metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N,N-Di­methyl­formamide-κO)bis­­(3-hy­dr­oxy­picolinato-κ2N,O2)phenyl­bis­­muth(III)

aDepartment of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
*Correspondence e-mail: whitmir@rice.edu

(Received 20 October 2010; accepted 28 October 2010; online 13 November 2010)

The title organometallic complex, [Bi(C6H5)(C6H4NO3)2(C3H7NO)], features a BiIII atom in a distorted pentagonal-pyramidal coordination by two N,O-donating bidentate 3-hy­droxy­picolinate (3-hpic) ligands, one monodentate dimethyl­formamide (dmf) mol­ecule and one phenyl ring. The C atom of the aryl ligand occupies the apical position of the BiCN2O3 coordination polyhedron, while the equatorial plane is formed by one O atom of the dmf ligand and two sets of N and O atoms from the chelating 3-hpic ligands. Inter­molecular secondary Bi⋯O [3.485 (3) Å] and O—H⋯O hydrogen-bonding inter­actions connect the complexes into a three-dimensional network. Intramolecular O—H⋯O hydrogen bonds are also observed.

Related literature

For a review on the structural chemistry of organobismuth derivatives, see Silvestru et al. (1999[Silvestru, C., Breunig, H. J. & Althaus, H. (1999). Chem. Rev. 99, 3277-3327.]). For the crystal structures of related aryl­bis­muth(III) compounds, see: Stavila et al. (2007[Stavila, V., Fettinger, J. C. & Whitmire, K. H. (2007). Organometallics, 26, 3321-3328.], 2009[Stavila, V., Thurston, J. H. & Whitmire, K. H. (2009). Inorg. Chem. 48, 6945-6951.]); Stavila & Dikarev (2009[Stavila, V. & Dikarev, E. V. (2009). J. Organomet. Chem. 694, 2956-2964.]); Andrews et al. (2006[Andrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & Silberstein, M. (2006). Dalton Trans. pp. 4852-4858.]); Yu et al. (2004[Yu, L., Ma, Y.-Q., Liu, R.-C., Wang, G.-C. & Li, J.-S. (2004). Inorg. Chem. Commun. 7, 410-411.]). For bis­muth(III) picolinate complexes, see: Callens et al. (2008[Callens, E., Burton, A. J., White, A. J. P. & Barrett, A. G. M. (2008). Tetrahedron Lett. 49, 3709-3712.]). For a review on biomedical applications of bis­muth(III) compounds, see: Briand & Burford (1999[Briand, G. G. & Burford, N. (1999). Chem. Rev. 99, 2601-2658.]).

[Scheme 1]

Experimental

Crystal data
  • [Bi(C6H5)(C6H4NO3)2(C3H7NO)]

  • Mr = 635.38

  • Monoclinic, P 21 /c

  • a = 8.2377 (16) Å

  • b = 21.989 (4) Å

  • c = 12.380 (3) Å

  • β = 104.24 (3)°

  • V = 2173.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.16 mm−1

  • T = 294 K

  • 0.14 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.356, Tmax = 0.450

  • 15126 measured reflections

  • 3669 independent reflections

  • 3314 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.048

  • S = 1.11

  • 3669 reflections

  • 299 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O12 0.84 (3) 1.80 (3) 2.541 (5) 147 (4)
O23—H23A⋯O22 0.84 (3) 1.79 (3) 2.555 (5) 150 (3)
O23—H23A⋯O13i 0.84 (3) 2.52 (2) 2.917 (6) 110 (2)
Symmetry code: (i) x+1, y, z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SMART, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SMART, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), was obtained from the solvent-free reaction of BiPh3 and 3-hydroxypicolinic acid (3-hpicH) with subsequent recrystallization from dimethylformamide (dmf) (see Experimental). Single-crystals suitable for X-Ray crystallography were obtained at room temperature from the concentrated dmf solution. The structure determination of (I) revealed a mononuclear compound, in which the BiIII atoms are hexa-coordinated in a distorted pentagonal pyramidal geometry with two N and two O atoms of N,O-chelating 3-hpic ligands and one dmf O donor in the equatorial plane (Figure 1). The axial position of the pentagonal pyramid is occupied by a carbon atom of the aryl group (Bi1—C41 = 2.245 (4) Å). Both picolinate ligands are monodeprotonated and display N,O-chelation through the pyridine N and carboxylate O atoms. There is an important asymmetry in the 3-hpic coordination to BiIII (Bi1—N1 = 2.660 (3) Å, Bi1—O11 = 2.348 (3) Å; Bi1—N2 = 2.488 (3) Å, Bi1—O21 = 2.382 (3) Å). The O atom of the coordinated dmf molecule (Bi1—O31 = 2.534 (3) Å) completes the equatorial plane of the pyramid.

There is a relatively large variation in the equatorial angles of the pyramid (64.97 – 77.37°) due to the difference in Bi—N and Bi—O bond lengths. Although the atoms Bi1, N1, O11, N2, O21 and O31 are not exactly coplanar, the sum of the corresponding angles is close to 360°, 359.80 (9)° (N1—Bi1—O11 = 64.98 (9)°, O11—Bi1—N2 = 74.25 (9)°, N2—Bi1—O21 = 67.72 (9)°, O21—Bi1—O31 = 77.37 (9)°, O31—Bi1—N1 = 75.49 (9)°). The C—Bi—O and C—Bi—N angles deviate from 90° (83.65–92.00°), contributing to the distortion of the pentagonal pyramidal coordination around the BiIII atom (Figure 2). Similar to other structurally characterized arylbismuth(III) compounds, the coordination sphere of BiIII is hemidirected (Stavila et al., 2007, 2009), (Stavila & Dikarev, 2009), suggesting that a stereochemically active lone electron pair is present.

Generally, secondary bonding interactions are rather common for monoaryl-bismuth(III) complexes. Thus, intermolecular secondary bonding interactions have been found in a number of aryl-bismuth diketonates (Stavila & Dikarev, 2009) and carboxylates (Stavila et al., 2007). In (I), the oxygen atom of one of the hydroxyl groups, O23, is involved in a weak secondary bond (Bi1···O23 = 3.485 (3) Å with an adjacent BiIII complex (Figure 3). The complex also displays intra- and intermolecular hydrogen bonds between the OH groups and oxygen atoms of the carboxylate groups (O13—H13A···O12, O13···O12 = 2.541 (5) Å; O23—H23A···O22, O23···O22 = 2.555 (5) Å; O23—H23A···O13i, O23···O13i = 2.917 (6) Å, (i) x + 1, y, z + 1).

Structures containing aryl bismuth(III) complexes with O or O/N donors typically display pentagonal pyramidal geometries and are comparatively rare (Andrews et al., 2006; Stavila & Dikarev, 2009; Stavila et al., 2007; Yu et al., 2004). In the same way, structures of bismuth(III) complexes with chelating picolinate ligands are uncommon (Callens et al., 2008).

Related literature top

For a review on the structural chemistry of organobismuth derivatives, see Silvestru et al. (1999). For the crystal structures of related arylbismuth(III) compounds, see: Stavila et al. (2007, 2009); Stavila & Dikarev (2009); Andrews et al. (2006); Yu et al. (2004). For bismuth(III) picolinate complexes, see: Callens et al. (2008). For a review on biomedical applications of bismuth(III) compounds, see: Briand & Burford (1999).

Experimental top

The initial reactants used were obtained commercially from Strem and Sigma-Aldrich. In a nitrogen filled glove-box, triphenylbismuth (440 mg, 1.0 mmol) and 3-hydroxypicolinic acid (420 mg, 3.0 mmol) were ground together for 30 min resulting in a light-grey powder. The mixture was placed in a Schlenk tube and heated upon stirring at 120 °C for 90 min. The resulting grey powder is treated with dry dmf, then filtered. The filtered solution is concentrated to ~1/4 of its initial volume and left for crystallization at room temperature. Crystals suitable for single-crystal X-ray crystallography were formed in 4 weeks.

Refinement top

The H atoms bound to O13 and O23 were located in a difference map and their coordinates were refined with Uiso(H) values of 1.2Ueq (O). C-bound H atoms were located in calculated positions and constrained to ride on their parent atoms at distances of d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic and 0.96Å, Uiso = 1.5Ueq (C) for CH3 atoms

Structure description top

The title compound, (I), was obtained from the solvent-free reaction of BiPh3 and 3-hydroxypicolinic acid (3-hpicH) with subsequent recrystallization from dimethylformamide (dmf) (see Experimental). Single-crystals suitable for X-Ray crystallography were obtained at room temperature from the concentrated dmf solution. The structure determination of (I) revealed a mononuclear compound, in which the BiIII atoms are hexa-coordinated in a distorted pentagonal pyramidal geometry with two N and two O atoms of N,O-chelating 3-hpic ligands and one dmf O donor in the equatorial plane (Figure 1). The axial position of the pentagonal pyramid is occupied by a carbon atom of the aryl group (Bi1—C41 = 2.245 (4) Å). Both picolinate ligands are monodeprotonated and display N,O-chelation through the pyridine N and carboxylate O atoms. There is an important asymmetry in the 3-hpic coordination to BiIII (Bi1—N1 = 2.660 (3) Å, Bi1—O11 = 2.348 (3) Å; Bi1—N2 = 2.488 (3) Å, Bi1—O21 = 2.382 (3) Å). The O atom of the coordinated dmf molecule (Bi1—O31 = 2.534 (3) Å) completes the equatorial plane of the pyramid.

There is a relatively large variation in the equatorial angles of the pyramid (64.97 – 77.37°) due to the difference in Bi—N and Bi—O bond lengths. Although the atoms Bi1, N1, O11, N2, O21 and O31 are not exactly coplanar, the sum of the corresponding angles is close to 360°, 359.80 (9)° (N1—Bi1—O11 = 64.98 (9)°, O11—Bi1—N2 = 74.25 (9)°, N2—Bi1—O21 = 67.72 (9)°, O21—Bi1—O31 = 77.37 (9)°, O31—Bi1—N1 = 75.49 (9)°). The C—Bi—O and C—Bi—N angles deviate from 90° (83.65–92.00°), contributing to the distortion of the pentagonal pyramidal coordination around the BiIII atom (Figure 2). Similar to other structurally characterized arylbismuth(III) compounds, the coordination sphere of BiIII is hemidirected (Stavila et al., 2007, 2009), (Stavila & Dikarev, 2009), suggesting that a stereochemically active lone electron pair is present.

Generally, secondary bonding interactions are rather common for monoaryl-bismuth(III) complexes. Thus, intermolecular secondary bonding interactions have been found in a number of aryl-bismuth diketonates (Stavila & Dikarev, 2009) and carboxylates (Stavila et al., 2007). In (I), the oxygen atom of one of the hydroxyl groups, O23, is involved in a weak secondary bond (Bi1···O23 = 3.485 (3) Å with an adjacent BiIII complex (Figure 3). The complex also displays intra- and intermolecular hydrogen bonds between the OH groups and oxygen atoms of the carboxylate groups (O13—H13A···O12, O13···O12 = 2.541 (5) Å; O23—H23A···O22, O23···O22 = 2.555 (5) Å; O23—H23A···O13i, O23···O13i = 2.917 (6) Å, (i) x + 1, y, z + 1).

Structures containing aryl bismuth(III) complexes with O or O/N donors typically display pentagonal pyramidal geometries and are comparatively rare (Andrews et al., 2006; Stavila & Dikarev, 2009; Stavila et al., 2007; Yu et al., 2004). In the same way, structures of bismuth(III) complexes with chelating picolinate ligands are uncommon (Callens et al., 2008).

For a review on the structural chemistry of organobismuth derivatives, see Silvestru et al. (1999). For the crystal structures of related arylbismuth(III) compounds, see: Stavila et al. (2007, 2009); Stavila & Dikarev (2009); Andrews et al. (2006); Yu et al. (2004). For bismuth(III) picolinate complexes, see: Callens et al. (2008). For a review on biomedical applications of bismuth(III) compounds, see: Briand & Burford (1999).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An anisotropic displacement ellipsoid plot of the title compound (I), showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The coordination polyhedron of the BiIII ion in compound (I).
[Figure 3] Fig. 3. A packing diagram of compound (I) viewed down the a axis.
(N,N-Dimethylformamide-κO)bis(3-hydroxypicolinato- κ2N,O2)phenylbismuth(III) top
Crystal data top
[Bi(C6H5)(C6H4NO3)2(C3H7NO)]F(000) = 1224
Mr = 635.38Dx = 1.942 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7774 reflections
a = 8.2377 (16) Åθ = 2.5–24.7°
b = 21.989 (4) ŵ = 8.16 mm1
c = 12.380 (3) ÅT = 294 K
β = 104.24 (3)°Block, light-yellow
V = 2173.6 (7) Å30.14 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3669 independent reflections
Radiation source: fine-focus sealed tube3314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 24.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.356, Tmax = 0.450k = 2525
15126 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0202P)2 + 1.6444P]
where P = (Fo2 + 2Fc2)/3
3669 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.72 e Å3
4 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Bi(C6H5)(C6H4NO3)2(C3H7NO)]V = 2173.6 (7) Å3
Mr = 635.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2377 (16) ŵ = 8.16 mm1
b = 21.989 (4) ÅT = 294 K
c = 12.380 (3) Å0.14 × 0.11 × 0.10 mm
β = 104.24 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3669 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3314 reflections with I > 2σ(I)
Tmin = 0.356, Tmax = 0.450Rint = 0.031
15126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0214 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.72 e Å3
3669 reflectionsΔρmin = 0.94 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.163597 (16)0.410112 (6)0.270490 (11)0.02944 (6)
N10.0947 (4)0.39564 (14)0.0950 (3)0.0350 (7)
N20.4598 (3)0.44505 (13)0.3132 (2)0.0296 (7)
N30.1613 (4)0.30791 (16)0.4752 (3)0.0484 (9)
O110.2210 (3)0.43021 (14)0.0973 (2)0.0460 (7)
O120.1580 (4)0.43682 (17)0.0856 (2)0.0616 (9)
O130.1422 (4)0.42463 (17)0.1993 (3)0.0700 (10)
H13A0.047 (2)0.4405 (17)0.179 (3)0.084*
O210.3075 (3)0.39088 (11)0.4591 (2)0.0345 (6)
O220.5381 (3)0.40081 (12)0.5967 (2)0.0431 (7)
O230.7918 (3)0.45888 (13)0.5663 (2)0.0424 (7)
H23A0.721 (3)0.4455 (17)0.599 (2)0.051*
O310.0596 (3)0.35957 (13)0.3485 (2)0.0463 (7)
C110.1176 (5)0.42747 (18)0.0033 (3)0.0384 (9)
C120.0582 (5)0.41051 (16)0.0012 (3)0.0342 (8)
C130.1795 (6)0.41097 (19)0.1030 (4)0.0483 (11)
C140.3443 (6)0.3973 (2)0.1012 (4)0.0602 (13)
H14A0.42870.39730.16680.072*
C150.3797 (5)0.3840 (2)0.0021 (4)0.0568 (12)
H15A0.48930.37570.00070.068*
C160.2524 (5)0.3828 (2)0.0945 (4)0.0446 (10)
H16A0.27810.37270.16140.053*
C210.4577 (5)0.40784 (15)0.4986 (3)0.0311 (8)
C220.5437 (4)0.43992 (15)0.4213 (3)0.0279 (8)
C230.7050 (4)0.46376 (16)0.4596 (3)0.0310 (8)
C240.7768 (4)0.49391 (17)0.3847 (3)0.0372 (9)
H24A0.88360.51050.40820.045*
C250.6894 (5)0.49916 (19)0.2758 (3)0.0405 (10)
H25A0.73600.51940.22470.049*
C260.5304 (5)0.47394 (18)0.2424 (3)0.0381 (9)
H26A0.47160.47740.16820.046*
C310.0559 (5)0.34549 (19)0.4457 (4)0.0421 (10)
H31A0.024 (5)0.3600 (19)0.512 (4)0.056 (13)*
C320.1501 (7)0.2935 (3)0.5913 (4)0.0744 (16)
H32A0.05650.31460.63780.112*
H32B0.13520.25050.60260.112*
H32C0.25130.30600.61040.112*
C330.2927 (7)0.2800 (3)0.3906 (5)0.0903 (19)
H33A0.28420.29320.31830.135*
H33B0.39970.29160.40170.135*
H33C0.28140.23650.39550.135*
C410.2374 (4)0.31401 (17)0.2439 (3)0.0341 (8)
C420.2978 (6)0.2968 (2)0.1537 (4)0.0550 (12)
H42A0.31070.32580.10190.066*
C430.3391 (6)0.2369 (3)0.1397 (4)0.0666 (14)
H43A0.38120.22630.07910.080*
C440.3194 (6)0.1938 (3)0.2124 (4)0.0676 (16)
H44A0.34510.15350.20110.081*
C450.2610 (6)0.2096 (2)0.3034 (4)0.0602 (13)
H45A0.24860.18000.35450.072*
C460.2204 (5)0.26970 (18)0.3191 (4)0.0453 (10)
H46A0.18140.28020.38100.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.03053 (9)0.03335 (9)0.02336 (9)0.00432 (6)0.00457 (6)0.00018 (6)
N10.0321 (17)0.0393 (18)0.0307 (19)0.0017 (13)0.0023 (14)0.0009 (14)
N20.0325 (16)0.0342 (16)0.0216 (16)0.0069 (13)0.0061 (13)0.0022 (13)
N30.0418 (19)0.053 (2)0.052 (2)0.0026 (16)0.0139 (17)0.0137 (18)
O110.0412 (15)0.0690 (19)0.0247 (15)0.0184 (14)0.0023 (12)0.0043 (13)
O120.062 (2)0.095 (2)0.0273 (17)0.0225 (18)0.0102 (15)0.0074 (16)
O130.071 (2)0.105 (3)0.0252 (18)0.019 (2)0.0061 (16)0.0155 (17)
O210.0361 (14)0.0410 (14)0.0254 (14)0.0129 (11)0.0057 (11)0.0031 (11)
O220.0423 (16)0.0582 (18)0.0249 (16)0.0082 (12)0.0006 (12)0.0097 (12)
O230.0358 (15)0.0568 (18)0.0301 (16)0.0098 (13)0.0005 (12)0.0040 (13)
O310.0390 (15)0.0590 (18)0.0429 (18)0.0015 (13)0.0141 (13)0.0088 (14)
C110.048 (2)0.040 (2)0.026 (2)0.0058 (17)0.0056 (18)0.0034 (17)
C120.040 (2)0.033 (2)0.025 (2)0.0022 (16)0.0009 (16)0.0041 (15)
C130.056 (3)0.049 (3)0.032 (3)0.005 (2)0.002 (2)0.0060 (19)
C140.043 (3)0.070 (3)0.052 (3)0.005 (2)0.018 (2)0.005 (2)
C150.036 (2)0.072 (3)0.056 (3)0.005 (2)0.001 (2)0.004 (3)
C160.038 (2)0.054 (3)0.041 (3)0.0027 (19)0.0094 (19)0.000 (2)
C210.036 (2)0.0296 (19)0.027 (2)0.0038 (15)0.0065 (17)0.0030 (15)
C220.0313 (18)0.0269 (18)0.025 (2)0.0009 (14)0.0069 (15)0.0014 (15)
C230.0310 (18)0.0309 (19)0.030 (2)0.0008 (15)0.0058 (16)0.0020 (16)
C240.0295 (19)0.043 (2)0.039 (2)0.0086 (16)0.0087 (17)0.0041 (18)
C250.041 (2)0.049 (2)0.035 (2)0.0106 (18)0.0179 (19)0.0022 (18)
C260.041 (2)0.048 (2)0.025 (2)0.0090 (18)0.0059 (17)0.0032 (17)
C310.033 (2)0.045 (2)0.048 (3)0.0026 (18)0.008 (2)0.003 (2)
C320.068 (3)0.095 (4)0.064 (4)0.007 (3)0.022 (3)0.037 (3)
C330.082 (4)0.092 (4)0.093 (5)0.042 (3)0.014 (3)0.005 (4)
C410.0299 (19)0.040 (2)0.029 (2)0.0004 (16)0.0014 (16)0.0051 (17)
C420.059 (3)0.066 (3)0.042 (3)0.012 (2)0.015 (2)0.002 (2)
C430.074 (3)0.078 (4)0.048 (3)0.027 (3)0.014 (3)0.018 (3)
C440.071 (3)0.059 (3)0.060 (4)0.027 (3)0.007 (3)0.021 (3)
C450.069 (3)0.046 (3)0.061 (3)0.009 (2)0.005 (3)0.005 (2)
C460.054 (2)0.040 (2)0.041 (2)0.0068 (19)0.011 (2)0.002 (2)
Geometric parameters (Å, º) top
Bi1—C412.245 (4)O31—C311.235 (5)
Bi1—O112.348 (3)C11—C121.483 (5)
Bi1—O212.382 (3)C12—C131.403 (6)
Bi1—N22.488 (3)C13—C141.396 (7)
Bi1—O312.534 (3)C14—C151.360 (7)
Bi1—N12.660 (3)C15—C161.384 (6)
N1—C161.328 (5)C21—C221.499 (5)
N1—C121.338 (5)C22—C231.398 (5)
N2—C261.327 (4)C23—C241.386 (5)
N2—C221.352 (4)C24—C251.368 (5)
N3—C311.313 (5)C25—C261.388 (5)
N3—C331.445 (6)C41—C461.378 (6)
N3—C321.453 (6)C41—C421.382 (5)
O11—C111.264 (5)C42—C431.381 (7)
O12—C111.243 (5)C43—C441.345 (7)
O13—C131.336 (5)C44—C451.374 (7)
O21—C211.269 (4)C45—C461.389 (6)
O22—C211.242 (5)O13—H13A0.84 (3)
O23—C231.342 (4)O23—H23A0.84 (3)
C41—Bi1—O1185.44 (12)N1—C12—C11117.3 (3)
C41—Bi1—O2183.65 (11)C13—C12—C11120.3 (4)
O11—Bi1—O21139.90 (9)O13—C13—C14120.1 (4)
C41—Bi1—N292.01 (11)O13—C13—C12122.3 (4)
O11—Bi1—N274.25 (9)C14—C13—C12117.7 (4)
O21—Bi1—N267.72 (9)C15—C14—C13119.1 (4)
C41—Bi1—O3183.76 (12)C14—C15—C16119.9 (4)
O11—Bi1—O31139.33 (9)N1—C16—C15122.1 (4)
O21—Bi1—O3177.37 (9)O22—C21—O21125.1 (3)
N2—Bi1—O31145.09 (9)O22—C21—C22117.4 (3)
C41—Bi1—N187.62 (11)O21—C21—C22117.5 (3)
O11—Bi1—N164.98 (10)N2—C22—C23121.1 (3)
O21—Bi1—N1152.21 (9)N2—C22—C21117.7 (3)
N2—Bi1—N1139.13 (10)C23—C22—C21121.3 (3)
O31—Bi1—N175.49 (10)O23—C23—C24119.0 (3)
C16—N1—C12118.8 (3)O23—C23—C22122.4 (3)
C16—N1—Bi1127.9 (3)C24—C23—C22118.6 (3)
C12—N1—Bi1112.8 (2)C25—C24—C23119.5 (3)
C26—N2—C22119.6 (3)C24—C25—C26119.3 (3)
C26—N2—Bi1125.0 (2)N2—C26—C25121.9 (3)
C22—N2—Bi1114.9 (2)O31—C31—N3124.7 (4)
C31—N3—C33119.6 (4)C46—C41—C42117.9 (4)
C31—N3—C32121.8 (4)C46—C41—Bi1119.3 (3)
C33—N3—C32118.6 (4)C42—C41—Bi1122.7 (3)
C11—O11—Bi1126.2 (2)C43—C42—C41120.8 (5)
C21—O21—Bi1121.9 (2)C44—C43—C42120.9 (5)
C31—O31—Bi1129.4 (3)C43—C44—C45119.7 (5)
O12—C11—O11122.8 (4)C44—C45—C46120.0 (5)
O12—C11—C12118.7 (3)C41—C46—C45120.7 (4)
O11—C11—C12118.5 (3)O13—H13A—O12147 (4)
N1—C12—C13122.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O120.84 (3)1.80 (3)2.541 (5)147 (4)
O23—H23A···O220.84 (3)1.79 (3)2.555 (5)150 (3)
O23—H23A···O13i0.84 (3)2.52 (2)2.917 (6)110 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Bi(C6H5)(C6H4NO3)2(C3H7NO)]
Mr635.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.2377 (16), 21.989 (4), 12.380 (3)
β (°) 104.24 (3)
V3)2173.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)8.16
Crystal size (mm)0.14 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.356, 0.450
No. of measured, independent and
observed [I > 2σ(I)] reflections
15126, 3669, 3314
Rint0.031
(sin θ/λ)max1)0.590
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.11
No. of reflections3669
No. of parameters299
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.94

Computer programs: SMART (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O120.84 (3)1.80 (3)2.541 (5)147 (4)
O23—H23A···O220.84 (3)1.79 (3)2.555 (5)150 (3)
O23—H23A···O13i0.84 (3)2.52 (2)2.917 (6)110 (2)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank the CRDF for financial support (award No. MOE2-2850-CS-06).

References

First citationAndrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & Silberstein, M. (2006). Dalton Trans. pp. 4852–4858.  Web of Science CSD CrossRef Google Scholar
First citationBriand, G. G. & Burford, N. (1999). Chem. Rev. 99, 2601–2658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). SMART, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCallens, E., Burton, A. J., White, A. J. P. & Barrett, A. G. M. (2008). Tetrahedron Lett. 49, 3709–3712.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvestru, C., Breunig, H. J. & Althaus, H. (1999). Chem. Rev. 99, 3277–3327.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStavila, V. & Dikarev, E. V. (2009). J. Organomet. Chem. 694, 2956–2964.  Web of Science CSD CrossRef CAS Google Scholar
First citationStavila, V., Fettinger, J. C. & Whitmire, K. H. (2007). Organometallics, 26, 3321–3328.  Web of Science CSD CrossRef CAS Google Scholar
First citationStavila, V., Thurston, J. H. & Whitmire, K. H. (2009). Inorg. Chem. 48, 6945–6951.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, L., Ma, Y.-Q., Liu, R.-C., Wang, G.-C. & Li, J.-S. (2004). Inorg. Chem. Commun. 7, 410–411.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds