organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Low-temperature redetermination of 1,3-bis­­(penta­fluoro­phen­yl)triazene

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: veschwkg@ufs.ac.za

(Received 5 November 2010; accepted 5 November 2010; online 13 November 2010)

The crystal structure of the title compound, (C6F5)2N3H, is stabilized by N—H⋯N hydrogen bonding, forming centrosymmetric dimers organized in a herringbone motif. Important geometrical parameters are N—N = 1.272 (2) and 1.330 (2) Å and N—N—N = 112.56 (15)°. The dihedral angle between C6F5 groups is 21.22 (9)°. The room temperature structure was reported by Leman et al. (1993). Inorg. Chem. 32, 4324–4336]. In the current determination, the data were collected to a higher θ angle, resulting in higher precision for the C—C bond lengths(0.001–0.005 versus 0.003 Å).

Related literature

Average bond lengths were obtained from the Cambridge Structural Database (Allen, 2000[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); For the synthesis of nitro­formazans, see: Pelkis et al. (1957[Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR, 27, 2190-2194.]); and for the synthesis of triazenes, see: Brooke et al. (1965[Brooke, G. M., Forbes, E. J., Richardson, R. D., Stacey, M. & Tatlow, J. C. (1965). J. Chem. Soc. pp. 2088-2094.]). For use of triazenes in both synthesis and as metal coordinating ligands, see: Leman et al. (1993[Leman, J. T., Braddock-Wilking, J., Coolong, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324-4336.]).

[Scheme 1]

Experimental

Crystal data
  • C12HF10N3

  • Mr = 377.16

  • Monoclinic, P 21 /c

  • a = 9.9930 (8) Å

  • b = 9.4850 (8) Å

  • c = 12.9200 (11) Å

  • β = 95.585 (2)°

  • V = 1218.79 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.3 × 0.19 × 0.15 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker; 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.966

  • 12525 measured reflections

  • 3013 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.07

  • 3013 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1i 0.88 2.23 3.076 (2) 162
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, M. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A series of dithizones with varying number of fluorines on the phenyl rings were synthesised. During this process the nitroformazan precursor is initially prepared from the substituted aniline, as described by Pelkis et al., 1957. In the final step the nitro group is substituted by sulfur, to form dithizone. However, during the first step to prepare pentafluorophenyldithizone it was found that, contrary to expectation, a triazene formed instead of the usual nitroformazan. Previous studies show the extensive use of triazenes in both synthesis and as metal coordinating ligand, as illustrated by Leman et al., 1993. Triazenes, in general, are traditionally synthesised slightly different, according to a method by Brooke et al., 1965.

The title compound (Fig.1) and geometrical data are within expected values (average values obtained from the Cambridge Structural Database; Allen, 200). The C6F5 groups are twisted out of the plane formed by the N—NN fragment 30.91 (16)° for ring C1—C6 and 38.49 (13)° for ring C7—C12. Hydrogen bonding (Fig. 2, Table 1) creates a centrosymmetric dimers that organise in a herring-bone motif along the c axis (Fig. 3).

Related literature top

For general bacground bond-length data, see: Allen et al. (1987); For the synthesis of nitroformazans, see: Pelkis et al. (1957); and for the synthesis of triazenes, see: Brooke et al. (1965). For use of triazenes in both synthesis and as metal coordinating ligands, see: Leman et al. (1993).

Experimental top

Reagent chemicals and solvents were purchased from Sigma-Aldrich and used without further purification. For the synthesis 2,3,4,5,6 pentafluoroaniline (5 g, 27.3 mmol) was added to a mixture of concentrated hydrochloric acid (20 mL) and water (35 mL) at 273 K, and diazotized by the slow addition of sodium nitrite (3 g, 43 mmol), stirring for 30 min. The resulting solution was added, with stirring, to a cold mixture of sodium acetate (80 g), glacial acetic acid (45 mL) and water (25 mL). Nitromethane (5.0 g, 82 mmol) was added after 10 min. While heating at 343 K and stirring for 20 h the colour changed to dark-red. Filtering the precipitated 1,3 bis-pentafluorophenyltriazene off, gave the product in 52% yield. Crystals suitable for X-ray crystallography were grown from a mixture of dichloromethane and methanol. Although this method is typically used for the preparation of nitroformazan as precursor for the synthesis of dithizone, nitromethane did not serve here as coupling reagent in the synthesis of this highly fluorinated compound. The unexpected outcome is ascribed to the large electron-withdrawing capacity of the five fluorines on each phenyl ring.

Refinement top

The imine H atom was placed in a geometrically idealized position (C—H = 0.88) and constrained to ride on the parent atom with Uiso(H) = 1.2Ueq(C). The highest residual electron density peak of 0.36 e.Å is 0.70 Å from C9 and the deepest hole of -0.31 e.Å is 0.37 Å from H3 representing no physical meaning.

Structure description top

A series of dithizones with varying number of fluorines on the phenyl rings were synthesised. During this process the nitroformazan precursor is initially prepared from the substituted aniline, as described by Pelkis et al., 1957. In the final step the nitro group is substituted by sulfur, to form dithizone. However, during the first step to prepare pentafluorophenyldithizone it was found that, contrary to expectation, a triazene formed instead of the usual nitroformazan. Previous studies show the extensive use of triazenes in both synthesis and as metal coordinating ligand, as illustrated by Leman et al., 1993. Triazenes, in general, are traditionally synthesised slightly different, according to a method by Brooke et al., 1965.

The title compound (Fig.1) and geometrical data are within expected values (average values obtained from the Cambridge Structural Database; Allen, 200). The C6F5 groups are twisted out of the plane formed by the N—NN fragment 30.91 (16)° for ring C1—C6 and 38.49 (13)° for ring C7—C12. Hydrogen bonding (Fig. 2, Table 1) creates a centrosymmetric dimers that organise in a herring-bone motif along the c axis (Fig. 3).

For general bacground bond-length data, see: Allen et al. (1987); For the synthesis of nitroformazans, see: Pelkis et al. (1957); and for the synthesis of triazenes, see: Brooke et al. (1965). For use of triazenes in both synthesis and as metal coordinating ligands, see: Leman et al. (1993).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen bonding of (I) showing the dimeric units formed.
[Figure 3] Fig. 3. Packing diagram of (I) showing the herring-bone motif.
1,3-bis(pentafluorophenyl)triazene top
Crystal data top
C12HF10N3F(000) = 736
Mr = 377.16Dx = 2.055 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2521 reflections
a = 9.9930 (8) Åθ = 3.5–28.1°
b = 9.4850 (8) ŵ = 0.23 mm1
c = 12.9200 (11) ÅT = 100 K
β = 95.585 (2)°Cuboid, red
V = 1218.79 (18) Å30.3 × 0.19 × 0.15 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3013 independent reflections
Graphite monochromator2177 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.039
φ scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker; 2004)
h = 1213
Tmin = 0.933, Tmax = 0.966k = 1212
12525 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.6444P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12HF10N3V = 1218.79 (18) Å3
Mr = 377.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9930 (8) ŵ = 0.23 mm1
b = 9.4850 (8) ÅT = 100 K
c = 12.9200 (11) Å0.3 × 0.19 × 0.15 mm
β = 95.585 (2)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3013 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker; 2004)
2177 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.966Rint = 0.039
12525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
3013 reflectionsΔρmin = 0.31 e Å3
226 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1126 frames were collected with a frame width of 0.5° covering up to θ = 28.33° with 98.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32054 (15)0.00606 (18)0.51342 (13)0.0176 (4)
N20.29181 (15)0.01759 (18)0.41693 (13)0.0170 (4)
N30.39984 (15)0.04639 (18)0.36826 (13)0.0187 (4)
H30.47930.05540.40340.022*
C10.38491 (18)0.0620 (2)0.26046 (15)0.0161 (4)
C20.28659 (18)0.0055 (2)0.19428 (16)0.0170 (4)
C30.27844 (18)0.0129 (2)0.08793 (16)0.0183 (4)
C40.37001 (19)0.0977 (2)0.04420 (16)0.0198 (4)
C50.46978 (19)0.1626 (2)0.10765 (16)0.0199 (4)
C60.47531 (18)0.1467 (2)0.21357 (16)0.0184 (4)
C70.20622 (17)0.0486 (2)0.56306 (15)0.0156 (4)
C80.20040 (18)0.0106 (2)0.66629 (16)0.0178 (4)
C90.09951 (19)0.0571 (2)0.72416 (15)0.0190 (4)
C100.00216 (18)0.1471 (2)0.67859 (16)0.0187 (4)
C110.00446 (18)0.1863 (2)0.57591 (16)0.0174 (4)
C120.10529 (18)0.1381 (2)0.51888 (15)0.0165 (4)
F20.19834 (11)0.09374 (13)0.23200 (9)0.0218 (3)
F30.18284 (12)0.05460 (13)0.02754 (9)0.0254 (3)
F40.36352 (12)0.11346 (14)0.05941 (9)0.0272 (3)
F50.56138 (12)0.24230 (14)0.06517 (10)0.0283 (3)
F60.57237 (11)0.21376 (13)0.27471 (9)0.0246 (3)
F80.29674 (11)0.07433 (13)0.71246 (9)0.0241 (3)
F90.09641 (12)0.01701 (14)0.82274 (9)0.0269 (3)
F100.09396 (11)0.19674 (13)0.73422 (10)0.0243 (3)
F110.09111 (11)0.27180 (13)0.53101 (10)0.0245 (3)
F120.10472 (11)0.18344 (13)0.42082 (9)0.0218 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0153 (7)0.0214 (9)0.0163 (9)0.0000 (6)0.0024 (6)0.0012 (7)
N20.0160 (7)0.0181 (9)0.0172 (9)0.0000 (6)0.0031 (6)0.0005 (7)
N30.0142 (7)0.0247 (10)0.0172 (9)0.0037 (7)0.0009 (6)0.0012 (7)
C10.0152 (8)0.0164 (10)0.0167 (10)0.0014 (7)0.0017 (7)0.0008 (8)
C20.0158 (8)0.0147 (10)0.0209 (11)0.0001 (7)0.0035 (7)0.0003 (8)
C30.0173 (9)0.0182 (10)0.0190 (11)0.0016 (8)0.0006 (8)0.0006 (8)
C40.0244 (10)0.0200 (11)0.0155 (10)0.0055 (8)0.0040 (8)0.0026 (8)
C50.0193 (9)0.0177 (11)0.0236 (11)0.0004 (8)0.0070 (8)0.0035 (9)
C60.0150 (8)0.0167 (10)0.0230 (11)0.0002 (7)0.0003 (8)0.0013 (8)
C70.0138 (8)0.0171 (10)0.0159 (10)0.0027 (7)0.0014 (7)0.0014 (8)
C80.0144 (8)0.0186 (11)0.0199 (11)0.0000 (7)0.0003 (7)0.0018 (8)
C90.0210 (9)0.0226 (11)0.0134 (10)0.0053 (8)0.0023 (8)0.0014 (8)
C100.0163 (9)0.0192 (11)0.0215 (11)0.0035 (8)0.0060 (8)0.0069 (8)
C110.0155 (8)0.0152 (10)0.0211 (11)0.0005 (7)0.0009 (7)0.0004 (8)
C120.0176 (9)0.0187 (10)0.0130 (10)0.0025 (7)0.0004 (7)0.0002 (8)
F20.0208 (5)0.0244 (7)0.0203 (6)0.0077 (5)0.0023 (5)0.0023 (5)
F30.0293 (6)0.0275 (7)0.0183 (7)0.0069 (5)0.0036 (5)0.0011 (5)
F40.0334 (7)0.0318 (8)0.0171 (7)0.0016 (6)0.0055 (5)0.0032 (5)
F50.0265 (6)0.0308 (7)0.0292 (7)0.0082 (5)0.0106 (5)0.0064 (6)
F60.0197 (5)0.0285 (7)0.0252 (7)0.0087 (5)0.0005 (5)0.0005 (5)
F80.0226 (6)0.0298 (7)0.0195 (7)0.0071 (5)0.0004 (5)0.0053 (5)
F90.0304 (6)0.0342 (8)0.0168 (6)0.0011 (5)0.0060 (5)0.0033 (5)
F100.0212 (6)0.0270 (7)0.0260 (7)0.0008 (5)0.0098 (5)0.0048 (5)
F110.0198 (5)0.0260 (7)0.0274 (7)0.0088 (5)0.0002 (5)0.0008 (5)
F120.0241 (6)0.0249 (7)0.0162 (6)0.0046 (5)0.0018 (5)0.0029 (5)
Geometric parameters (Å, º) top
N1—N21.272 (2)C5—C61.373 (3)
N1—C71.422 (2)C6—F61.349 (2)
N2—N31.330 (2)C7—C81.388 (3)
N3—C11.394 (2)C7—C121.397 (3)
N3—H30.88C8—F81.349 (2)
C1—C61.391 (3)C8—C91.385 (3)
C1—C21.394 (3)C9—F91.332 (2)
C2—F21.341 (2)C9—C101.382 (3)
C2—C31.380 (3)C10—F101.340 (2)
C3—F31.336 (2)C10—C111.380 (3)
C3—C41.380 (3)C11—F111.341 (2)
C4—F41.342 (2)C11—C121.383 (3)
C4—C51.373 (3)C12—F121.337 (2)
C5—F51.345 (2)
N2—N1—C7112.19 (15)F6—C6—C1118.53 (18)
N1—N2—N3112.56 (15)C5—C6—C1122.21 (18)
N2—N3—C1118.78 (15)C8—C7—C12117.02 (17)
N2—N3—H3120.6C8—C7—N1118.04 (17)
C1—N3—H3120.6C12—C7—N1124.61 (18)
C6—C1—C2116.55 (18)F8—C8—C9118.51 (18)
C6—C1—N3119.05 (17)F8—C8—C7119.02 (17)
C2—C1—N3124.38 (17)C9—C8—C7122.46 (18)
F2—C2—C3117.62 (17)F9—C9—C10120.19 (17)
F2—C2—C1120.85 (18)F9—C9—C8120.73 (18)
C3—C2—C1121.51 (18)C10—C9—C8119.08 (18)
F3—C3—C2119.36 (17)F10—C10—C11120.04 (18)
F3—C3—C4120.34 (18)F10—C10—C9120.00 (18)
C2—C3—C4120.28 (18)C11—C10—C9119.95 (17)
F4—C4—C5120.47 (18)F11—C11—C10120.08 (17)
F4—C4—C3120.24 (18)F11—C11—C12119.65 (18)
C5—C4—C3119.27 (19)C10—C11—C12120.28 (18)
F5—C5—C6120.39 (18)F12—C12—C11117.55 (17)
F5—C5—C4119.46 (19)F12—C12—C7121.24 (17)
C6—C5—C4120.14 (18)C11—C12—C7121.18 (18)
F6—C6—C5119.25 (17)
C7—N1—N2—N3174.92 (16)N3—C1—C6—C5177.51 (18)
N1—N2—N3—C1174.28 (17)N2—N1—C7—C8147.83 (18)
N2—N3—C1—C6152.97 (18)N2—N1—C7—C1238.9 (3)
N2—N3—C1—C229.0 (3)C12—C7—C8—F8179.22 (17)
C6—C1—C2—F2177.31 (17)N1—C7—C8—F85.4 (3)
N3—C1—C2—F20.7 (3)C12—C7—C8—C90.5 (3)
C6—C1—C2—C31.0 (3)N1—C7—C8—C9174.24 (18)
N3—C1—C2—C3179.05 (18)F8—C8—C9—F91.1 (3)
F2—C2—C3—F31.3 (3)C7—C8—C9—F9179.21 (18)
C1—C2—C3—F3179.65 (17)F8—C8—C9—C10178.35 (17)
F2—C2—C3—C4177.26 (17)C7—C8—C9—C101.3 (3)
C1—C2—C3—C41.1 (3)F9—C9—C10—F101.5 (3)
F3—C3—C4—F40.2 (3)C8—C9—C10—F10177.96 (17)
C2—C3—C4—F4178.76 (17)F9—C9—C10—C11178.85 (17)
F3—C3—C4—C5178.06 (18)C8—C9—C10—C111.7 (3)
C2—C3—C4—C50.5 (3)F10—C10—C11—F111.4 (3)
F4—C4—C5—F50.1 (3)C9—C10—C11—F11178.93 (17)
C3—C4—C5—F5178.22 (18)F10—C10—C11—C12178.43 (17)
F4—C4—C5—C6179.63 (18)C9—C10—C11—C121.2 (3)
C3—C4—C5—C62.1 (3)F11—C11—C12—F122.0 (3)
F5—C5—C6—F61.1 (3)C10—C11—C12—F12177.86 (17)
C4—C5—C6—F6178.58 (18)F11—C11—C12—C7179.80 (17)
F5—C5—C6—C1178.10 (18)C10—C11—C12—C70.3 (3)
C4—C5—C6—C12.2 (3)C8—C7—C12—F12178.17 (17)
C2—C1—C6—F6179.85 (17)N1—C7—C12—F124.9 (3)
N3—C1—C6—F61.7 (3)C8—C7—C12—C110.0 (3)
C2—C1—C6—C50.6 (3)N1—C7—C12—C11173.28 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.882.233.076 (2)162
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12HF10N3
Mr377.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.9930 (8), 9.4850 (8), 12.9200 (11)
β (°) 95.585 (2)
V3)1218.79 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.3 × 0.19 × 0.15
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker; 2004)
Tmin, Tmax0.933, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
12525, 3013, 2177
Rint0.039
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.07
No. of reflections3013
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.882.233.076 (2)162.2
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

Financial assistance from the National Research Foundation of South Africa is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, M. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrooke, G. M., Forbes, E. J., Richardson, R. D., Stacey, M. & Tatlow, J. C. (1965). J. Chem. Soc. pp. 2088–2094.  CrossRef Web of Science Google Scholar
First citationBruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeman, J. T., Braddock-Wilking, J., Coolong, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324–4336.  CSD CrossRef CAS Web of Science Google Scholar
First citationPelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR, 27, 2190–2194.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds