organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Hy­dr­oxy­benzyl­­idene)-4-nitro­benzohydrazide

aJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Department of Chemistry, Yancheng Teachers University, Yancheng 224002, People's Republic of China
*Correspondence e-mail: xpzhougroup@163.com

(Received 18 October 2010; accepted 19 October 2010; online 23 October 2010)

The title compound, C14H11N3O4, was prepared by the reaction of 4-nitro­benzohydrazide with 4-hy­droxy­benz­alde­hyde. The whole mol­ecule of the compound is approximately planar, with a mean deviation from the least-squares plane through all the non-H atoms of 0.050 (2) Å; the dihedral angle between the two benzene rings is 2.0 (2)°. In the crystal, the benzohydrazide mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, forming layers in the bc plane.

Related literature

For medical applications of hydrazones, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Zhang et al. (2010[Zhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289-293.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Huang & Wu (2010[Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729-o2730.]); Khaledi et al. (2010[Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105-o106.]); Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O4

  • Mr = 285.26

  • Monoclinic, P 21 /c

  • a = 7.856 (3) Å

  • b = 13.368 (5) Å

  • c = 12.527 (5) Å

  • β = 95.748 (4)°

  • V = 1309.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.982

  • 7505 measured reflections

  • 2822 independent reflections

  • 1736 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.04

  • 2822 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.98 2.7841 (18) 166
N2—H2⋯O4ii 0.90 (1) 2.24 (1) 3.094 (2) 159 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, medical applications of a number of hydrazone compounds have been reported (Ajani et al., 2010; Zhang et al., 2010; Angelusiu et al., 2010). Structural investigations of several hydrazone derivatives have also been determined (Huang & Wu, 2010; Khaledi et al., 2010; Zhou & Yang, 2010; Ji & Lu, 2010; Singh & Singh, 2010; Ahmad et al., 2010). In this paper, we report the structure of the new derivative N'-(4-Hydroxybenzylidene)-4-nitrobenzohydrazide (I).

The whole molecule of (I) is approximately planar, with a mean deviation from the least squares plane through all 21 non-hydrogen atoms of 0.050 (2) Å; the dihedral angle between the C1···C6 and C9···C14 benzene rings is 2.0 (2)°. The bond lengths and angles are comparable to those found in the hydrazone compounds cited above. In the crystal structure, the hydrazone molecules are linked through intermolecular O1–H1···O2 and N2–H2···O4 hydrogen bonds (Table 1), to form two-dimensional layers in the bc plane, as shown in Fig. 2.

Related literature top

For medical applications of hydrazones, see: Ajani et al. (2010); Zhang et al. (2010); Angelusiu et al. (2010). For related structures, see: Huang & Wu (2010); Khaledi et al. (2010); Zhou & Yang (2010); Ji & Lu (2010); Singh & Singh (2010); Ahmad et al. (2010).

Experimental top

The reaction of 4-nitrobenzohydrazide (0.181 g, 1 mmol) with 4-hydroxybenzaldehyde (0.122 g, 1 mmol) in 50 ml methanol at room temperature afforded the title compound. Single crystals were formed by slow evaporation of the clear solution in air.

Refinement top

The amino H atom was located in a difference Fourier map and refined with N–H = 0.90 (1) Å, and Uiso = 0.08 Å2. Other H atoms were positioned geometrically (C–H = 0.93 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(O).

Structure description top

Recently, medical applications of a number of hydrazone compounds have been reported (Ajani et al., 2010; Zhang et al., 2010; Angelusiu et al., 2010). Structural investigations of several hydrazone derivatives have also been determined (Huang & Wu, 2010; Khaledi et al., 2010; Zhou & Yang, 2010; Ji & Lu, 2010; Singh & Singh, 2010; Ahmad et al., 2010). In this paper, we report the structure of the new derivative N'-(4-Hydroxybenzylidene)-4-nitrobenzohydrazide (I).

The whole molecule of (I) is approximately planar, with a mean deviation from the least squares plane through all 21 non-hydrogen atoms of 0.050 (2) Å; the dihedral angle between the C1···C6 and C9···C14 benzene rings is 2.0 (2)°. The bond lengths and angles are comparable to those found in the hydrazone compounds cited above. In the crystal structure, the hydrazone molecules are linked through intermolecular O1–H1···O2 and N2–H2···O4 hydrogen bonds (Table 1), to form two-dimensional layers in the bc plane, as shown in Fig. 2.

For medical applications of hydrazones, see: Ajani et al. (2010); Zhang et al. (2010); Angelusiu et al. (2010). For related structures, see: Huang & Wu (2010); Khaledi et al. (2010); Zhou & Yang (2010); Ji & Lu (2010); Singh & Singh (2010); Ahmad et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the a axis. Intermolecular interactions are drawn as dashed lines.
N'-(4-Hydroxybenzylidene)-4-nitrobenzohydrazide top
Crystal data top
C14H11N3O4F(000) = 592
Mr = 285.26Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1632 reflections
a = 7.856 (3) Åθ = 2.2–26.0°
b = 13.368 (5) ŵ = 0.11 mm1
c = 12.527 (5) ÅT = 298 K
β = 95.748 (4)°Block, yellow
V = 1309.0 (9) Å30.18 × 0.17 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2822 independent reflections
Radiation source: fine-focus sealed tube1736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.981, Tmax = 0.982k = 1714
7505 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1504P]
where P = (Fo2 + 2Fc2)/3
2822 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C14H11N3O4V = 1309.0 (9) Å3
Mr = 285.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.856 (3) ŵ = 0.11 mm1
b = 13.368 (5) ÅT = 298 K
c = 12.527 (5) Å0.18 × 0.17 × 0.17 mm
β = 95.748 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1736 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.982Rint = 0.025
7505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
2822 reflectionsΔρmin = 0.16 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20526 (19)0.05033 (11)0.04617 (11)0.0433 (4)
N20.2594 (2)0.02540 (11)0.01727 (11)0.0420 (4)
N30.4845 (2)0.44506 (12)0.22229 (13)0.0510 (4)
O10.0039 (2)0.46112 (9)0.25453 (11)0.0598 (4)
H10.05210.44110.30210.090*
O20.17995 (17)0.13969 (9)0.09997 (10)0.0512 (4)
O30.4755 (2)0.52833 (11)0.18407 (13)0.0872 (6)
O40.54671 (18)0.42836 (10)0.30610 (10)0.0603 (4)
C10.1654 (2)0.22332 (13)0.07612 (14)0.0395 (4)
C20.1046 (2)0.20626 (13)0.17594 (14)0.0433 (5)
H2A0.10060.14120.20200.052*
C30.0511 (2)0.28366 (13)0.23572 (14)0.0444 (5)
H30.01070.27080.30170.053*
C40.0567 (2)0.38146 (13)0.19834 (14)0.0424 (5)
C50.1185 (2)0.39987 (13)0.10044 (15)0.0463 (5)
H50.12400.46510.07530.056*
C60.1721 (2)0.32147 (13)0.04010 (14)0.0446 (5)
H60.21320.33460.02560.053*
C70.2197 (2)0.13939 (13)0.01282 (14)0.0422 (4)
H70.26490.15120.05190.051*
C80.2426 (2)0.12013 (13)0.01678 (13)0.0372 (4)
C90.3070 (2)0.20201 (12)0.05002 (13)0.0352 (4)
C100.2986 (2)0.29875 (13)0.01120 (14)0.0454 (5)
H100.25410.30990.05380.055*
C110.3552 (2)0.37861 (13)0.06733 (15)0.0482 (5)
H110.34920.44350.04110.058*
C120.4209 (2)0.36016 (13)0.16304 (14)0.0395 (4)
C130.4312 (2)0.26543 (14)0.20412 (14)0.0449 (5)
H130.47600.25480.26910.054*
C140.3738 (2)0.18647 (13)0.14713 (14)0.0446 (5)
H140.37990.12190.17400.054*
H20.299 (3)0.0083 (16)0.0797 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0554 (10)0.0363 (9)0.0402 (9)0.0019 (7)0.0149 (7)0.0061 (7)
N20.0593 (10)0.0337 (8)0.0360 (8)0.0025 (7)0.0187 (7)0.0034 (7)
N30.0596 (11)0.0466 (10)0.0482 (10)0.0082 (8)0.0127 (8)0.0080 (8)
O10.0868 (11)0.0365 (7)0.0615 (9)0.0022 (7)0.0338 (8)0.0061 (7)
O20.0688 (9)0.0451 (8)0.0442 (8)0.0005 (7)0.0273 (6)0.0002 (6)
O30.1470 (17)0.0418 (9)0.0802 (12)0.0201 (10)0.0472 (11)0.0006 (8)
O40.0700 (10)0.0636 (9)0.0511 (9)0.0088 (7)0.0247 (7)0.0110 (7)
C10.0415 (10)0.0392 (10)0.0385 (10)0.0004 (8)0.0075 (8)0.0030 (8)
C20.0554 (11)0.0332 (10)0.0429 (10)0.0023 (8)0.0127 (9)0.0005 (8)
C30.0553 (11)0.0411 (10)0.0390 (10)0.0011 (9)0.0154 (9)0.0003 (9)
C40.0467 (11)0.0362 (10)0.0453 (11)0.0007 (8)0.0100 (9)0.0077 (9)
C50.0585 (12)0.0326 (9)0.0495 (11)0.0012 (9)0.0135 (9)0.0022 (9)
C60.0524 (11)0.0432 (11)0.0400 (10)0.0015 (9)0.0142 (9)0.0008 (9)
C70.0472 (11)0.0441 (11)0.0367 (10)0.0006 (9)0.0123 (8)0.0042 (9)
C80.0394 (10)0.0405 (10)0.0327 (9)0.0025 (8)0.0084 (8)0.0015 (8)
C90.0367 (9)0.0369 (9)0.0330 (9)0.0032 (7)0.0083 (7)0.0026 (8)
C100.0589 (12)0.0430 (11)0.0373 (10)0.0008 (9)0.0197 (9)0.0045 (8)
C110.0632 (12)0.0353 (10)0.0481 (11)0.0029 (9)0.0159 (10)0.0030 (9)
C120.0424 (10)0.0371 (10)0.0400 (10)0.0021 (8)0.0088 (8)0.0068 (8)
C130.0554 (11)0.0457 (11)0.0363 (10)0.0012 (9)0.0180 (9)0.0024 (9)
C140.0605 (12)0.0343 (9)0.0417 (10)0.0032 (9)0.0186 (9)0.0013 (8)
Geometric parameters (Å, º) top
N1—C71.271 (2)C4—C51.386 (2)
N1—N21.3803 (19)C5—C61.382 (2)
N2—C81.347 (2)C5—H50.9300
N2—H20.899 (9)C6—H60.9300
N3—O31.217 (2)C7—H70.9300
N3—O41.2220 (19)C8—C91.496 (2)
N3—C121.471 (2)C9—C101.386 (2)
O1—C41.364 (2)C9—C141.388 (2)
O1—H10.8200C10—C111.376 (2)
O2—C81.2247 (19)C10—H100.9300
C1—C61.390 (2)C11—C121.374 (2)
C1—C21.401 (2)C11—H110.9300
C1—C71.462 (2)C12—C131.372 (2)
C2—C31.368 (2)C13—C141.375 (2)
C2—H2A0.9300C13—H130.9300
C3—C41.391 (2)C14—H140.9300
C3—H30.9300
C7—N1—N2117.08 (14)C1—C6—H6119.5
C8—N2—N1117.50 (13)N1—C7—C1120.02 (15)
C8—N2—H2124.6 (15)N1—C7—H7120.0
N1—N2—H2117.9 (15)C1—C7—H7120.0
O3—N3—O4123.30 (16)O2—C8—N2122.05 (15)
O3—N3—C12118.13 (16)O2—C8—C9120.45 (15)
O4—N3—C12118.55 (16)N2—C8—C9117.49 (14)
C4—O1—H1109.5C10—C9—C14118.85 (15)
C6—C1—C2118.08 (16)C10—C9—C8117.14 (14)
C6—C1—C7121.71 (15)C14—C9—C8124.01 (15)
C2—C1—C7120.20 (16)C11—C10—C9121.04 (16)
C3—C2—C1121.08 (16)C11—C10—H10119.5
C3—C2—H2A119.5C9—C10—H10119.5
C1—C2—H2A119.5C12—C11—C10118.37 (17)
C2—C3—C4120.32 (16)C12—C11—H11120.8
C2—C3—H3119.8C10—C11—H11120.8
C4—C3—H3119.8C13—C12—C11122.28 (16)
O1—C4—C5118.02 (16)C13—C12—N3119.15 (15)
O1—C4—C3122.60 (15)C11—C12—N3118.56 (16)
C5—C4—C3119.38 (16)C12—C13—C14118.62 (15)
C6—C5—C4120.15 (17)C12—C13—H13120.7
C6—C5—H5119.9C14—C13—H13120.7
C4—C5—H5119.9C13—C14—C9120.83 (16)
C5—C6—C1120.97 (16)C13—C14—H14119.6
C5—C6—H6119.5C9—C14—H14119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.7841 (18)166
N2—H2···O4ii0.90 (1)2.24 (1)3.094 (2)159 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O4
Mr285.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.856 (3), 13.368 (5), 12.527 (5)
β (°) 95.748 (4)
V3)1309.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.981, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7505, 2822, 1736
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.04
No. of reflections2822
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.7841 (18)165.8
N2—H2···O4ii0.899 (9)2.239 (12)3.094 (2)158.9 (19)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z1/2.
 

Acknowledgements

We acknowledge the Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection for financial support (project No. JLCBE07026).

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds