853 (3)C12—C131.361 (4)
O1—C281.373 (3)C12—H120.9300
O1—C301.432 (4)C13—C141.423 (4)
O1W—H1WA0.8833C15—H15A0.9600
O1W—H1WB0.8797C15—H15B0.9600
N1—C231.300 (4)C15—H15C0.9600
N1—C201.422 (4)C16—C171.506 (5)
N1—H1110.8600C16—H16A0.9600
C1—C31.514 (4)C16—H16B0.9600
C1—H1B0.9600C16—H16C0.9600
C1—H1C0.9600C17—C221.383 (5)
C1—H1D0.9600C17—C181.384 (5)
O2—C291.304 (3)C18—C191.385 (5)
N2—C81.294 (4)C18—H180.9300
N2—C61.417 (3)C19—C201.379 (4)
N2—H2220.8600C19—H190.9300
C2—C71.379 (4)C20—C211.379 (4)
C2—C31.383 (5)C21—C221.376 (4)
C2—H20.9300C21—H210.9300
O3—C141.302 (3)C22—H220.9300
N3—O51.205 (4)C23—C241.410 (4)
N3—O61.271 (3)C23—H230.9300
N3—O71.279 (4)C24—C291.412 (4)
C3—C41.371 (5)C24—C251.421 (4)
O4—C131.377 (3)C25—C261.351 (5)
O4—C151.425 (4)C25—H250.9300
N4—O81.210 (4)C26—C271.399 (5)
N4—O91.246 (4)C26—H260.9300
N4—O101.279 (4)C27—C281.369 (4)
C4—C51.382 (5)C27—H270.9300
C4—H40.9300C28—C291.415 (4)
N5—O111.219 (4)C30—H30A0.9600
N5—O131.236 (4)C30—H30B0.9600
N5—O121.290 (4)C30—H30C0.9600
C5—C61.376 (4)
O2—Ho1—O3157.35 (8)O10—N4—Ho155.70 (15)
O2—Ho1—O12122.32 (7)C3—C4—C5121.9 (3)
O3—Ho1—O1276.29 (7)C3—C4—H4119.0
O2—Ho1—O1077.14 (8)C5—C4—H4119.0
O3—Ho1—O1080.66 (8)O11—N5—O13122.2 (3)
O12—Ho1—O10130.72 (8)O11—N5—O12120.8 (3)
O2—Ho1—O768.94 (7)O13—N5—O12117.0 (2)
O3—Ho1—O7116.17 (7)O11—N5—Ho1177.2 (3)
O12—Ho1—O7117.76 (8)O13—N5—Ho160.54 (15)
O10—Ho1—O7111.47 (8)O12—N5—Ho156.43 (13)
O2—Ho1—O6119.21 (8)C6—C5—C4119.3 (3)
O3—Ho1—O674.87 (7)C6—C5—H5120.4
O12—Ho1—O677.71 (8)C4—C5—H5120.4
O10—Ho1—O6136.05 (8)N3—O6—Ho195.53 (17)
O7—Ho1—O652.74 (7)C7—C6—C5119.8 (3)
O2—Ho1—O1380.46 (8)C7—C6—N2122.6 (3)
O3—Ho1—O13122.10 (8)C5—C6—N2117.6 (3)
O12—Ho1—O1352.45 (8)N3—O7—Ho196.12 (16)
O10—Ho1—O13152.22 (9)C6—C7—C2120.1 (3)
O7—Ho1—O1374.71 (8)C6—C7—H7119.9
O6—Ho1—O1370.04 (8)C2—C7—H7119.9
O2—Ho1—O998.42 (8)N2—C8—C9123.1 (3)
O3—Ho1—O970.56 (8)N2—C8—H8118.5
O12—Ho1—O979.83 (9)C9—C8—H8118.5
O10—Ho1—O951.40 (8)N4—O9—Ho194.22 (18)
O7—Ho1—O9161.82 (9)C14—C9—C8120.1 (2)
O6—Ho1—O9142.26 (8)C14—C9—C10120.2 (3)
O13—Ho1—O9117.22 (8)C8—C9—C10119.7 (3)
O2—Ho1—O4105.43 (6)N4—O10—Ho198.35 (18)
O3—Ho1—O461.81 (6)C11—C10—C9120.5 (3)
O12—Ho1—O4130.33 (7)C11—C10—H10119.7
O10—Ho1—O469.31 (8)C9—C10—H10119.7
O7—Ho1—O465.47 (7)C10—C11—C12120.5 (3)
O6—Ho1—O467.02 (7)C10—C11—H11119.8
O13—Ho1—O4133.42 (8)C12—C11—H11119.8
O9—Ho1—O4107.68 (7)N5—O12—Ho196.81 (17)
O2—Ho1—O160.97 (6)C13—C12—C11120.0 (3)
O3—Ho1—O1123.71 (6)C13—C12—H12120.0
O12—Ho1—O169.08 (7)C11—C12—H12120.0
O10—Ho1—O189.68 (8)N5—O13—Ho193.77 (18)
O7—Ho1—O1118.91 (7)C12—C13—O4125.9 (3)
O6—Ho1—O1134.27 (7)C12—C13—C14121.8 (3)
O13—Ho1—O164.94 (8)O4—C13—C14112.3 (2)
O9—Ho1—O160.84 (7)O3—C14—C9122.7 (2)
O4—Ho1—O1157.72 (7)O3—C14—C13120.3 (2)
O2—Ho1—N5101.59 (8)C9—C14—C13117.0 (2)
O3—Ho1—N599.79 (8)O4—C15—H15A109.5
O12—Ho1—N526.76 (8)O4—C15—H15B109.5
O10—Ho1—N5149.46 (9)H15A—C15—H15B109.5
O7—Ho1—N595.87 (9)O4—C15—H15C109.5
O6—Ho1—N571.66 (8)H15A—C15—H15C109.5
O13—Ho1—N525.69 (8)H15B—C15—H15C109.5
O9—Ho1—N599.58 (9)C17—C16—H16A109.5
O4—Ho1—N5137.82 (7)C17—C16—H16B109.5
O1—Ho1—N564.44 (8)H16A—C16—H16B109.5
O2—Ho1—N394.50 (8)C17—C16—H16C109.5
O3—Ho1—N395.05 (8)H16A—C16—H16C109.5
O12—Ho1—N398.74 (8)H16B—C16—H16C109.5
O10—Ho1—N3126.41 (8)C22—C17—C18117.0 (3)
O7—Ho1—N326.47 (8)C22—C17—C16120.8 (3)
O6—Ho1—N326.32 (8)C18—C17—C16122.1 (3)
O13—Ho1—N371.33 (8)C19—C18—C17121.9 (3)
O9—Ho1—N3165.53 (8)C19—C18—H18119.1
O4—Ho1—N362.21 (7)C17—C18—H18119.1
O1—Ho1—N3132.29 (7)C20—C19—C18119.6 (3)
N5—Ho1—N384.10 (8)C20—C19—H19120.2
C28—O1—C30117.5 (2)C18—C19—H19120.2
C28—O1—Ho1113.27 (16)C19—C20—C21119.6 (3)
C30—O1—Ho1129.00 (18)C19—C20—N1118.0 (3)
H1WA—O1W—H1WB98.7C21—C20—N1122.4 (3)
C23—N1—C20127.3 (2)C22—C21—C20119.8 (3)
C23—N1—H111116.4C22—C21—H21120.1
C20—N1—H111116.4C20—C21—H21120.1
C3—C1—H1B109.5C21—C22—C17122.1 (3)
C3—C1—H1C109.5C21—C22—H22119.0
H1B—C1—H1C109.5C17—C22—H22119.0
C3—C1—H1D109.5N1—C23—C24124.5 (3)
H1B—C1—H1D109.5N1—C23—H23117.8
H1C—C1—H1D109.5C24—C23—H23117.8
C29—O2—Ho1131.40 (17)C23—C24—C29121.9 (3)
C8—N2—C6128.2 (2)C23—C24—C25118.6 (3)
C8—N2—H222115.9C29—C24—C25119.5 (3)
C6—N2—H222115.9C26—C25—C24120.8 (3)
C7—C2—C3121.0 (3)C26—C25—H25119.6
C7—C2—H2119.5C24—C25—H25119.6
C3—C2—H2119.5C25—C26—C27120.6 (3)
C14—O3—Ho1128.69 (17)C25—C26—H26119.7
O5—N3—O6121.9 (3)C27—C26—H26119.7
O5—N3—O7122.7 (3)C28—C27—C26119.7 (3)
O6—N3—O7115.4 (2)C28—C27—H27120.2
O5—N3—Ho1175.7 (2)C26—C27—H27120.2
O6—N3—Ho158.15 (14)C27—C28—O1125.5 (3)
O7—N3—Ho157.42 (14)C27—C28—C29121.9 (3)
C4—C3—C2117.8 (3)O1—C28—C29112.6 (2)
C4—C3—C1121.1 (4)O2—C29—C24121.8 (3)
C2—C3—C1121.1 (3)O2—C29—C28120.8 (2)
C13—O4—C15117.2 (3)C24—C29—C28117.4 (2)
C13—O4—Ho1112.94 (16)O1—C30—H30A109.5
C15—O4—Ho1129.3 (2)O1—C30—H30B109.5
O8—N4—O9123.0 (3)H30A—C30—H30B109.5
O8—N4—O10121.0 (3)O1—C30—H30C109.5
O9—N4—O10116.0 (3)H30A—C30—H30C109.5
O8—N4—Ho1176.4 (3)H30B—C30—H30C109.5
O9—N4—Ho160.32 (16)
O2—Ho1—O1—C287.49 (18)O3—Ho1—O6—N3138.80 (17)
O3—Ho1—O1—C28161.46 (18)O12—Ho1—O6—N3142.28 (17)
O12—Ho1—O1—C28142.6 (2)O10—Ho1—O6—N380.32 (18)
O10—Ho1—O1—C2882.9 (2)O7—Ho1—O6—N32.42 (15)
O7—Ho1—O1—C2831.6 (2)O13—Ho1—O6—N388.05 (16)
O6—Ho1—O1—C2896.3 (2)O9—Ho1—O6—N3162.94 (15)
O13—Ho1—O1—C2885.4 (2)O4—Ho1—O6—N373.45 (16)
O9—Ho1—O1—C28127.6 (2)O1—Ho1—O6—N398.56 (16)
O4—Ho1—O1—C2864.0 (3)N5—Ho1—O6—N3115.23 (17)
N5—Ho1—O1—C28113.9 (2)C4—C5—C6—C71.1 (5)
N3—Ho1—O1—C2859.9 (2)C4—C5—C6—N2178.7 (3)
O2—Ho1—O1—C30178.2 (3)C8—N2—C6—C710.2 (5)
O3—Ho1—O1—C3024.2 (3)C8—N2—C6—C5169.6 (3)
O12—Ho1—O1—C3031.7 (3)O5—N3—O7—Ho1174.8 (3)
O10—Ho1—O1—C30102.8 (3)O6—N3—O7—Ho14.1 (2)
O7—Ho1—O1—C30142.7 (3)O2—Ho1—O7—N3164.19 (18)
O6—Ho1—O1—C3078.0 (3)O3—Ho1—O7—N339.94 (18)
O13—Ho1—O1—C3088.9 (3)O12—Ho1—O7—N347.79 (18)
O9—Ho1—O1—C3058.1 (3)O10—Ho1—O7—N3129.87 (16)
O4—Ho1—O1—C30121.7 (3)O6—Ho1—O7—N32.41 (14)
N5—Ho1—O1—C3060.5 (3)O13—Ho1—O7—N378.72 (16)
N3—Ho1—O1—C30114.4 (3)O9—Ho1—O7—N3147.9 (2)
O3—Ho1—O2—C29117.7 (3)O4—Ho1—O7—N376.52 (16)
O12—Ho1—O2—C2924.3 (3)O1—Ho1—O7—N3127.98 (15)
O10—Ho1—O2—C29106.0 (2)N5—Ho1—O7—N364.00 (17)
O7—Ho1—O2—C29134.6 (3)C5—C6—C7—C21.4 (5)
O6—Ho1—O2—C29118.0 (2)N2—C6—C7—C2178.4 (3)
O13—Ho1—O2—C2957.4 (2)C3—C2—C7—C60.7 (5)
O9—Ho1—O2—C2958.9 (2)C6—N2—C8—C9177.6 (3)
O4—Ho1—O2—C29170.0 (2)O8—N4—O9—Ho1178.2 (3)
O1—Ho1—O2—C299.1 (2)O10—N4—O9—Ho12.3 (3)
N5—Ho1—O2—C2942.7 (3)O2—Ho1—O9—N464.67 (18)
N3—Ho1—O2—C29127.6 (2)O3—Ho1—O9—N494.90 (18)
O2—Ho1—O3—C1477.2 (3)O12—Ho1—O9—N4173.83 (19)
O12—Ho1—O3—C14135.2 (2)O10—Ho1—O9—N41.37 (16)
O10—Ho1—O3—C1488.7 (2)O7—Ho1—O9—N420.2 (3)
O7—Ho1—O3—C1420.7 (3)O6—Ho1—O9—N4119.64 (19)
O6—Ho1—O3—C1454.4 (2)O13—Ho1—O9—N4148.22 (16)
O13—Ho1—O3—C14108.5 (2)O4—Ho1—O9—N444.57 (19)
O9—Ho1—O3—C14141.0 (2)O1—Ho1—O9—N4114.55 (19)
O4—Ho1—O3—C1417.3 (2)N5—Ho1—O9—N4168.02 (17)
O1—Ho1—O3—C14172.0 (2)N3—Ho1—O9—N488.3 (4)
N5—Ho1—O3—C14122.3 (2)N2—C8—C9—C140.5 (4)
N3—Ho1—O3—C1437.4 (2)N2—C8—C9—C10178.2 (3)
O2—Ho1—N3—O6160.90 (16)O8—N4—O10—Ho1178.1 (2)
O3—Ho1—N3—O639.66 (16)O9—N4—O10—Ho12.4 (3)
O12—Ho1—N3—O637.21 (17)O2—Ho1—O10—N4110.64 (18)
O10—Ho1—N3—O6121.78 (16)O3—Ho1—O10—N473.88 (17)
O7—Ho1—N3—O6175.7 (3)O12—Ho1—O10—N411.2 (2)
O13—Ho1—N3—O682.56 (16)O7—Ho1—O10—N4171.57 (16)
O9—Ho1—N3—O645.9 (4)O6—Ho1—O10—N4130.39 (17)
O4—Ho1—N3—O694.02 (17)O13—Ho1—O10—N473.6 (2)
O1—Ho1—N3—O6106.81 (17)O9—Ho1—O10—N41.35 (16)
N5—Ho1—N3—O659.68 (16)O4—Ho1—O10—N4137.16 (18)
O2—Ho1—N3—O714.77 (17)O1—Ho1—O10—N450.41 (17)
O3—Ho1—N3—O7144.66 (16)N5—Ho1—O10—N419.6 (3)
O12—Ho1—N3—O7138.46 (16)N3—Ho1—O10—N4163.29 (16)
O10—Ho1—N3—O762.55 (19)C14—C9—C10—C110.4 (5)
O6—Ho1—N3—O7175.7 (3)C8—C9—C10—C11178.1 (3)
O13—Ho1—N3—O793.11 (17)C9—C10—C11—C121.9 (5)
O9—Ho1—N3—O7138.4 (3)O11—N5—O12—Ho1179.3 (3)
O4—Ho1—N3—O790.31 (17)O13—N5—O12—Ho11.1 (3)
O1—Ho1—N3—O768.86 (18)O2—Ho1—O12—N543.4 (2)
N5—Ho1—N3—O7115.99 (17)O3—Ho1—O12—N5150.72 (18)
C7—C2—C3—C40.2 (5)O10—Ho1—O12—N5144.77 (17)
C7—C2—C3—C1179.3 (3)O7—Ho1—O12—N538.10 (19)
O2—Ho1—O4—C13175.66 (18)O6—Ho1—O12—N573.53 (17)
O3—Ho1—O4—C1315.89 (17)O13—Ho1—O12—N50.61 (16)
O12—Ho1—O4—C1320.2 (2)O9—Ho1—O12—N5136.99 (18)
O10—Ho1—O4—C13106.21 (19)O4—Ho1—O12—N5118.38 (17)
O7—Ho1—O4—C13126.7 (2)O1—Ho1—O12—N574.47 (17)
O6—Ho1—O4—C1368.70 (18)N3—Ho1—O12—N557.61 (18)
O13—Ho1—O4—C1392.95 (19)C10—C11—C12—C131.4 (5)
O9—Ho1—O4—C1371.34 (19)O11—N5—O13—Ho1179.4 (3)
O1—Ho1—O4—C13126.5 (2)O12—N5—O13—Ho11.0 (3)
N5—Ho1—O4—C1356.4 (2)O2—Ho1—O13—N5145.02 (19)
N3—Ho1—O4—C1397.41 (19)O3—Ho1—O13—N532.8 (2)
O2—Ho1—O4—C1513.3 (3)O12—Ho1—O13—N50.63 (17)
O3—Ho1—O4—C15173.1 (3)O10—Ho1—O13—N5108.5 (2)
O12—Ho1—O4—C15150.8 (3)O7—Ho1—O13—N5144.4 (2)
O10—Ho1—O4—C1582.8 (3)O6—Ho1—O13—N589.00 (19)
O7—Ho1—O4—C1544.3 (3)O9—Ho1—O13—N550.4 (2)
O6—Ho1—O4—C15102.3 (3)O4—Ho1—O13—N5112.72 (18)
O13—Ho1—O4—C1578.1 (3)O1—Ho1—O13—N582.71 (19)
O9—Ho1—O4—C15117.7 (3)N3—Ho1—O13—N5116.9 (2)
O1—Ho1—O4—C1562.5 (4)C11—C12—C13—O4178.7 (3)
N5—Ho1—O4—C15114.6 (3)C11—C12—C13—C140.6 (5)
N3—Ho1—O4—C1573.6 (3)C15—O4—C13—C126.1 (5)
O2—Ho1—N4—O9116.46 (18)Ho1—O4—C13—C12166.1 (2)
O3—Ho1—N4—O977.07 (18)C15—O4—C13—C14173.3 (3)
O12—Ho1—N4—O96.29 (19)Ho1—O4—C13—C1414.5 (3)
O10—Ho1—N4—O9177.5 (3)Ho1—O3—C14—C9163.8 (2)
O7—Ho1—N4—O9170.90 (16)Ho1—O3—C14—C1316.8 (4)
O6—Ho1—N4—O997.1 (2)C8—C9—C14—O33.3 (4)
O13—Ho1—N4—O943.9 (2)C10—C9—C14—O3179.0 (3)
O4—Ho1—N4—O9138.03 (18)C8—C9—C14—C13176.1 (3)
O1—Ho1—N4—O955.94 (17)C10—C9—C14—C131.6 (4)
N5—Ho1—N4—O914.4 (2)C12—C13—C14—O3178.5 (3)
N3—Ho1—N4—O9149.44 (19)O4—C13—C14—O32.1 (4)
O2—Ho1—N4—O1065.99 (18)C12—C13—C14—C92.1 (4)
O3—Ho1—N4—O10100.48 (18)O4—C13—C14—C9177.3 (2)
O12—Ho1—N4—O10171.25 (17)C22—C17—C18—C190.6 (5)
O7—Ho1—N4—O1011.6 (2)C16—C17—C18—C19177.9 (4)
O6—Ho1—N4—O1080.4 (2)C17—C18—C19—C200.8 (6)
O13—Ho1—N4—O10138.51 (18)C18—C19—C20—C210.0 (5)
O9—Ho1—N4—O10177.5 (3)C18—C19—C20—N1179.6 (3)
O4—Ho1—N4—O1039.51 (17)C23—N1—C20—C19171.7 (3)
O1—Ho1—N4—O10126.52 (18)C23—N1—C20—C217.8 (4)
N5—Ho1—N4—O10168.10 (17)C19—C20—C21—C220.8 (5)
N3—Ho1—N4—O1028.1 (3)N1—C20—C21—C22178.7 (3)
C2—C3—C4—C50.5 (6)C20—C21—C22—C171.1 (5)
C1—C3—C4—C5179.0 (4)C18—C17—C22—C210.3 (5)
O2—Ho1—N5—O1335.2 (2)C16—C17—C22—C21178.9 (3)
O3—Ho1—N5—O13152.29 (18)C20—N1—C23—C24177.9 (3)
O12—Ho1—N5—O13178.9 (3)N1—C23—C24—C292.0 (5)
O10—Ho1—N5—O13119.5 (2)N1—C23—C24—C25176.4 (3)
O7—Ho1—N5—O1334.41 (19)C23—C24—C25—C26177.1 (3)
O6—Ho1—N5—O1381.93 (19)C29—C24—C25—C261.3 (5)
O9—Ho1—N5—O13135.97 (19)C24—C25—C26—C270.3 (6)
O4—Ho1—N5—O1393.9 (2)C25—C26—C27—C280.0 (6)
O1—Ho1—N5—O1384.91 (19)C26—C27—C28—O1179.6 (3)
N3—Ho1—N5—O1358.15 (19)C26—C27—C28—C290.6 (5)
O2—Ho1—N5—O12143.64 (17)C30—O1—C28—C270.3 (5)
O3—Ho1—N5—O1228.83 (18)Ho1—O1—C28—C27174.7 (2)
O10—Ho1—N5—O1259.3 (2)C30—O1—C28—C29178.7 (3)
O7—Ho1—N5—O12146.71 (17)Ho1—O1—C28—C296.3 (3)
O6—Ho1—N5—O1299.18 (18)Ho1—O2—C29—C24169.68 (19)
O13—Ho1—N5—O12178.9 (3)Ho1—O2—C29—C289.7 (4)
O9—Ho1—N5—O1242.91 (18)C23—C24—C29—O23.0 (4)
O4—Ho1—N5—O1287.2 (2)C25—C24—C29—O2178.7 (3)
O1—Ho1—N5—O1293.98 (18)C23—C24—C29—C28176.5 (3)
N3—Ho1—N5—O12122.96 (18)C25—C24—C29—C281.9 (4)
C3—C4—C5—C60.1 (6)C27—C28—C29—O2179.0 (3)
O5—N3—O6—Ho1174.9 (3)O1—C28—C29—O20.1 (4)
O7—N3—O6—Ho14.0 (2)C27—C28—C29—C241.6 (4)
O2—Ho1—O6—N321.95 (18)O1—C28—C29—C24179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10i0.882.112.996 (6)177
O1W—H1WB···O11ii0.881.942.817 (6)177
N1—H111···O20.861.982.655 (3)135
N2—H222···O30.861.882.588 (3)138
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ho(NO3)3(C15H15NO2)2]·H2O
Mr851.54
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7646 (4), 9.9813 (4), 18.4281 (11)
α, β, γ (°)97.862 (3), 101.688 (3), 106.270 (2)
V3)1652.21 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.558, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
20799, 5775, 5426
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.05
No. of reflections5775
No. of parameters455
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.67

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ho1—O22.2734 (18)Ho1—O62.435 (2)
Ho1—O32.2787 (18)Ho1—O132.483 (2)
Ho1—O122.388 (2)Ho1—O92.519 (2)
Ho1—O102.414 (2)Ho1—O42.742 (2)
Ho1—O72.418 (2)Ho1—O12.803 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10i0.882.112.996 (6)177.0
O1W—H1WB···O11ii0.881.942.817 (6)176.8
N1—H111···O20.861.982.655 (3)135.1
N2—H222···O30.861.882.588 (3)138.2
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150–4152.  CrossRef CAS Web of Science Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J.-F., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1385–m1386.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421–424.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds