organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,3R,4aS,6S,7S,8aS)-4a-Fluoro-8a-hy­dr­oxy­perhydro­naphthalene-2,3,6,7-tetrayl tetra­acetate

aDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: gmsc@uohyd.ernet.in

(Received 25 October 2010; accepted 29 October 2010; online 6 November 2010)

The title compound, C18H25FO9, exhibits a similar unit cell and packing to the α polymorph of axial 4a,8a-dihy­droxy­per­hydro­naph­tha­lene-2,3,6,7-tetrayl tetraacetate. The carbonyl O atoms of two of the four acetate groups in the molecule are disordered over two sites with occupancy ratios of 0.59 (4):0.41 (4) and 0.57 (6):0.43 (6). Crystal packing is effected via inter­molecular O—H⋯O hydrogen bonds, which link the tetra­acetate mol­ecules into tapes along the c axis.

Related literature

The synthesis and spectral characterization of the title compound have already been communicated (Mehta & Sen, 2010c[Mehta, G. & Sen, S. (2010c). J. Org. Chem. doi: 10.1021/jo101660x.]). For the α polymorph of tetraacetate, see: Mehta & Sen (2009a[Mehta, G. & Sen, S. (2009a). Chem. Commun. pp. 5981-5983.],b[Mehta, G. & Sen, S. (2009b). Tetrahedron, 65, 9713-9718.], 2010a[Mehta, G. & Sen, S. (2010a). Eur. J. Org. Chem. pp. 3387-3394.],b[Mehta, G. & Sen, S. (2010b). Acta Cryst. C66, o59-o63.]). For determination of absolute structure, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]).

[Scheme 1]

Experimental

Crystal data
  • C18H25FO9

  • Mr = 404.38

  • Monoclinic, C c

  • a = 21.144 (3) Å

  • b = 5.6497 (7) Å

  • c = 16.898 (2) Å

  • β = 104.290 (6)°

  • V = 1956.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 291 K

  • 0.27 × 0.23 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.997

  • 12391 measured reflections

  • 1980 independent reflections

  • 1290 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.167

  • S = 1.13

  • 1980 reflections

  • 278 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6i 0.82 2.47 3.174 (6) 144
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound 1 is the tetra-acetate derivative of the monofluoropentol 2 whose synthesis and crystal structure elucidation have been reported by us recently (Mehta & Sen, 2010a). The Cs symmetric molecule 1 crystallized in the non-centrosymmetric space group Cc (Z = 4) and was found to display an interesting iso-structurality with the α polymorph of the tetra-acetate 3 (Mehta & Sen, 2009a, 2009b and 2010b). It is pertinent to mention that the tetra-acetates 3 and 1 are isosteric with a fluoro group in 1 replacing a hydroxy substituent in 3. The crystal structure of α polymorphic modification of 3 had been solved in the centrosymmetric monoclinic space group C2/c (a = 21.433 (7), b = 5.7126 (18), c = 16.720 (5) Å, β = 105.664 (5)°, V = 1971.1 (11) Å3, Z = 4, T = 291 K), and the C2 h symmetric tetra-acetate molecules were found to occupy the inversion centers at (1/2, 0, 1/2), (1/2, 0, 0), (0, 1/2, 0) and (0, 1/2, 1/2).

Quite akin to that observed in the α form of 3, the carbonyl O atoms (O7 and O9) of two acetate groups in the asymmetric unit of 1 are disordered over two sites, A and B, having occupancy factors of about 0.60 and 0.40 respectively (Fig. 1). The tertiary hydroxyl group in 1 does not engage itself as an intramolecular O—H···O hydrogen bond donor to either of the flanking 1,3-syndiaxial oxygen acceptors, O2 and O4.

Similar again to the favored mode of self-assembly in 3 (Mehta & Sen, 2009a, 2009b and 2010b), molecular packing in 1 is effected via the agency of intermolecular O—H···O hydrogen bonds which link the tetra-acetate molecules into chains along the c axis (Fig. 2). A soft intermolecular C—H···F contact (C17—H17A···F1, d = 2.44 Å, θ = 154°) exists between successive molecules in the H-bonded chains thus formed. Intermolecular C—H···O contacts (C16—H16A···O8, d = 2.59 Å, θ = 174°) can also be discerned between the translationally related molecular chains.

Related literature top

The synthesis and spectral characterization of the title compound have already been communicated (Mehta & Sen, 2010c). For related literature, see: Flack (1983); Flack & Bernardinelli (2000); Mehta & Sen (2009a, 2009b, 2010a, 2010b).

Experimental top

The title compound was prepared by acetylating the monofluoropentol 2 at ambient temperature in presence of acetic anhydride and 4-Dimethylaminopyridine (Mehta & Sen, 2010c). Single crystals of 1, suitable for X-ray diffraction studies, were grown by slow solvent evaporation of its solution in 1:1 dichloromethane and petroleum ether under ambient temperature and pressure.

Refinement top

The methine (CH) and methylene (CH2) H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C). The CH3 and OH hydrogen atoms were constrained to an ideal geometry with C—H distances as 0.96 Å and Uiso(H) = 1.5Ueq(C), and O—H distances fixed at 0.82 Å and Uiso(H) = 1.5Ueq(O). During refinement, each methyl and hydroxyl group was however allowed to rotate freely about its C—C and C—O bond respectively. Due to the absence of any significant anomalous scatterers (Z>Si) in 1, attempts to refine the Flack (Flack, 1983) parameter led to an inconclusive value of -0.8 (13) (Flack & Bernardinelli, 2000). Therefore the intensities of the Friedel pairs (1828) were averaged prior to merging of data in Cc, so that the reported value of Rint corresponds to subsequent merging of equivalent reflections in this space group.

Structure description top

The title compound 1 is the tetra-acetate derivative of the monofluoropentol 2 whose synthesis and crystal structure elucidation have been reported by us recently (Mehta & Sen, 2010a). The Cs symmetric molecule 1 crystallized in the non-centrosymmetric space group Cc (Z = 4) and was found to display an interesting iso-structurality with the α polymorph of the tetra-acetate 3 (Mehta & Sen, 2009a, 2009b and 2010b). It is pertinent to mention that the tetra-acetates 3 and 1 are isosteric with a fluoro group in 1 replacing a hydroxy substituent in 3. The crystal structure of α polymorphic modification of 3 had been solved in the centrosymmetric monoclinic space group C2/c (a = 21.433 (7), b = 5.7126 (18), c = 16.720 (5) Å, β = 105.664 (5)°, V = 1971.1 (11) Å3, Z = 4, T = 291 K), and the C2 h symmetric tetra-acetate molecules were found to occupy the inversion centers at (1/2, 0, 1/2), (1/2, 0, 0), (0, 1/2, 0) and (0, 1/2, 1/2).

Quite akin to that observed in the α form of 3, the carbonyl O atoms (O7 and O9) of two acetate groups in the asymmetric unit of 1 are disordered over two sites, A and B, having occupancy factors of about 0.60 and 0.40 respectively (Fig. 1). The tertiary hydroxyl group in 1 does not engage itself as an intramolecular O—H···O hydrogen bond donor to either of the flanking 1,3-syndiaxial oxygen acceptors, O2 and O4.

Similar again to the favored mode of self-assembly in 3 (Mehta & Sen, 2009a, 2009b and 2010b), molecular packing in 1 is effected via the agency of intermolecular O—H···O hydrogen bonds which link the tetra-acetate molecules into chains along the c axis (Fig. 2). A soft intermolecular C—H···F contact (C17—H17A···F1, d = 2.44 Å, θ = 154°) exists between successive molecules in the H-bonded chains thus formed. Intermolecular C—H···O contacts (C16—H16A···O8, d = 2.59 Å, θ = 174°) can also be discerned between the translationally related molecular chains.

The synthesis and spectral characterization of the title compound have already been communicated (Mehta & Sen, 2010c). For related literature, see: Flack (1983); Flack & Bernardinelli (2000); Mehta & Sen (2009a, 2009b, 2010a, 2010b).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the tetra-acetate 1, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing of 1. H atoms not involved in H-bonding have been omitted for clarity. Dotted lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The structure of (1), (2) and (3).
(2R,3R,4aS,6S,7S,8aS)-4a-Fluoro- 8a-hydroxyperhydronaphthalene-2,3,6,7-tetrayl tetraacetate top
Crystal data top
C18H25FO9F(000) = 856
Mr = 404.38Dx = 1.373 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2973 reflections
a = 21.144 (3) Åθ = 2.5–22.3°
b = 5.6497 (7) ŵ = 0.12 mm1
c = 16.898 (2) ÅT = 291 K
β = 104.290 (6)°Plate, colorless
V = 1956.2 (4) Å30.27 × 0.23 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1980 independent reflections
Radiation source: fine-focus sealed tube1290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2626
Tmin = 0.969, Tmax = 0.997k = 67
12391 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0992P)2]
where P = (Fo2 + 2Fc2)/3
1980 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
C18H25FO9V = 1956.2 (4) Å3
Mr = 404.38Z = 4
Monoclinic, CcMo Kα radiation
a = 21.144 (3) ŵ = 0.12 mm1
b = 5.6497 (7) ÅT = 291 K
c = 16.898 (2) Å0.27 × 0.23 × 0.03 mm
β = 104.290 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1980 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1290 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.997Rint = 0.042
12391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.13Δρmax = 0.32 e Å3
1980 reflectionsΔρmin = 0.40 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F11.02959 (14)0.2496 (5)0.50960 (17)0.0507 (8)
O10.90847 (16)0.2234 (6)0.5479 (2)0.0488 (9)
O20.85104 (18)0.1582 (7)0.3760 (2)0.0585 (10)
O30.97848 (17)0.1802 (6)0.3515 (2)0.0461 (8)
O41.10283 (18)0.1377 (7)0.3161 (2)0.0572 (10)
O51.15663 (18)0.2400 (8)0.4902 (3)0.0646 (11)
O60.9155 (3)0.0418 (8)0.6668 (3)0.0776 (15)
O7A0.7494 (6)0.026 (3)0.353 (3)0.141 (12)0.59 (4)
O7B0.7688 (13)0.020 (2)0.2957 (17)0.084 (11)0.41 (4)
O81.1025 (2)0.0561 (9)0.2014 (2)0.0763 (13)
O9A1.2601 (6)0.111 (4)0.511 (3)0.132 (11)0.57 (6)
O9B1.2443 (18)0.069 (3)0.561 (2)0.100 (14)0.43 (6)
C11.0204 (2)0.0190 (9)0.4762 (3)0.0405 (11)
C20.9740 (3)0.1125 (10)0.5186 (3)0.0462 (13)
C30.9065 (2)0.0036 (10)0.5062 (3)0.0473 (12)
C40.8755 (2)0.0617 (10)0.4160 (3)0.0483 (13)
C50.9226 (2)0.1789 (10)0.3728 (3)0.0473 (12)
C60.9888 (2)0.0525 (9)0.3845 (3)0.0418 (12)
C71.0343 (2)0.1924 (10)0.3440 (3)0.0469 (13)
C81.1028 (3)0.0865 (11)0.3587 (3)0.0530 (13)
C91.1335 (3)0.0193 (10)0.4480 (3)0.0530 (13)
C101.0862 (2)0.1011 (10)0.4896 (3)0.0479 (13)
C110.9114 (3)0.2201 (11)0.6278 (3)0.0510 (14)
C120.7910 (3)0.1666 (15)0.3313 (6)0.084 (2)
C131.1032 (3)0.1261 (12)0.2372 (3)0.0545 (15)
C141.2182 (4)0.2519 (15)0.5306 (6)0.090 (3)
C150.9102 (3)0.4608 (12)0.6605 (4)0.0702 (18)
C160.7719 (3)0.3971 (14)0.2935 (5)0.087 (2)
C171.1045 (4)0.3680 (13)0.2028 (4)0.0739 (19)
C181.2354 (4)0.4829 (16)0.5723 (5)0.090 (2)
H2A0.96910.27410.49860.055*
H2B0.99410.11870.57670.055*
H30.97800.17660.30280.069*
H3A0.87780.11300.52580.057*
H40.83870.16860.41380.058*
H5A0.93030.34010.39250.057*
H5B0.90190.18640.31480.057*
H7A1.01510.19930.28570.056*
H7B1.03780.35330.36470.056*
H81.13140.19880.34020.064*
H91.17080.08550.45020.064*
H10A1.07940.26260.46980.057*
H10B1.10590.10800.54780.057*
H15A0.91820.45380.71890.105*
H15B0.86820.53070.63810.105*
H15C0.94330.55490.64580.105*
H16A0.72600.39700.26820.131*
H16B0.78160.51840.33450.131*
H16C0.79570.42720.25290.131*
H17A1.09570.35860.14440.111*
H17B1.07190.46430.21780.111*
H17C1.14680.43710.22400.111*
H18A1.19690.55420.58230.136*
H18B1.25350.58550.53820.136*
H18C1.26690.45850.62330.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0532 (17)0.060 (2)0.0363 (16)0.0023 (14)0.0062 (13)0.0073 (13)
O10.059 (2)0.056 (2)0.033 (2)0.0057 (16)0.0142 (15)0.0009 (15)
O20.040 (2)0.074 (3)0.055 (2)0.0031 (17)0.0005 (18)0.0122 (19)
O30.053 (2)0.054 (2)0.0303 (18)0.0020 (16)0.0073 (16)0.0082 (15)
O40.061 (2)0.076 (3)0.038 (2)0.0094 (19)0.0192 (18)0.0002 (18)
O50.043 (2)0.084 (3)0.059 (3)0.0022 (18)0.0003 (19)0.012 (2)
O60.127 (4)0.068 (3)0.043 (3)0.014 (3)0.029 (3)0.011 (2)
O7A0.054 (6)0.126 (10)0.23 (3)0.008 (6)0.008 (10)0.049 (14)
O7B0.060 (13)0.062 (9)0.099 (16)0.008 (6)0.036 (9)0.011 (7)
O80.097 (3)0.094 (4)0.038 (2)0.013 (3)0.018 (2)0.002 (2)
O9A0.049 (6)0.150 (13)0.19 (3)0.007 (6)0.026 (9)0.045 (15)
O9B0.062 (16)0.100 (12)0.104 (19)0.020 (8)0.045 (12)0.017 (10)
C10.046 (3)0.048 (3)0.026 (2)0.001 (2)0.006 (2)0.006 (2)
C20.052 (3)0.053 (3)0.032 (3)0.003 (2)0.006 (2)0.001 (2)
C30.044 (3)0.057 (3)0.040 (3)0.001 (2)0.009 (2)0.001 (2)
C40.044 (3)0.057 (4)0.039 (3)0.002 (2)0.000 (2)0.003 (2)
C50.047 (3)0.057 (3)0.032 (3)0.005 (2)0.000 (2)0.000 (2)
C60.046 (3)0.049 (3)0.026 (2)0.002 (2)0.001 (2)0.0068 (19)
C70.049 (3)0.062 (4)0.029 (3)0.003 (2)0.007 (2)0.002 (2)
C80.053 (3)0.073 (4)0.033 (3)0.000 (3)0.011 (2)0.002 (2)
C90.044 (3)0.073 (4)0.040 (3)0.006 (2)0.007 (2)0.003 (3)
C100.046 (3)0.068 (4)0.027 (3)0.010 (2)0.004 (2)0.001 (2)
C110.046 (3)0.071 (4)0.035 (3)0.008 (2)0.008 (2)0.002 (3)
C120.049 (4)0.089 (6)0.096 (6)0.005 (3)0.017 (4)0.016 (4)
C130.046 (3)0.082 (5)0.034 (3)0.006 (3)0.008 (2)0.001 (3)
C140.048 (5)0.092 (6)0.114 (7)0.007 (4)0.012 (4)0.009 (5)
C150.085 (5)0.074 (5)0.052 (4)0.012 (3)0.018 (3)0.008 (3)
C160.052 (4)0.088 (5)0.111 (6)0.011 (3)0.003 (4)0.023 (4)
C170.082 (5)0.093 (5)0.046 (4)0.018 (4)0.013 (3)0.007 (3)
C180.061 (4)0.109 (6)0.088 (6)0.016 (4)0.005 (4)0.019 (4)
Geometric parameters (Å, º) top
F1—C11.414 (6)C6—C51.540 (7)
O1—C31.459 (7)C6—C71.531 (7)
O1—C111.335 (6)C7—C81.530 (8)
O2—C121.309 (7)C7—H7A0.9700
O2—C41.447 (6)C7—H7B0.9700
O3—C61.424 (6)C8—H80.9800
O3—H30.8200C9—C81.536 (8)
O4—C81.457 (7)C9—H90.9800
O4—C131.337 (7)C10—C11.514 (7)
O5—C91.460 (7)C10—C91.519 (8)
O5—C141.314 (8)C10—H10A0.9700
O6—C111.195 (7)C10—H10B0.9700
O7A—C121.30 (2)C11—C151.470 (9)
O7B—C121.246 (16)C12—C161.463 (10)
O8—C131.192 (8)C13—C171.488 (9)
O9A—C141.294 (18)C15—H15A0.9600
O9B—C141.226 (17)C15—H15B0.9600
C2—C11.541 (7)C15—H15C0.9600
C2—C31.520 (7)C16—H16A0.9600
C2—H2A0.9700C16—H16B0.9600
C2—H2B0.9700C16—H16C0.9600
C3—H3A0.9800C17—H17A0.9600
C4—C31.548 (7)C17—H17B0.9600
C4—H40.9800C17—H17C0.9600
C5—C41.522 (7)C18—C141.485 (12)
C5—H5A0.9700C18—H18A0.9600
C5—H5B0.9700C18—H18B0.9600
C6—C11.540 (5)C18—H18C0.9600
F1—C1—C2107.5 (4)C6—O3—H3109.5
F1—C1—C6105.7 (4)C6—C1—C2111.0 (4)
F1—C1—C10108.8 (4)C6—C5—H5A108.6
O1—C3—C2112.0 (4)C6—C5—H5B108.6
O1—C3—C4102.8 (4)C6—C7—H7A108.8
O1—C3—H3A109.7C6—C7—H7B108.8
O1—C11—C15111.5 (5)C7—C6—C1110.4 (4)
O2—C4—C3105.7 (4)C7—C6—C5110.8 (4)
O2—C4—C5110.5 (4)C7—C8—C9114.2 (4)
O2—C4—H4108.8C7—C8—H8109.2
O2—C12—C16114.1 (6)C8—C7—C6113.6 (4)
O3—C6—C1105.5 (4)C8—C7—H7A108.8
O3—C6—C5109.3 (4)C8—C7—H7B108.8
O3—C6—C7110.7 (4)C8—C9—H9109.2
O4—C8—C7112.1 (4)C9—C8—H8109.2
O4—C8—C9102.7 (4)C9—C10—H10A108.6
O4—C8—H8109.2C9—C10—H10B108.6
O4—C13—C17110.5 (6)C10—C1—C2112.4 (4)
O5—C9—C8106.2 (5)C10—C1—C6111.1 (3)
O5—C9—C10109.6 (4)C10—C9—C8113.4 (4)
O5—C14—C18112.7 (7)C10—C9—H9109.2
O5—C9—H9109.2C11—O1—C3117.7 (4)
O6—C11—O1123.2 (6)C11—C15—H15A109.5
O6—C11—C15125.3 (6)C11—C15—H15B109.5
O7A—C12—O2116.2 (12)C11—C15—H15C109.5
O7A—C12—C16122.3 (9)C12—O2—C4119.0 (5)
O7B—C12—O2116.4 (11)C12—C16—H16A109.5
O7B—C12—O7B54.6 (9)C12—C16—H16B109.5
O7B—C12—C16120.7 (9)C12—C16—H16C109.5
O8—C13—O4123.1 (6)C13—O4—C8116.8 (5)
O8—C13—C17126.5 (6)C13—C17—H17A109.5
O9A—C14—O5119.2 (14)C13—C17—H17B109.5
O9A—C14—C18124.1 (9)C13—C17—H17C109.5
O9B—C14—O5117.5 (15)C14—O5—C9117.8 (5)
O9B—C14—O9A47.4 (10)C14—C18—H18A109.5
O9B—C14—C18120.6 (11)C14—C18—H18B109.5
C1—C2—H2A108.5C14—C18—H18C109.5
C1—C2—H2B108.5H2A—C2—H2B107.5
C1—C10—C9114.6 (5)H5A—C5—H5B107.6
C1—C10—H10A108.6H7A—C7—H7B107.7
C1—C10—H10B108.6H10A—C10—H10B107.6
C2—C3—C4112.8 (4)H15A—C15—H15B109.5
C2—C3—H3A109.7H15A—C15—H15C109.5
C3—C2—C1115.1 (4)H15B—C15—H15C109.5
C3—C2—H2A108.5H16A—C16—H16B109.5
C3—C2—H2B108.5H16A—C16—H16C109.5
C3—C4—H4108.8H16B—C16—H16C109.5
C4—C3—H3A109.7H17A—C17—H17B109.5
C4—C5—C6114.6 (4)H17A—C17—H17C109.5
C4—C5—H5A108.6H17B—C17—H17C109.5
C4—C5—H5B108.6H18A—C18—H18B109.5
C5—C4—C3114.1 (4)H18A—C18—H18C109.5
C5—C4—H4108.8H18B—C18—H18C109.5
C5—C6—C1110.0 (3)
O2—C4—C3—O1160.4 (4)C5—C6—C7—C8175.8 (4)
O2—C4—C3—C278.8 (5)C6—C7—C8—O469.3 (5)
O3—C6—C1—F1179.0 (4)C6—C5—C4—C347.7 (6)
O3—C6—C1—C262.7 (4)C6—C5—C4—O271.2 (5)
O3—C6—C1—C1063.2 (5)C6—C7—C8—C947.0 (6)
O3—C6—C5—C461.7 (5)C7—C6—C1—F161.4 (4)
O3—C6—C7—C862.8 (5)C7—C6—C1—C2177.7 (5)
O5—C9—C8—O4160.3 (4)C7—C6—C5—C4176.0 (4)
O5—C9—C8—C778.1 (5)C7—C6—C1—C1056.4 (5)
C1—C2—C3—O168.8 (5)C8—O4—C13—O81.1 (8)
C1—C2—C3—C446.6 (6)C8—O4—C13—C17178.9 (5)
C1—C6—C5—C453.7 (5)C9—C10—C1—F162.0 (5)
C1—C6—C7—C853.7 (5)C9—C10—C1—C2179.1 (4)
C1—C10—C9—C846.6 (6)C9—C10—C1—C654.0 (6)
C1—C10—C9—O571.9 (5)C9—O5—C14—O9A23 (3)
C3—O1—C11—O63.5 (8)C9—O5—C14—O9B32 (3)
C3—O1—C11—C15177.5 (4)C9—O5—C14—C18178.8 (6)
C3—C2—C1—F161.5 (5)C10—C9—C8—O479.2 (5)
C3—C2—C1—C653.7 (5)C10—C9—C8—C742.3 (7)
C3—C2—C1—C10178.8 (4)C11—O1—C3—C281.0 (5)
C4—O2—C12—O7A30 (2)C11—O1—C3—C4157.6 (4)
C4—O2—C12—O7B32 (2)C12—O2—C4—C3130.1 (6)
C4—O2—C12—C16179.5 (6)C12—O2—C4—C5105.9 (7)
C5—C4—C3—O178.0 (5)C13—O4—C8—C782.2 (6)
C5—C4—C3—C242.8 (6)C13—O4—C8—C9154.8 (4)
C5—C6—C1—F161.2 (5)C14—O5—C9—C8125.4 (7)
C5—C6—C1—C10179.0 (5)C14—O5—C9—C10111.7 (7)
C5—C6—C1—C255.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.822.473.174 (6)144
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC18H25FO9
Mr404.38
Crystal system, space groupMonoclinic, Cc
Temperature (K)291
a, b, c (Å)21.144 (3), 5.6497 (7), 16.898 (2)
β (°) 104.290 (6)
V3)1956.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.27 × 0.23 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.969, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
12391, 1980, 1290
Rint0.042
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.167, 1.13
No. of reflections1980
No. of parameters278
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.82002.47003.174 (6)144.00
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

The authors thank DST, India for the CCD facility at IISc, Bangalore. GM wishes to thank Eli Lilly and the Jubilant Bhartia Foundation for the current research support at the University of Hyderabad and the Government of India for the award of a National Research Professorship.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMehta, G. & Sen, S. (2009a). Chem. Commun. pp. 5981–5983.  Web of Science CSD CrossRef Google Scholar
First citationMehta, G. & Sen, S. (2009b). Tetrahedron, 65, 9713–9718.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehta, G. & Sen, S. (2010a). Eur. J. Org. Chem. pp. 3387–3394.  Web of Science CSD CrossRef Google Scholar
First citationMehta, G. & Sen, S. (2010b). Acta Cryst. C66, o59–o63.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMehta, G. & Sen, S. (2010c). J. Org. Chem. doi: 10.1021/jo101660x.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds