metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­(μ2-5,5-dioxodibenzo[b,d]thio­phene-3,7-di­carboxyl­ato)(μ2-ethyl­ene glycol)manganese(II)] di­methyl­acetamide solvate]

aShanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China
*Correspondence e-mail: eqgao@chem.ecnu.edu.cn

(Received 22 October 2010; accepted 5 November 2010; online 13 November 2010)

In the title complex, {[Mn(C14H6O6S)(C2H6O2)(H2O)2]·C4H9NO}n, the MnII ion is six-coordinated in a trans-octa­hedral geometry by two carboxyl­ate O atoms from two 5,5-dioxodibenzo[b,d]thio­phene-3,7-dicarboxyl­ate (L) ligands in a monodentate mode, two O atoms from two ethyl­ene glycol (EG) mol­ecules and two aqua O atoms. The metal ions are linked by the EG and L ligands, forming two-dimensional coordination networks, which are associated into the three-dimensional structure through O—H⋯O hydrogen bonds.

Related literature

For the use of H2L ligands in the construction of coordination polymers, including metal-organic frameworks with function­alized pores, see: Neofotistou et al. (2010[Neofotistou, E., Malliakas, C. D. & Trikalitis, P. N. (2010). CrystEngComm, 12, 1034-1037.]). Kanaizuka et al. (2010[Kanaizuka, K., Iwakiri, S., Yamada, T. & Kitagawa, H. (2010). Chem. Lett. 39, 28-29.]). Yan et al. (2009[Yan, L., Yue, Q., Jia, Q.-X., Lemercier, G. & Gao, E.-Q. (2009). Cryst. Growth Des. 9, 2984-2987.]). For the ligand synthesis, see: Neofotistou et al. (2009[Neofotistou, E., Malliakas, C. D. & Trikalitis, P. N. (2009). Chem. Eur. J. 15, 4523-4527.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H6O6S)(C2H6O2)(H2O)2]·C4H9NO

  • Mr = 542.41

  • Monoclinic, P 21 /c

  • a = 7.0564 (3) Å

  • b = 11.8142 (4) Å

  • c = 28.0008 (10) Å

  • β = 100.544 (1)°

  • V = 2294.89 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.811, Tmax = 0.931

  • 30673 measured reflections

  • 5716 independent reflections

  • 5221 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.07

  • 5716 reflections

  • 335 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O9 2.1191 (12)
Mn1—O3i 2.1437 (10)
Mn1—O1 2.1710 (10)
Mn1—O10 2.1897 (12)
Mn1—O8ii 2.2138 (12)
Mn1—O7 2.2253 (11)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O4iii 0.84 (2) 1.83 (2) 2.6623 (16) 175 (2)
O8—H8⋯O2iv 0.82 (2) 1.88 (2) 2.6865 (16) 169 (2)
O9—H9C⋯O11 0.83 (2) 1.89 (2) 2.7086 (17) 171 (2)
O9—H9B⋯O2 0.83 (2) 1.84 (2) 2.6135 (16) 156 (2)
O10—H10C⋯O11iv 0.83 (3) 1.96 (3) 2.7877 (19) 172 (2)
O10—H10B⋯O4i 0.82 (3) 1.98 (3) 2.7663 (16) 161 (3)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In this paper, we report the coordination and hydrogen-bond structure of the title complex (I) derived from S,S-dioxodibenzothiophen-3,7-dicarboxylic acid (H2L). These sulfone-functionalized dicarboxylic ligands have recently been used to construct coordination polymers, including metal-organic frameworks with functionalized pores (Kanaizuka et al. (2010); Neofotistou et al. (2010); Neofotistou et al. (2009); Yan et al. (2009)). The asymmetric unit of I contains a Mn(II) ion, an L ligand, two aqua ligands, an ethylene glycol (EG) ligand, and an N,N-dimethylacetamide (DMA) solvent molecule (Fig. 1). Each Mn atom resides in a trans-octahedral coordination geometry completed by two carboxylate O atoms (O1 and O3) from two L ligands, two O atoms (O7 and O8) from two EG molecules, and two O atoms (O9 and O10) from two water molecules. The Mn—O distances lie in the range of 2.1191 (12)–2.2253 (11) Å (Table 1). The L ligand binds two Mn atoms through two monodentate carboxylate groups, and the EG ligand also binds two Mn atoms through its two hydroxyl groups. Consequently, the metal ions are linked into a two-dimensional layer (Fig. 2). The carboxylate, hydroxyl, and aqua groups from the coordination sphere and the carbonyl group from the DMA molecule provide plenty of sites for hydrogen bonding (Table 2). Each uncoordinated carboxylate oxygen atom (O2 or O4) serves as a bifurcate acceptor to form an intralayer hydrogen bond with a coordinated aqua molecule and an interlayer one with a EG hydroxyl group from the neighboring layer. The oxygen atom (O11) of the DMA solvent is also bifurcately hydrogen-bonded, to two independent aqua ligands from different coordination layers. The above hydrogen bonds collaborate to assemble the two-dimensional coordination layers into a three-dimensional structure.

Related literature top

For the use of H2L ligands in the construction of coordination polymers, including metal-organic frameworks with functionalized pores, see: Neofotistou et al. (2010). Kanaizuka et al. (2010). Yan et al. (2009). For the ligand synthesis, see: Neofotistou et al. (2009).

Experimental top

The ligand was synthesized from dimethyl ester of 4,4'-biphenyldicarboxylic acid and H2SO4, 20%SO3 (oleum) according to the procedure for similar compounds (Neofotistou et al., 2009). The ligand (0.006 g, 0.03 mmol) and MnCl2.6H2O (0.006 g, 0.03 mmol) were dissolved under stirring in a mixture of ethylene glycol (1.0 ml) and DMA (2.0 ml). The resulting solution was left to stand at room temperature for 20 days to afford colorless block crystals of the title compound.

Refinement top

All hydrogen atoms attached to carbon atoms were placed at calculated positions and refined with the riding model using AFIX 43 and AFIX 23 instructions for aromatic C—H and secondary CH2. The hydrogen atoms from EG and water were initially located from difference Fourier maps and refined isotropically with restraints on O—H distance (0.85 Å) and H—O—H angles.

Structure description top

In this paper, we report the coordination and hydrogen-bond structure of the title complex (I) derived from S,S-dioxodibenzothiophen-3,7-dicarboxylic acid (H2L). These sulfone-functionalized dicarboxylic ligands have recently been used to construct coordination polymers, including metal-organic frameworks with functionalized pores (Kanaizuka et al. (2010); Neofotistou et al. (2010); Neofotistou et al. (2009); Yan et al. (2009)). The asymmetric unit of I contains a Mn(II) ion, an L ligand, two aqua ligands, an ethylene glycol (EG) ligand, and an N,N-dimethylacetamide (DMA) solvent molecule (Fig. 1). Each Mn atom resides in a trans-octahedral coordination geometry completed by two carboxylate O atoms (O1 and O3) from two L ligands, two O atoms (O7 and O8) from two EG molecules, and two O atoms (O9 and O10) from two water molecules. The Mn—O distances lie in the range of 2.1191 (12)–2.2253 (11) Å (Table 1). The L ligand binds two Mn atoms through two monodentate carboxylate groups, and the EG ligand also binds two Mn atoms through its two hydroxyl groups. Consequently, the metal ions are linked into a two-dimensional layer (Fig. 2). The carboxylate, hydroxyl, and aqua groups from the coordination sphere and the carbonyl group from the DMA molecule provide plenty of sites for hydrogen bonding (Table 2). Each uncoordinated carboxylate oxygen atom (O2 or O4) serves as a bifurcate acceptor to form an intralayer hydrogen bond with a coordinated aqua molecule and an interlayer one with a EG hydroxyl group from the neighboring layer. The oxygen atom (O11) of the DMA solvent is also bifurcately hydrogen-bonded, to two independent aqua ligands from different coordination layers. The above hydrogen bonds collaborate to assemble the two-dimensional coordination layers into a three-dimensional structure.

For the use of H2L ligands in the construction of coordination polymers, including metal-organic frameworks with functionalized pores, see: Neofotistou et al. (2010). Kanaizuka et al. (2010). Yan et al. (2009). For the ligand synthesis, see: Neofotistou et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination enviroment in the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and the H atoms attached to C are omitted for clarity. [Symmetry code: (i)-1/2 + x, 1/2 - y, 1/2 + z (ii) 1 + x, y, z (iii) -1 + x, y, z (iv)1/2 + x, 1/2 - y, -1/2 + z]
[Figure 2] Fig. 2. Two-dimensional layer connected through L and EG. The intralayer hydrogen bonds are shown as dot lines. The H atoms attached to C are omitted for clarity.
Poly[[diaqua(µ2-5,5-dioxodibenzo[b,d]thiophene- 3,7-dicarboxylato)(µ2-ethylene glycol)manganese(II)] dimethylacetamide solvate] top
Crystal data top
[Mn(C14H6O6S)(C2H6O2)(H2O)2]·C4H9NOF(000) = 1124
Mr = 542.41Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9208 reflections
a = 7.0564 (3) Åθ = 2.3–26°
b = 11.8142 (4) ŵ = 0.73 mm1
c = 28.0008 (10) ÅT = 296 K
β = 100.544 (1)°Columnar, colourless
V = 2294.89 (15) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5716 independent reflections
Radiation source: fine-focus sealed tube5221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 97
Tmin = 0.811, Tmax = 0.931k = 1514
30673 measured reflectionsl = 3736
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom and difmap
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0425P)2 + 1.0021P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5716 reflectionsΔρmax = 0.32 e Å3
335 parametersΔρmin = 0.36 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (3)
Crystal data top
[Mn(C14H6O6S)(C2H6O2)(H2O)2]·C4H9NOV = 2294.89 (15) Å3
Mr = 542.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0564 (3) ŵ = 0.73 mm1
b = 11.8142 (4) ÅT = 296 K
c = 28.0008 (10) Å0.30 × 0.20 × 0.10 mm
β = 100.544 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5716 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5221 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.931Rint = 0.025
30673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0304 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.32 e Å3
5716 reflectionsΔρmin = 0.36 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.22688 (3)0.673463 (17)0.267191 (7)0.02227 (7)
C10.43784 (19)0.86846 (12)0.33374 (5)0.0236 (3)
C20.53981 (19)0.90349 (12)0.38359 (5)0.0225 (3)
C30.5765 (2)1.01741 (12)0.39461 (5)0.0249 (3)
H3A0.54331.07130.37030.030*
C40.5922 (2)0.82195 (11)0.41959 (5)0.0247 (3)
H4A0.57040.74540.41300.030*
C50.6613 (2)1.05261 (12)0.44092 (5)0.0247 (3)
H5A0.68421.12900.44760.030*
C60.67736 (19)0.85829 (12)0.46533 (5)0.0229 (3)
C70.71153 (19)0.97220 (11)0.47712 (5)0.0216 (2)
C80.79778 (19)0.98999 (11)0.52870 (5)0.0213 (2)
C90.8502 (2)1.09104 (11)0.55269 (5)0.0244 (3)
H9A0.83141.15960.53620.029*
C100.8262 (2)0.88924 (11)0.55495 (5)0.0229 (3)
C110.9316 (2)1.08823 (12)0.60187 (5)0.0242 (3)
H11A0.96871.15570.61800.029*
C120.90422 (19)0.88466 (12)0.60378 (5)0.0235 (3)
H12A0.91990.81610.62030.028*
C130.95877 (18)0.98663 (11)0.62747 (5)0.0215 (3)
C141.05227 (19)0.98394 (12)0.68052 (5)0.0224 (3)
O10.39522 (15)0.76549 (9)0.32753 (4)0.0290 (2)
O20.39864 (18)0.94438 (10)0.30224 (4)0.0366 (3)
O31.05942 (16)0.88879 (9)0.70073 (4)0.0316 (2)
O41.11941 (17)1.07339 (9)0.70058 (4)0.0339 (2)
O50.5980 (2)0.71159 (11)0.53019 (4)0.0437 (3)
O60.92266 (19)0.70701 (10)0.51083 (4)0.0411 (3)
S10.75616 (5)0.77206 (3)0.516692 (12)0.02602 (9)
C150.2116 (2)0.65002 (14)0.28938 (6)0.0334 (3)
H15A0.27800.65710.31670.040*
H15B0.18880.57020.28470.040*
C160.3383 (2)0.69648 (15)0.24442 (6)0.0334 (3)
H16A0.36290.77610.24900.040*
H16B0.27300.68940.21690.040*
O70.03049 (15)0.70750 (10)0.30054 (4)0.0312 (2)
H70.052 (3)0.777 (2)0.3005 (8)0.048 (6)*
O80.51664 (16)0.63629 (11)0.23467 (5)0.0381 (3)
H80.495 (3)0.5748 (15)0.2233 (8)0.052 (6)*
O90.1821 (2)0.83273 (10)0.23213 (5)0.0471 (3)
H9C0.135 (3)0.854 (2)0.2043 (6)0.056 (7)*
H9B0.246 (3)0.8828 (18)0.2484 (7)0.057 (7)*
O100.24423 (19)0.49977 (10)0.29494 (5)0.0352 (3)
H10C0.182 (3)0.474 (2)0.3150 (9)0.057 (7)*
H10B0.210 (4)0.463 (2)0.2701 (10)0.072 (9)*
C170.0751 (4)1.0498 (2)0.08416 (8)0.0639 (6)
H17A0.18881.05910.09810.096*
H17B0.11151.02810.05070.096*
H17C0.00531.11990.08630.096*
C180.0504 (3)0.95932 (15)0.11144 (6)0.0391 (4)
C190.3395 (3)0.8464 (2)0.12584 (8)0.0578 (5)
H19A0.26000.78650.13440.087*
H19B0.41420.87820.15480.087*
H19C0.42440.81680.10570.087*
C200.2899 (5)0.9857 (2)0.05873 (11)0.0830 (9)
H20A0.20251.04370.04430.125*
H20B0.30050.92880.03490.125*
H20C0.41441.01840.07030.125*
O110.0072 (2)0.90934 (12)0.14522 (4)0.0461 (3)
N10.2175 (2)0.93427 (13)0.09933 (6)0.0440 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02329 (11)0.02213 (11)0.01900 (11)0.00047 (7)0.00245 (8)0.00162 (7)
C10.0221 (6)0.0278 (7)0.0191 (6)0.0016 (5)0.0007 (5)0.0006 (5)
C20.0211 (6)0.0267 (6)0.0184 (6)0.0021 (5)0.0002 (5)0.0018 (5)
C30.0283 (7)0.0253 (7)0.0193 (6)0.0009 (5)0.0004 (5)0.0015 (5)
C40.0268 (7)0.0227 (6)0.0228 (6)0.0024 (5)0.0006 (5)0.0026 (5)
C50.0302 (7)0.0217 (6)0.0207 (6)0.0010 (5)0.0009 (5)0.0008 (5)
C60.0244 (6)0.0235 (6)0.0190 (6)0.0005 (5)0.0006 (5)0.0014 (5)
C70.0212 (6)0.0247 (6)0.0177 (6)0.0004 (5)0.0005 (5)0.0012 (5)
C80.0216 (6)0.0236 (6)0.0178 (6)0.0000 (5)0.0013 (5)0.0002 (5)
C90.0301 (7)0.0212 (6)0.0204 (6)0.0001 (5)0.0010 (5)0.0014 (5)
C100.0255 (6)0.0211 (6)0.0206 (6)0.0014 (5)0.0006 (5)0.0020 (5)
C110.0276 (6)0.0225 (6)0.0209 (6)0.0011 (5)0.0004 (5)0.0026 (5)
C120.0257 (6)0.0231 (6)0.0203 (6)0.0011 (5)0.0003 (5)0.0020 (5)
C130.0203 (6)0.0255 (6)0.0176 (6)0.0015 (5)0.0002 (5)0.0005 (5)
C140.0213 (6)0.0256 (6)0.0187 (6)0.0031 (5)0.0004 (5)0.0007 (5)
O10.0348 (5)0.0260 (5)0.0221 (5)0.0033 (4)0.0054 (4)0.0028 (4)
O20.0494 (7)0.0311 (6)0.0234 (5)0.0091 (5)0.0092 (5)0.0045 (4)
O30.0397 (6)0.0270 (5)0.0222 (5)0.0004 (4)0.0094 (4)0.0035 (4)
O40.0472 (6)0.0264 (5)0.0234 (5)0.0010 (5)0.0062 (4)0.0033 (4)
O50.0572 (8)0.0372 (6)0.0347 (6)0.0207 (6)0.0036 (5)0.0026 (5)
O60.0543 (7)0.0313 (6)0.0340 (6)0.0154 (5)0.0022 (5)0.0037 (5)
S10.03603 (19)0.01997 (16)0.01953 (16)0.00206 (13)0.00157 (13)0.00020 (11)
C150.0273 (7)0.0319 (7)0.0406 (8)0.0013 (6)0.0048 (6)0.0038 (6)
C160.0256 (7)0.0369 (8)0.0372 (8)0.0023 (6)0.0044 (6)0.0012 (6)
O70.0269 (5)0.0278 (5)0.0375 (6)0.0006 (4)0.0022 (4)0.0058 (4)
O80.0257 (5)0.0373 (6)0.0516 (7)0.0023 (5)0.0076 (5)0.0186 (5)
O90.0779 (10)0.0270 (6)0.0266 (6)0.0056 (6)0.0164 (6)0.0035 (5)
O100.0474 (7)0.0284 (6)0.0280 (6)0.0012 (5)0.0018 (5)0.0029 (5)
C170.0792 (16)0.0631 (14)0.0481 (12)0.0237 (12)0.0083 (11)0.0178 (10)
C180.0535 (10)0.0349 (8)0.0253 (7)0.0019 (7)0.0021 (7)0.0032 (6)
C190.0607 (13)0.0621 (13)0.0526 (12)0.0184 (11)0.0155 (10)0.0050 (10)
C200.103 (2)0.0651 (16)0.095 (2)0.0174 (15)0.0574 (18)0.0312 (15)
O110.0525 (8)0.0550 (8)0.0298 (6)0.0113 (6)0.0049 (5)0.0074 (5)
N10.0569 (10)0.0382 (8)0.0377 (8)0.0020 (7)0.0109 (7)0.0011 (6)
Geometric parameters (Å, º) top
Mn1—O92.1191 (12)C14—O31.2553 (17)
Mn1—O3i2.1437 (10)O3—Mn1iii2.1437 (10)
Mn1—O12.1710 (10)O5—S11.4329 (13)
Mn1—O102.1897 (12)O6—S11.4382 (13)
Mn1—O8ii2.2138 (12)C15—O71.4303 (18)
Mn1—O72.2253 (11)C15—C161.508 (2)
C1—O21.2529 (17)C15—H15A0.9700
C1—O11.2576 (18)C15—H15B0.9700
C1—C21.5066 (18)C16—O81.4275 (19)
C2—C31.3943 (19)C16—H16A0.9700
C2—C41.3945 (19)C16—H16B0.9700
C3—C51.3889 (19)O7—H70.84 (2)
C3—H3A0.9300O8—Mn1iv2.2138 (11)
C4—C61.3799 (18)O8—H80.818 (16)
C4—H4A0.9300O9—H9C0.827 (15)
C5—C71.3871 (18)O9—H9B0.827 (15)
C5—H5A0.9300O10—H10C0.83 (3)
C6—C71.3961 (19)O10—H10B0.82 (3)
C6—S11.7671 (14)C17—C181.504 (3)
C7—C81.4762 (17)C17—H17A0.9600
C8—C91.3864 (18)C17—H17B0.9600
C8—C101.3941 (18)C17—H17C0.9600
C9—C111.3919 (18)C18—O111.245 (2)
C9—H9A0.9300C18—N11.318 (2)
C10—C121.3784 (18)C19—N11.461 (3)
C10—S11.7648 (13)C19—H19A0.9600
C11—C131.3932 (19)C19—H19B0.9600
C11—H11A0.9300C19—H19C0.9600
C12—C131.3950 (19)C20—N11.462 (3)
C12—H12A0.9300C20—H20A0.9600
C13—C141.5114 (17)C20—H20B0.9600
C14—O41.2488 (17)C20—H20C0.9600
O9—Mn1—O3i83.73 (4)C1—O1—Mn1132.45 (9)
O9—Mn1—O185.98 (4)C14—O3—Mn1iii131.98 (9)
O3i—Mn1—O1169.61 (4)O5—S1—O6117.10 (8)
O9—Mn1—O10172.07 (5)O5—S1—C10112.10 (7)
O3i—Mn1—O1088.43 (4)O6—S1—C10110.15 (7)
O1—Mn1—O10101.89 (4)O5—S1—C6110.96 (7)
O9—Mn1—O8ii92.82 (6)O6—S1—C6110.93 (7)
O3i—Mn1—O8ii86.40 (4)C10—S1—C693.06 (6)
O1—Mn1—O8ii92.72 (4)O7—C15—C16112.28 (13)
O10—Mn1—O8ii87.89 (5)O7—C15—H15A109.1
O9—Mn1—O788.29 (6)C16—C15—H15A109.1
O3i—Mn1—O793.65 (4)O7—C15—H15B109.1
O1—Mn1—O787.44 (4)C16—C15—H15B109.1
O10—Mn1—O791.00 (5)H15A—C15—H15B107.9
O8ii—Mn1—O7178.89 (5)O8—C16—C15110.22 (14)
O2—C1—O1125.37 (12)O8—C16—H16A109.6
O2—C1—C2117.52 (12)C15—C16—H16A109.6
O1—C1—C2117.09 (12)O8—C16—H16B109.6
C3—C2—C4119.54 (12)C15—C16—H16B109.6
C3—C2—C1120.53 (12)H16A—C16—H16B108.1
C4—C2—C1119.90 (12)C15—O7—Mn1125.99 (10)
C5—C3—C2121.77 (13)C15—O7—H7108.4 (15)
C5—C3—H3A119.1Mn1—O7—H7109.7 (16)
C2—C3—H3A119.1C16—O8—Mn1iv125.51 (10)
C6—C4—C2117.96 (12)C16—O8—H8107.4 (16)
C6—C4—H4A121.0Mn1iv—O8—H8123.9 (16)
C2—C4—H4A121.0Mn1—O9—H9C134.6 (16)
C7—C5—C3119.08 (13)Mn1—O9—H9B111.1 (16)
C7—C5—H5A120.5H9C—O9—H9B113 (2)
C3—C5—H5A120.5Mn1—O10—H10C125.2 (17)
C4—C6—C7123.13 (12)Mn1—O10—H10B102 (2)
C4—C6—S1126.50 (11)H10C—O10—H10B106 (2)
C7—C6—S1110.38 (10)C18—C17—H17A109.5
C5—C7—C6118.52 (12)C18—C17—H17B109.5
C5—C7—C8128.45 (12)H17A—C17—H17B109.5
C6—C7—C8113.03 (12)C18—C17—H17C109.5
C9—C8—C10118.68 (12)H17A—C17—H17C109.5
C9—C8—C7128.49 (12)H17B—C17—H17C109.5
C10—C8—C7112.83 (12)O11—C18—N1121.38 (16)
C8—C9—C11118.95 (12)O11—C18—C17118.61 (18)
C8—C9—H9A120.5N1—C18—C17120.01 (18)
C11—C9—H9A120.5N1—C19—H19A109.5
C12—C10—C8123.32 (12)N1—C19—H19B109.5
C12—C10—S1126.02 (11)H19A—C19—H19B109.5
C8—C10—S1110.64 (10)N1—C19—H19C109.5
C9—C11—C13121.50 (12)H19A—C19—H19C109.5
C9—C11—H11A119.2H19B—C19—H19C109.5
C13—C11—H11A119.2N1—C20—H20A109.5
C10—C12—C13117.59 (12)N1—C20—H20B109.5
C10—C12—H12A121.2H20A—C20—H20B109.5
C13—C12—H12A121.2N1—C20—H20C109.5
C11—C13—C12119.96 (12)H20A—C20—H20C109.5
C11—C13—C14121.20 (12)H20B—C20—H20C109.5
C12—C13—C14118.82 (12)C18—N1—C19120.01 (16)
O4—C14—O3125.06 (12)C18—N1—C20124.28 (18)
O4—C14—C13119.06 (12)C19—N1—C20115.66 (19)
O3—C14—C13115.87 (12)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+3/2, z+1/2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O4v0.84 (2)1.83 (2)2.6623 (16)175 (2)
O8—H8···O2vi0.82 (2)1.88 (2)2.6865 (16)169 (2)
O9—H9C···O110.83 (2)1.89 (2)2.7086 (17)171 (2)
O9—H9B···O20.83 (2)1.84 (2)2.6135 (16)156 (2)
O10—H10C···O11vi0.83 (3)1.96 (3)2.7877 (19)172 (2)
O10—H10B···O4i0.82 (3)1.98 (3)2.7663 (16)161 (3)
Symmetry codes: (i) x1, y+3/2, z1/2; (v) x+1, y+2, z+1; (vi) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C14H6O6S)(C2H6O2)(H2O)2]·C4H9NO
Mr542.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.0564 (3), 11.8142 (4), 28.0008 (10)
β (°) 100.544 (1)
V3)2294.89 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.811, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
30673, 5716, 5221
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.07
No. of reflections5716
No. of parameters335
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O92.1191 (12)Mn1—O102.1897 (12)
Mn1—O3i2.1437 (10)Mn1—O8ii2.2138 (12)
Mn1—O12.1710 (10)Mn1—O72.2253 (11)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O4iii0.84 (2)1.83 (2)2.6623 (16)175 (2)
O8—H8···O2iv0.818 (16)1.879 (16)2.6865 (16)169 (2)
O9—H9C···O110.827 (15)1.889 (16)2.7086 (17)171 (2)
O9—H9B···O20.827 (15)1.837 (16)2.6135 (16)156 (2)
O10—H10C···O11iv0.83 (3)1.96 (3)2.7877 (19)172 (2)
O10—H10B···O4i0.82 (3)1.98 (3)2.7663 (16)161 (3)
Symmetry codes: (i) x1, y+3/2, z1/2; (iii) x+1, y+2, z+1; (iv) x, y1/2, z+1/2.
 

Acknowledgements

We are thankful for financial support from the NSFC (20771038) and the Shanghai Leading Academic Discipline Project (B409).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKanaizuka, K., Iwakiri, S., Yamada, T. & Kitagawa, H. (2010). Chem. Lett. 39, 28–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeofotistou, E., Malliakas, C. D. & Trikalitis, P. N. (2009). Chem. Eur. J. 15, 4523–4527.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNeofotistou, E., Malliakas, C. D. & Trikalitis, P. N. (2010). CrystEngComm, 12, 1034–1037.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, L., Yue, Q., Jia, Q.-X., Lemercier, G. & Gao, E.-Q. (2009). Cryst. Growth Des. 9, 2984–2987.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds