organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Melaminium nitrate–melamine–water (1/1/1)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemistry, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 October 2010; accepted 27 October 2010; online 31 October 2010)

In the crystal structure of the title salt, C3H7N6+·NO3·C3H6N6·H2O, the asymmetric unit consists of two neutral melamine (1,3,5-triazine-2,4,6-triamine) mol­ecules, two melaminium cations, two nitrate anions and two solvent water mol­ecules. One of the nitrate anions is disordered over two sets of positions, with a refined occupancy ratio of 0.909 (3):0.091 (3). The cations and neutral mol­ecules are approximately planar, with maximum deviations of 0.018 (2), 0.024 (2), 0.019 (2) and 0.007 (2) Å for each, respectively. In the crystal structure, melaminium cations and neutral melamine mol­ecules self-assemble via N—H⋯N hydrogen bonds to form a supra­molecular hexa­gonal-shaped motif. In addition, the nitrate anions and water mol­ecules are connected by N—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For applications of melamine, see: Rima et al. (2008[Rima, J., Abourida, M., Xu, T., Cho, I. K. & Kyriacos, S. (2008). J. Food Compost. Anal. 22, 689-693.]); Cook et al. (2005[Cook, H. A., Klampfl, C. W. & Buchberger, W. (2005). Electrophoresis, 26, 1576-1583.]); Ramos Silva et al. (2008[Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173-m1174.]). For related structures, see: Debrus et al. (2007[Debrus, S., Marchewka, M. K., Drozd, M. & Ratajczak, H. (2007). Opt. Mater. 29, 1058-1062.]); Zhao & Shi (2010[Zhao, M. M. & Shi, P. P. (2010). Acta Cryst. E66, o1415.]); Marchewka & Pietraszko (2003[Marchewka, M. K. & Pietraszko, A. (2003). J. Phys. Chem. Solids. 64, 2169-2181.]); Marchewka (2002[Marchewka, M. K. (2002). Mater. Sci. Eng. B, 95, 214-221.]). For applications of hydrogen bonding, see: Aghabozorg et al. (2008[Aghabozorg, H., Daneshvar, S. & Nemati, A. (2008). Acta Cryst. E64, m1063-m1064.]).

[Scheme 1]

Experimental

Crystal data
  • C3H7N6+·NO3·C3H6N6·H2O

  • Mr = 333.31

  • Triclinic, [P \overline 1]

  • a = 7.7759 (1) Å

  • b = 9.0035 (1) Å

  • c = 19.4573 (3) Å

  • α = 96.182 (1)°

  • β = 90.854 (1)°

  • γ = 99.828 (1)°

  • V = 1333.64 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.21 × 0.14 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.987

  • 22196 measured reflections

  • 5160 independent reflections

  • 3689 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.03

  • 5160 reflections

  • 543 parameters

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H1A⋯O2Wi 0.92 (2) 2.05 (2) 2.965 (2) 174.2 (17)
N4B—H1B⋯N1D 0.85 (2) 2.18 (2) 3.025 (2) 174.1 (18)
N4D—H1D⋯O3AA 0.88 (2) 2.27 (2) 3.077 (2) 153 (2)
N1A—H1N⋯O1Wii 0.91 (2) 1.89 (2) 2.771 (2) 165 (2)
N4A—H2A⋯O1Bi 0.96 (3) 2.03 (3) 2.838 (2) 141 (2)
N4B—H2B⋯O3AA 0.93 (3) 2.05 (2) 2.810 (2) 138.8 (18)
N4C—H2C⋯N2Diii 0.88 (3) 2.07 (3) 2.945 (2) 176 (2)
N4D—H2D⋯N2Ciii 0.84 (2) 2.23 (2) 3.069 (2) 172 (2)
N1C—H2N⋯O3B 0.93 (2) 1.91 (2) 2.836 (2) 177 (2)
O2W—H1W2⋯N1D 0.86 (3) 2.04 (3) 2.899 (2) 174 (3)
N5A—H3A⋯N2B 0.88 (3) 2.20 (3) 3.062 (2) 165 (2)
N5B—H3B⋯N2A 0.82 (3) 2.30 (3) 3.119 (2) 175 (2)
N5C—H3C⋯O2AAiii 0.89 (2) 2.06 (2) 2.799 (2) 140 (2)
N5D—H3D⋯O3AAiv 0.86 (2) 2.53 (2) 3.232 (3) 140 (2)
N5A—H4A⋯O1AA 0.86 (2) 2.11 (2) 2.963 (2) 171 (2)
N5B—H4B⋯O2Bi 0.86 (2) 2.20 (2) 3.045 (2) 167 (2)
N5C—H4C⋯N3Dv 0.89 (3) 2.12 (3) 2.996 (2) 173 (2)
N5D—H4D⋯N3Cv 0.81 (3) 2.30 (3) 3.105 (3) 173 (2)
N6A—H5A⋯N3Bvi 0.80 (2) 2.13 (2) 2.926 (2) 175.9 (19)
N6B—H5B⋯N3Avii 0.84 (2) 2.18 (2) 3.020 (2) 177 (2)
N6C—H5C⋯O2W 0.93 (3) 2.00 (3) 2.849 (2) 151 (2)
N6D—H5D⋯O2AAvii 0.93 (3) 2.22 (3) 3.126 (2) 167 (2)
N6A—H6A⋯O1Wii 0.90 (2) 2.55 (2) 3.262 (2) 137.2 (15)
N6A—H6A⋯O2Bviii 0.90 (2) 2.14 (2) 2.841 (2) 135.2 (17)
N6B—H6B⋯O1AAvii 0.89 (2) 2.17 (3) 2.806 (2) 128 (2)
N6C—H6C⋯O1B 0.90 (2) 1.97 (2) 2.868 (2) 174.6 (18)
N6D—H6D⋯N1B 0.91 (2) 2.18 (2) 3.088 (2) 172 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z-1; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1; (vi) x+1, y+1, z; (vii) x-1, y-1, z; (viii) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3,5-triazine-2,4,6-triamine is an organic base also known as melamine. Melamine is very widely used in several industries, such as the production of melamine foam in polymeric cleaning (Rima et al., 2008) and also as a chemical intermediate in amino resin and plastics manufacturing (Cook et al., 2005). Melamine can be a proton acceptor and will form 2,4,6-triamino-1,3,5-triazine-1-ium (Ramos Silva et al., 2008). Recently many melaminium complexes in crystalline form has been reported, such as melaminium-bis(trichloroacetate) monohydrate (Debrus et al., 2007), melaminium iodide monohydrate (Zhao & Shi, 2010) and melaminium citrate (Marchewka & Pietraszko, 2003). Melaminium salt crystals have shown interesting properties like nonlinear optical behaviour (Marchewka, 2002). In the formation of melaminium salt crystals, molecules are bound to each other via hydrogen bonds. Hydrogen bonding plays an important role in the catalytic, biochemical activities and also in supramolecular chemistry and crystal engineering (Aghabozorg et al., 2008). Here, we report the crystal structure of a melaminium salt. This crystal was obtained as a by-product during our attempt to form crown complexes with melamine.

The asymmetric unit of the title compound consists of two crystallographically independent protonated melaminium cations (A & C), two nitrate anions (A & B), two neutral melamine molecules (B & D) and two water molecules (Fig. 1). One of the nitrate anion is disordered over two sets of position, with refined occupancy ratios of 0.909 (3):0.091 (3). The protonated and neutral melamine molecules are essentially planar, with a maximum deviation of 0.018 (2) Å for atom C2A (molecule A), 0.024 (2) Å for atom C2C (molecule C), 0.019 (2) Å for atom C2B (molecule B) and 0.007 (2) Å for atom C2D (molecule D).

In the crystal structure (Fig.2), the protonated melaminium cations and the neutral melamine molecules self-assemble via N—H···N hydrogen bonds to form a supramolecular hexagonal motif. Furthermore, the nitrate anions and water molecules are connected by N—H···O (Table 1) hydrogen bonds to form a three-dimensional network.

Related literature top

For applications of melamine, see: Rima et al. (2008); Cook et al. (2005); Ramos Silva et al. (2008). For related structures, see: Debrus et al. (2007); Zhao & Shi (2010); Marchewka & Pietraszko (2003); Marchewka (2002). For applications of hydrogen bonding, see: Aghabozorg et al. (2008).

Experimental top

0.36 g (2.856 mmol) of melamine, 0.50 g (2.856 mmol) of 1,4-bis(chloromethyl)benzene and 1.0 ml triethylamine were added into 40 mL acetonitrile and refluxed for 72 hours at 348 K. The white precipitate was collected by simple filtration and dried at 373 K for 24 hours. About 0.5 g of the white precipitate was dissolved in 10 mL distilled water followed by 0.5 g (1.718 mmol) of cobalt(II) nitrate. The pH was adjusted to 7.0 by a few drops of 1.0 M sodium hydroxide. The mixture was stirred for 2 h and then filtered off. The resulting mixture was kept at room temperature for recrystallization. Recrystallization was carried out twice by using distilled water to get the pure crystal.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.80 (2)–0.96 (2) Å and O—H = 0.85 (4)–0.96 (3) Å]. One of the nitrate anion is disordered over two sets of positions, with refined occupancy ratios of 0.909 (3):0.091 (3).

Structure description top

1,3,5-triazine-2,4,6-triamine is an organic base also known as melamine. Melamine is very widely used in several industries, such as the production of melamine foam in polymeric cleaning (Rima et al., 2008) and also as a chemical intermediate in amino resin and plastics manufacturing (Cook et al., 2005). Melamine can be a proton acceptor and will form 2,4,6-triamino-1,3,5-triazine-1-ium (Ramos Silva et al., 2008). Recently many melaminium complexes in crystalline form has been reported, such as melaminium-bis(trichloroacetate) monohydrate (Debrus et al., 2007), melaminium iodide monohydrate (Zhao & Shi, 2010) and melaminium citrate (Marchewka & Pietraszko, 2003). Melaminium salt crystals have shown interesting properties like nonlinear optical behaviour (Marchewka, 2002). In the formation of melaminium salt crystals, molecules are bound to each other via hydrogen bonds. Hydrogen bonding plays an important role in the catalytic, biochemical activities and also in supramolecular chemistry and crystal engineering (Aghabozorg et al., 2008). Here, we report the crystal structure of a melaminium salt. This crystal was obtained as a by-product during our attempt to form crown complexes with melamine.

The asymmetric unit of the title compound consists of two crystallographically independent protonated melaminium cations (A & C), two nitrate anions (A & B), two neutral melamine molecules (B & D) and two water molecules (Fig. 1). One of the nitrate anion is disordered over two sets of position, with refined occupancy ratios of 0.909 (3):0.091 (3). The protonated and neutral melamine molecules are essentially planar, with a maximum deviation of 0.018 (2) Å for atom C2A (molecule A), 0.024 (2) Å for atom C2C (molecule C), 0.019 (2) Å for atom C2B (molecule B) and 0.007 (2) Å for atom C2D (molecule D).

In the crystal structure (Fig.2), the protonated melaminium cations and the neutral melamine molecules self-assemble via N—H···N hydrogen bonds to form a supramolecular hexagonal motif. Furthermore, the nitrate anions and water molecules are connected by N—H···O (Table 1) hydrogen bonds to form a three-dimensional network.

For applications of melamine, see: Rima et al. (2008); Cook et al. (2005); Ramos Silva et al. (2008). For related structures, see: Debrus et al. (2007); Zhao & Shi (2010); Marchewka & Pietraszko (2003); Marchewka (2002). For applications of hydrogen bonding, see: Aghabozorg et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds represents disorder components.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) network.
2,4,6-triamino-1,3,5-triazin-1-ium nitrate–1,3,5-triazine-2,4,6-triamine– water (1/1/1) top
Crystal data top
C3H7N6+·NO3·C3H6N6·H2OZ = 4
Mr = 333.31F(000) = 696
Triclinic, P1Dx = 1.660 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7759 (1) ÅCell parameters from 3833 reflections
b = 9.0035 (1) Åθ = 2.3–29.8°
c = 19.4573 (3) ŵ = 0.14 mm1
α = 96.182 (1)°T = 296 K
β = 90.854 (1)°Block, purple
γ = 99.828 (1)°0.21 × 0.14 × 0.09 mm
V = 1333.64 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5160 independent reflections
Radiation source: fine-focus sealed tube3689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 89
Tmin = 0.972, Tmax = 0.987k = 1111
22196 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.2158P]
where P = (Fo2 + 2Fc2)/3
5160 reflections(Δ/σ)max < 0.001
543 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C3H7N6+·NO3·C3H6N6·H2Oγ = 99.828 (1)°
Mr = 333.31V = 1333.64 (3) Å3
Triclinic, P1Z = 4
a = 7.7759 (1) ÅMo Kα radiation
b = 9.0035 (1) ŵ = 0.14 mm1
c = 19.4573 (3) ÅT = 296 K
α = 96.182 (1)°0.21 × 0.14 × 0.09 mm
β = 90.854 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5160 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3689 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.987Rint = 0.042
22196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 1.03Δρmax = 0.21 e Å3
5160 reflectionsΔρmin = 0.45 e Å3
543 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.9356 (2)0.62933 (18)0.08016 (9)0.0142 (4)
N2A0.7288 (2)0.48794 (18)0.01488 (8)0.0149 (4)
N3A0.9137 (2)0.71794 (18)0.03718 (8)0.0139 (4)
N4A0.7628 (2)0.4097 (2)0.12989 (9)0.0176 (4)
N5A0.7043 (2)0.5825 (2)0.09767 (9)0.0172 (4)
N6A1.1157 (2)0.8451 (2)0.03080 (10)0.0165 (4)
C1A0.8069 (2)0.5077 (2)0.07424 (10)0.0139 (4)
C2A0.7836 (2)0.5972 (2)0.03848 (10)0.0145 (4)
C3A0.9888 (2)0.7321 (2)0.02329 (10)0.0136 (4)
N1B0.2450 (2)0.17275 (18)0.20073 (8)0.0157 (4)
N2B0.4686 (2)0.29201 (18)0.13081 (8)0.0149 (4)
N3B0.2675 (2)0.07228 (18)0.08247 (8)0.0152 (4)
N4B0.4452 (2)0.3774 (2)0.24538 (9)0.0183 (4)
N5B0.4750 (2)0.1976 (2)0.01677 (9)0.0160 (4)
N6B0.0627 (2)0.0409 (2)0.15269 (10)0.0196 (4)
C1B0.3839 (2)0.2789 (2)0.19097 (10)0.0148 (4)
C2B0.4012 (2)0.1864 (2)0.07766 (10)0.0129 (4)
C3B0.1951 (2)0.0700 (2)0.14507 (10)0.0148 (4)
N1C0.4424 (2)1.05878 (19)0.34890 (9)0.0170 (4)
N2C0.4197 (2)1.15377 (18)0.46499 (8)0.0143 (4)
N3C0.2251 (2)0.92779 (18)0.41389 (8)0.0158 (4)
N4C0.6243 (2)1.2761 (2)0.39577 (10)0.0182 (4)
N5C0.2192 (2)1.0143 (2)0.52802 (9)0.0155 (4)
N6C0.2541 (3)0.8500 (2)0.29859 (9)0.0221 (4)
C1C0.4950 (2)1.1634 (2)0.40435 (10)0.0149 (4)
C2C0.2901 (2)1.0327 (2)0.46781 (10)0.0140 (4)
C3C0.3043 (3)0.9436 (2)0.35478 (10)0.0162 (4)
N1D0.2208 (2)0.40060 (18)0.37041 (8)0.0155 (4)
N2D0.2450 (2)0.48189 (18)0.49238 (8)0.0149 (4)
N3D0.0365 (2)0.26250 (18)0.44780 (8)0.0145 (4)
N4D0.4156 (2)0.6117 (2)0.41573 (10)0.0180 (4)
N5D0.0681 (3)0.3419 (2)0.56411 (9)0.0174 (4)
N6D0.0204 (2)0.1911 (2)0.32993 (9)0.0180 (4)
C1D0.2918 (2)0.4954 (2)0.42667 (10)0.0139 (4)
C2D0.1182 (2)0.3630 (2)0.49989 (10)0.0142 (4)
C3D0.0951 (3)0.2865 (2)0.38480 (10)0.0137 (4)
N8A0.7624 (2)0.76433 (19)0.28672 (9)0.0178 (4)*
O1AA0.8234 (2)0.77664 (18)0.22811 (8)0.0211 (4)0.909 (3)
O2AA0.7867 (2)0.87285 (18)0.33240 (8)0.0293 (5)0.909 (3)
O3AA0.6809 (2)0.63698 (18)0.30001 (8)0.0305 (5)0.909 (3)
O1AB0.887 (2)0.8747 (18)0.2933 (8)0.021 (4)*0.091 (3)
O2AB0.649 (2)0.7781 (19)0.3371 (8)0.026 (5)*0.091 (3)
O3AB0.721 (2)0.673 (2)0.2387 (9)0.029 (5)*0.091 (3)
N8B0.5925 (2)0.96755 (18)0.17530 (8)0.0163 (4)
O1B0.46913 (19)0.86023 (16)0.18015 (7)0.0240 (4)
O2B0.66849 (18)0.98031 (16)0.11995 (7)0.0200 (3)
O3B0.64020 (18)1.06308 (15)0.22762 (7)0.0191 (3)
O1W0.1736 (2)0.67667 (17)0.81644 (8)0.0188 (3)
O2W0.0718 (2)0.54790 (17)0.26433 (8)0.0217 (4)
H1N0.997 (3)0.639 (3)0.1192 (12)0.028 (6)*
H2N0.504 (3)1.061 (3)0.3083 (12)0.032 (7)*
H1A0.816 (3)0.430 (2)0.1706 (12)0.023 (6)*
H2A0.668 (3)0.328 (3)0.1251 (13)0.044 (8)*
H3A0.622 (3)0.504 (3)0.1019 (11)0.022 (6)*
H4A0.739 (3)0.648 (3)0.1329 (11)0.019 (6)*
H5A1.154 (3)0.905 (3)0.0016 (12)0.020 (6)*
H6A1.157 (3)0.853 (2)0.0732 (12)0.020 (6)*
H1B0.382 (3)0.377 (2)0.2808 (11)0.018 (6)*
H2B0.531 (3)0.460 (3)0.2400 (11)0.030 (7)*
H3B0.543 (3)0.276 (3)0.0113 (11)0.022 (6)*
H4B0.426 (3)0.137 (3)0.0177 (12)0.025 (6)*
H5B0.021 (3)0.106 (3)0.1195 (12)0.023 (6)*
H6B0.014 (3)0.044 (3)0.1938 (12)0.027 (7)*
H1C0.676 (3)1.277 (3)0.3554 (13)0.030 (7)*
H2C0.668 (3)1.346 (3)0.4295 (13)0.033 (7)*
H3C0.259 (3)1.082 (3)0.5641 (12)0.025 (6)*
H4C0.138 (3)0.934 (3)0.5318 (12)0.032 (7)*
H5C0.172 (4)0.762 (3)0.3000 (13)0.047 (8)*
H6C0.318 (3)0.858 (2)0.2606 (11)0.016 (6)*
H1D0.458 (3)0.616 (2)0.3741 (11)0.014 (6)*
H2D0.459 (3)0.669 (3)0.4510 (12)0.024 (6)*
H3D0.129 (3)0.396 (3)0.5980 (12)0.030 (7)*
H4D0.005 (3)0.268 (3)0.5669 (11)0.026 (7)*
H5D0.051 (3)0.102 (3)0.3382 (12)0.034 (7)*
H6D0.082 (3)0.194 (3)0.2905 (12)0.027 (6)*
H1W10.203 (4)0.765 (3)0.7943 (14)0.054 (9)*
H2W10.270 (4)0.673 (4)0.8371 (17)0.084 (12)*
H1W20.116 (4)0.499 (3)0.2936 (15)0.055 (9)*
H2W20.034 (4)0.480 (3)0.2477 (13)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0151 (9)0.0154 (9)0.0106 (9)0.0008 (7)0.0026 (7)0.0005 (7)
N2A0.0170 (9)0.0132 (9)0.0134 (9)0.0003 (7)0.0005 (7)0.0004 (7)
N3A0.0148 (9)0.0140 (9)0.0118 (9)0.0006 (7)0.0013 (7)0.0015 (7)
N4A0.0202 (10)0.0178 (10)0.0128 (9)0.0014 (8)0.0022 (8)0.0009 (7)
N5A0.0201 (10)0.0155 (10)0.0130 (9)0.0047 (8)0.0032 (8)0.0005 (8)
N6A0.0190 (10)0.0168 (9)0.0104 (10)0.0043 (7)0.0027 (8)0.0021 (8)
C1A0.0125 (10)0.0135 (10)0.0155 (11)0.0017 (8)0.0004 (8)0.0017 (8)
C2A0.0137 (10)0.0131 (10)0.0171 (11)0.0023 (8)0.0003 (8)0.0038 (8)
C3A0.0133 (10)0.0128 (10)0.0153 (10)0.0038 (8)0.0014 (8)0.0016 (8)
N1B0.0150 (9)0.0172 (9)0.0137 (9)0.0002 (7)0.0011 (7)0.0006 (7)
N2B0.0151 (9)0.0156 (9)0.0130 (9)0.0005 (7)0.0013 (7)0.0007 (7)
N3B0.0151 (9)0.0157 (9)0.0134 (9)0.0007 (7)0.0004 (7)0.0010 (7)
N4B0.0180 (9)0.0215 (10)0.0116 (9)0.0046 (8)0.0049 (8)0.0027 (8)
N5B0.0172 (9)0.0156 (10)0.0122 (9)0.0041 (8)0.0016 (7)0.0003 (8)
N6B0.0201 (10)0.0228 (10)0.0118 (10)0.0067 (8)0.0027 (8)0.0011 (8)
C1B0.0126 (10)0.0156 (10)0.0157 (11)0.0005 (8)0.0004 (8)0.0030 (8)
C2B0.0124 (10)0.0135 (10)0.0133 (10)0.0031 (8)0.0012 (8)0.0024 (8)
C3B0.0131 (10)0.0173 (11)0.0139 (10)0.0011 (8)0.0001 (8)0.0029 (8)
N1C0.0196 (9)0.0160 (9)0.0131 (9)0.0026 (7)0.0029 (7)0.0004 (7)
N2C0.0149 (9)0.0149 (9)0.0127 (9)0.0015 (7)0.0021 (7)0.0009 (7)
N3C0.0189 (9)0.0136 (9)0.0134 (9)0.0011 (7)0.0013 (7)0.0012 (7)
N4C0.0205 (10)0.0179 (10)0.0131 (10)0.0037 (8)0.0036 (8)0.0008 (8)
N5C0.0179 (9)0.0137 (9)0.0129 (9)0.0021 (8)0.0019 (7)0.0008 (7)
N6C0.0271 (11)0.0206 (10)0.0142 (10)0.0064 (8)0.0055 (8)0.0020 (8)
C1C0.0142 (10)0.0145 (10)0.0163 (11)0.0037 (8)0.0006 (8)0.0014 (8)
C2C0.0144 (10)0.0127 (10)0.0152 (10)0.0028 (8)0.0001 (8)0.0021 (8)
C3C0.0169 (10)0.0137 (10)0.0172 (11)0.0010 (8)0.0011 (8)0.0016 (8)
N1D0.0168 (9)0.0140 (9)0.0139 (9)0.0012 (7)0.0007 (7)0.0001 (7)
N2D0.0164 (9)0.0150 (9)0.0130 (9)0.0019 (7)0.0010 (7)0.0015 (7)
N3D0.0162 (9)0.0142 (9)0.0119 (9)0.0000 (7)0.0005 (7)0.0004 (7)
N4D0.0228 (10)0.0174 (10)0.0106 (10)0.0044 (8)0.0022 (8)0.0007 (8)
N5D0.0221 (10)0.0152 (10)0.0118 (9)0.0045 (8)0.0014 (8)0.0005 (8)
N6D0.0211 (10)0.0182 (10)0.0118 (9)0.0040 (8)0.0023 (8)0.0003 (7)
C1D0.0145 (10)0.0132 (10)0.0151 (10)0.0059 (8)0.0003 (8)0.0009 (8)
C2D0.0151 (10)0.0147 (10)0.0137 (10)0.0037 (8)0.0015 (8)0.0037 (8)
C3D0.0152 (10)0.0143 (10)0.0123 (10)0.0040 (8)0.0005 (8)0.0029 (8)
O1AA0.0246 (9)0.0249 (10)0.0128 (8)0.0000 (7)0.0057 (7)0.0038 (7)
O2AA0.0517 (13)0.0175 (9)0.0141 (9)0.0037 (8)0.0020 (8)0.0033 (7)
O3AA0.0362 (11)0.0232 (10)0.0240 (10)0.0163 (8)0.0075 (8)0.0003 (7)
N8B0.0170 (9)0.0162 (9)0.0150 (9)0.0011 (7)0.0005 (7)0.0020 (7)
O1B0.0221 (8)0.0201 (8)0.0247 (8)0.0096 (6)0.0060 (7)0.0002 (6)
O2B0.0226 (8)0.0227 (8)0.0130 (7)0.0007 (6)0.0058 (6)0.0013 (6)
O3B0.0232 (8)0.0179 (8)0.0132 (7)0.0020 (6)0.0019 (6)0.0028 (6)
O1W0.0165 (8)0.0196 (8)0.0191 (8)0.0011 (6)0.0027 (7)0.0031 (6)
O2W0.0239 (9)0.0194 (8)0.0204 (8)0.0015 (7)0.0047 (7)0.0048 (7)
Geometric parameters (Å, º) top
N1A—C1A1.368 (2)N4C—C1C1.327 (3)
N1A—C3A1.374 (2)N4C—H1C0.89 (2)
N1A—H1N0.91 (2)N4C—H2C0.88 (2)
N2A—C1A1.328 (2)N5C—C2C1.317 (2)
N2A—C2A1.361 (2)N5C—H3C0.90 (2)
N3A—C3A1.330 (2)N5C—H4C0.89 (3)
N3A—C2A1.355 (2)N6C—C3C1.317 (3)
N4A—C1A1.322 (2)N6C—H5C0.93 (3)
N4A—H1A0.92 (2)N6C—H6C0.90 (2)
N4A—H2A0.96 (3)N1D—C3D1.348 (2)
N5A—C2A1.323 (3)N1D—C1D1.361 (2)
N5A—H3A0.88 (2)N2D—C1D1.347 (2)
N5A—H4A0.86 (2)N2D—C2D1.348 (2)
N6A—C3A1.313 (2)N3D—C3D1.341 (2)
N6A—H5A0.80 (2)N3D—C2D1.356 (2)
N6A—H6A0.89 (2)N4D—C1D1.333 (3)
N1B—C1B1.345 (2)N4D—H1D0.88 (2)
N1B—C3B1.352 (2)N4D—H2D0.84 (2)
N2B—C1B1.358 (2)N5D—C2D1.338 (3)
N2B—C2B1.360 (2)N5D—H3D0.86 (2)
N3B—C2B1.343 (2)N5D—H4D0.81 (2)
N3B—C3B1.350 (2)N6D—C3D1.352 (2)
N4B—C1B1.332 (2)N6D—H5D0.93 (2)
N4B—H1B0.85 (2)N6D—H6D0.91 (2)
N4B—H2B0.93 (2)N8A—O3AB1.180 (17)
N5B—C2B1.330 (2)N8A—O2AA1.235 (2)
N5B—H3B0.82 (2)N8A—O1AA1.250 (2)
N5B—H4B0.86 (2)N8A—O1AB1.257 (16)
N6B—C3B1.328 (3)N8A—O3AA1.266 (2)
N6B—H5B0.85 (2)N8A—O2AB1.340 (16)
N6B—H6B0.89 (2)N8B—O2B1.243 (2)
N1C—C1C1.362 (2)N8B—O1B1.253 (2)
N1C—C3C1.375 (3)N8B—O3B1.267 (2)
N1C—H2N0.93 (2)O1W—H1W10.94 (3)
N2C—C1C1.330 (2)O1W—H2W10.85 (4)
N2C—C2C1.359 (2)O2W—H1W20.86 (3)
N3C—C3C1.322 (2)O2W—H2W20.96 (3)
N3C—C2C1.362 (2)
C1A—N1A—C3A119.68 (17)H3C—N5C—H4C123 (2)
C1A—N1A—H1N122.0 (14)C3C—N6C—H5C121.6 (16)
C3A—N1A—H1N117.9 (14)C3C—N6C—H6C119.1 (13)
C1A—N2A—C2A115.58 (16)H5C—N6C—H6C118 (2)
C3A—N3A—C2A115.82 (16)N4C—C1C—N2C120.93 (18)
C1A—N4A—H1A118.4 (13)N4C—C1C—N1C117.64 (18)
C1A—N4A—H2A116.2 (15)N2C—C1C—N1C121.43 (18)
H1A—N4A—H2A125 (2)N5C—C2C—N2C117.48 (17)
C2A—N5A—H3A120.6 (14)N5C—C2C—N3C116.36 (18)
C2A—N5A—H4A118.9 (14)N2C—C2C—N3C126.15 (17)
H3A—N5A—H4A120 (2)N6C—C3C—N3C121.51 (18)
C3A—N6A—H5A120.8 (16)N6C—C3C—N1C116.79 (18)
C3A—N6A—H6A117.5 (14)N3C—C3C—N1C121.70 (17)
H5A—N6A—H6A122 (2)C3D—N1D—C1D114.55 (16)
N4A—C1A—N2A120.93 (18)C1D—N2D—C2D114.67 (16)
N4A—C1A—N1A117.61 (18)C3D—N3D—C2D114.38 (16)
N2A—C1A—N1A121.47 (17)C1D—N4D—H1D119.3 (13)
N5A—C2A—N3A116.94 (17)C1D—N4D—H2D116.6 (15)
N5A—C2A—N2A116.77 (18)H1D—N4D—H2D123 (2)
N3A—C2A—N2A126.28 (18)C2D—N5D—H3D117.8 (15)
N6A—C3A—N3A121.21 (18)C2D—N5D—H4D115.0 (16)
N6A—C3A—N1A117.70 (18)H3D—N5D—H4D126 (2)
N3A—C3A—N1A121.08 (17)C3D—N6D—H5D118.3 (14)
C1B—N1B—C3B114.54 (16)C3D—N6D—H6D115.0 (14)
C1B—N2B—C2B114.46 (16)H5D—N6D—H6D120 (2)
C2B—N3B—C3B115.23 (16)N4D—C1D—N2D117.56 (18)
C1B—N4B—H1B116.4 (14)N4D—C1D—N1D117.41 (18)
C1B—N4B—H2B120.1 (14)N2D—C1D—N1D125.02 (18)
H1B—N4B—H2B121 (2)N5D—C2D—N2D117.53 (18)
C2B—N5B—H3B118.4 (15)N5D—C2D—N3D116.89 (18)
C2B—N5B—H4B117.1 (15)N2D—C2D—N3D125.58 (17)
H3B—N5B—H4B122 (2)N3D—C3D—N1D125.78 (17)
C3B—N6B—H5B122.0 (15)N3D—C3D—N6D118.13 (18)
C3B—N6B—H6B118.3 (14)N1D—C3D—N6D116.07 (17)
H5B—N6B—H6B120 (2)O3AB—N8A—O2AA169.5 (9)
N4B—C1B—N1B117.02 (18)O3AB—N8A—O1AA57.0 (9)
N4B—C1B—N2B117.46 (17)O2AA—N8A—O1AA120.86 (17)
N1B—C1B—N2B125.51 (17)O3AB—N8A—O1AB129.1 (12)
N5B—C2B—N3B118.21 (17)O2AA—N8A—O1AB52.2 (7)
N5B—C2B—N2B116.93 (17)O1AA—N8A—O1AB73.0 (8)
N3B—C2B—N2B124.86 (17)O3AB—N8A—O3AA63.9 (9)
N6B—C3B—N3B117.65 (18)O2AA—N8A—O3AA119.80 (17)
N6B—C3B—N1B117.06 (18)O1AA—N8A—O3AA119.28 (16)
N3B—C3B—N1B125.28 (17)O1AB—N8A—O3AA154.5 (8)
C1C—N1C—C3C119.51 (17)O3AB—N8A—O2AB118.6 (12)
C1C—N1C—H2N120.2 (15)O2AA—N8A—O2AB58.6 (7)
C3C—N1C—H2N120.2 (14)O1AA—N8A—O2AB156.4 (7)
C1C—N2C—C2C115.68 (16)O1AB—N8A—O2AB110.8 (11)
C3C—N3C—C2C115.38 (17)O3AA—N8A—O2AB67.8 (7)
C1C—N4C—H1C118.9 (15)O2B—N8B—O1B120.62 (16)
C1C—N4C—H2C122.7 (15)O2B—N8B—O3B120.05 (16)
H1C—N4C—H2C118 (2)O1B—N8B—O3B119.34 (16)
C2C—N5C—H3C117.8 (14)H1W1—O1W—H2W1102 (3)
C2C—N5C—H4C119.4 (15)H1W2—O2W—H2W2104 (2)
C2A—N2A—C1A—N4A179.15 (18)C2C—N2C—C1C—N4C179.32 (18)
C2A—N2A—C1A—N1A0.9 (3)C2C—N2C—C1C—N1C0.9 (3)
C3A—N1A—C1A—N4A178.41 (18)C3C—N1C—C1C—N4C177.41 (18)
C3A—N1A—C1A—N2A1.5 (3)C3C—N1C—C1C—N2C2.4 (3)
C3A—N3A—C2A—N5A178.58 (18)C1C—N2C—C2C—N5C176.16 (18)
C3A—N3A—C2A—N2A2.8 (3)C1C—N2C—C2C—N3C4.2 (3)
C1A—N2A—C2A—N5A178.11 (18)C3C—N3C—C2C—N5C176.55 (18)
C1A—N2A—C2A—N3A3.2 (3)C3C—N3C—C2C—N2C3.8 (3)
C2A—N3A—C3A—N6A179.66 (19)C2C—N3C—C3C—N6C179.85 (19)
C2A—N3A—C3A—N1A0.0 (3)C2C—N3C—C3C—N1C0.1 (3)
C1A—N1A—C3A—N6A178.31 (18)C1C—N1C—C3C—N6C176.93 (18)
C1A—N1A—C3A—N3A2.0 (3)C1C—N1C—C3C—N3C2.8 (3)
C3B—N1B—C1B—N4B176.03 (18)C2D—N2D—C1D—N4D179.39 (17)
C3B—N1B—C1B—N2B2.6 (3)C2D—N2D—C1D—N1D0.3 (3)
C2B—N2B—C1B—N4B178.92 (18)C3D—N1D—C1D—N4D179.25 (17)
C2B—N2B—C1B—N1B0.3 (3)C3D—N1D—C1D—N2D0.2 (3)
C3B—N3B—C2B—N5B178.07 (17)C1D—N2D—C2D—N5D178.84 (17)
C3B—N3B—C2B—N2B2.4 (3)C1D—N2D—C2D—N3D1.2 (3)
C1B—N2B—C2B—N5B177.45 (17)C3D—N3D—C2D—N5D178.23 (17)
C1B—N2B—C2B—N3B3.0 (3)C3D—N3D—C2D—N2D1.8 (3)
C2B—N3B—C3B—N6B179.74 (18)C2D—N3D—C3D—N1D1.7 (3)
C2B—N3B—C3B—N1B1.0 (3)C2D—N3D—C3D—N6D179.96 (17)
C1B—N1B—C3B—N6B177.44 (18)C1D—N1D—C3D—N3D0.9 (3)
C1B—N1B—C3B—N3B3.3 (3)C1D—N1D—C3D—N6D179.31 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H1A···O2Wi0.92 (2)2.05 (2)2.965 (2)174.2 (17)
N4B—H1B···N1D0.85 (2)2.18 (2)3.025 (2)174.1 (18)
N4D—H1D···O3AA0.88 (2)2.27 (2)3.077 (2)153 (2)
N1A—H1N···O1Wii0.91 (2)1.89 (2)2.771 (2)165 (2)
N4A—H2A···O1Bi0.96 (3)2.03 (3)2.838 (2)141 (2)
N4B—H2B···O3AA0.93 (3)2.05 (2)2.810 (2)138.8 (18)
N4C—H2C···N2Diii0.88 (3)2.07 (3)2.945 (2)176 (2)
N4D—H2D···N2Ciii0.84 (2)2.23 (2)3.069 (2)172 (2)
N1C—H2N···O3B0.93 (2)1.91 (2)2.836 (2)177 (2)
O2W—H1W2···N1D0.86 (3)2.04 (3)2.899 (2)174 (3)
N5A—H3A···N2B0.88 (3)2.20 (3)3.062 (2)165 (2)
N5B—H3B···N2A0.82 (3)2.30 (3)3.119 (2)175 (2)
N5C—H3C···O2AAiii0.89 (2)2.06 (2)2.799 (2)140 (2)
N5D—H3D···O3AAiv0.86 (2)2.53 (2)3.232 (3)140 (2)
N5A—H4A···O1AA0.86 (2)2.11 (2)2.963 (2)171 (2)
N5B—H4B···O2Bi0.86 (2)2.20 (2)3.045 (2)167 (2)
N5C—H4C···N3Dv0.89 (3)2.12 (3)2.996 (2)173 (2)
N5D—H4D···N3Cv0.81 (3)2.30 (3)3.105 (3)173 (2)
N6A—H5A···N3Bvi0.80 (2)2.13 (2)2.926 (2)175.9 (19)
N6B—H5B···N3Avii0.84 (2)2.18 (2)3.020 (2)177 (2)
N6C—H5C···O2W0.93 (3)2.00 (3)2.849 (2)151 (2)
N6D—H5D···O2AAvii0.93 (3)2.22 (3)3.126 (2)167 (2)
N6A—H6A···O1Wii0.90 (2)2.55 (2)3.262 (2)137.2 (15)
N6A—H6A···O2Bviii0.90 (2)2.14 (2)2.841 (2)135.2 (17)
N6B—H6B···O1AAvii0.89 (2)2.17 (3)2.806 (2)128 (2)
N6C—H6C···O1B0.90 (2)1.97 (2)2.868 (2)174.6 (18)
N6D—H6D···N1B0.91 (2)2.18 (2)3.088 (2)172 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y+1, z; (vii) x1, y1, z; (viii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC3H7N6+·NO3·C3H6N6·H2O
Mr333.31
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7759 (1), 9.0035 (1), 19.4573 (3)
α, β, γ (°)96.182 (1), 90.854 (1), 99.828 (1)
V3)1333.64 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.21 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.972, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
22196, 5160, 3689
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.03
No. of reflections5160
No. of parameters543
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.45

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H1A···O2Wi0.92 (2)2.05 (2)2.965 (2)174.2 (17)
N4B—H1B···N1D0.85 (2)2.18 (2)3.025 (2)174.1 (18)
N4D—H1D···O3AA0.88 (2)2.27 (2)3.077 (2)153 (2)
N1A—H1N···O1Wii0.91 (2)1.89 (2)2.771 (2)165 (2)
N4A—H2A···O1Bi0.96 (3)2.03 (3)2.838 (2)141 (2)
N4B—H2B···O3AA0.93 (3)2.05 (2)2.810 (2)138.8 (18)
N4C—H2C···N2Diii0.88 (3)2.07 (3)2.945 (2)176 (2)
N4D—H2D···N2Ciii0.84 (2)2.23 (2)3.069 (2)172 (2)
N1C—H2N···O3B0.93 (2)1.91 (2)2.836 (2)177 (2)
O2W—H1W2···N1D0.86 (3)2.04 (3)2.899 (2)174 (3)
N5A—H3A···N2B0.88 (3)2.20 (3)3.062 (2)165 (2)
N5B—H3B···N2A0.82 (3)2.30 (3)3.119 (2)175 (2)
N5C—H3C···O2AAiii0.89 (2)2.06 (2)2.799 (2)140 (2)
N5D—H3D···O3AAiv0.86 (2)2.53 (2)3.232 (3)140 (2)
N5A—H4A···O1AA0.86 (2)2.11 (2)2.963 (2)171 (2)
N5B—H4B···O2Bi0.86 (2)2.20 (2)3.045 (2)167 (2)
N5C—H4C···N3Dv0.89 (3)2.12 (3)2.996 (2)173 (2)
N5D—H4D···N3Cv0.81 (3)2.30 (3)3.105 (3)173 (2)
N6A—H5A···N3Bvi0.80 (2)2.13 (2)2.926 (2)175.9 (19)
N6B—H5B···N3Avii0.84 (2)2.18 (2)3.020 (2)177 (2)
N6C—H5C···O2W0.93 (3)2.00 (3)2.849 (2)151 (2)
N6D—H5D···O2AAvii0.93 (3)2.22 (3)3.126 (2)167 (2)
N6A—H6A···O1Wii0.90 (2)2.55 (2)3.262 (2)137.2 (15)
N6A—H6A···O2Bviii0.90 (2)2.14 (2)2.841 (2)135.2 (17)
N6B—H6B···O1AAvii0.89 (2)2.17 (3)2.806 (2)128 (2)
N6C—H6C···O1B0.90 (2)1.97 (2)2.868 (2)174.6 (18)
N6D—H6D···N1B0.91 (2)2.18 (2)3.088 (2)172 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y+1, z; (vii) x1, y1, z; (viii) x+2, y+2, z.
 

Footnotes

Additional correspondence author, e-mail: farook@usm.my, farook_dr@yahoo.com.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government for a USM-RU-PRGS grant (No. 1001/PKIMIA/842020) and an RU grant (No. 10001/PKIMIA/814019) which partly supported this work. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for a Research University grant (No. 1001/PFIZIK/811160). MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAghabozorg, H., Daneshvar, S. & Nemati, A. (2008). Acta Cryst. E64, m1063–m1064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCook, H. A., Klampfl, C. W. & Buchberger, W. (2005). Electrophoresis, 26, 1576–1583.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDebrus, S., Marchewka, M. K., Drozd, M. & Ratajczak, H. (2007). Opt. Mater. 29, 1058–1062.  Web of Science CrossRef CAS Google Scholar
First citationMarchewka, M. K. (2002). Mater. Sci. Eng. B, 95, 214–221.  Web of Science CrossRef Google Scholar
First citationMarchewka, M. K. & Pietraszko, A. (2003). J. Phys. Chem. Solids. 64, 2169–2181.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRima, J., Abourida, M., Xu, T., Cho, I. K. & Kyriacos, S. (2008). J. Food Compost. Anal. 22, 689–693.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, M. M. & Shi, P. P. (2010). Acta Cryst. E66, o1415.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds