metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A novel inorganic–organic hybrid borate, poly{[Na2(C4H2O4)(H3BO3)(H2O)4]·H3BO3}

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: liangyunxiao@nbu.edu.cn

(Received 15 September 2010; accepted 14 October 2010; online 23 October 2010)

The structure of the title compound, catena-poly[[[di-μ-aqua-μ-fumarato-μ-(boric acid)-disodium]-di-μ-aqua] boric acid monosolvate], contains two crystallographically independent Na+ cations, each being six-coordinated by one fumarate O atom, one boric acid O atom and four water O atoms in a distorted octa­hedral geometry. Adjacent [NaO2(OH2)4] units share edges and are linked into chains propagating parallel to [100]. The free boric acid mol­ecules are connected to the chains through strong inter­molecular O—H⋯O hydrogen bonds. Additional O—H⋯O hydrogen bonds between the water mol­ecules, the free and coordinated boric acid mol­ecules and the fumarate anion lead to the formation of a three-dimensional supra­molecular structure. With the exception of the two water mol­ecules, all other atoms lie on mirror planes.

Related literature

For the synthesis of organic ammonium borates, see: Li et al. (2006[Li, M., Chang, J. Z., Wang, Z. L. & Shi, H. Z. (2006). J. Solid State Chem. 179, 3265-3269.]); Wang et al. (2004[Wang, G. M., Sun, Y. Q. & Yang, G. Y. (2004). J. Solid State Chem. 177, 4648-4654.]); Liu et al. (2008[Liu, H. X., Liang, Y. X. & Jiang, X. (2008). J. Solid State Chem. 181, 3243-3247.]). For the synthesis of metal borates with neutral amines, see: Sung et al. (2000[Sung, H. H. Y., Wu, M. M. & Williams, I. D. (2000). Inorg. Chem. Commun. 3, 401-403.]); Zhang et al. (2004[Zhang, H.-X., Zheng, S.-T. & Yang, G.-Y. (2004). Acta Cryst. C60, m241-m243.]); Liu et al. (2006[Liu, Z. H., Zhang, J. J. & Zhang, W. J. (2006). Inorg. Chim. Acta, 359, 519-524.]); Wang et al. (2005[Wang, G. M., Sun, Y. Q. & Yang, G. Y. (2005). J. Solid State Chem. 178, 729-735.]). For borates involving organic acids, see: Tombul et al. (2007[Tombul, M., Guven, K., Büyükgüngör, O., Aktas, H. & Durlu, T. N. (2007). Acta Cryst. C63, m430-m432.]); Wu et al. (2009[Wu, S.-L., Liu, H.-X., Jiang, X., Shao, Z.-D. & Liang, Y.-X. (2009). Acta Cryst. C65, m308-m310.]). For typical Na—O bond lengths, see: Yi et al. (2005[Yi, X. Y., Liu, B., Urbanos, F. A., Gao, S., Xu, W., Chen, J. S., Song, Y. & Zheng, L. M. (2005). Inorg. Chem. 44, 4309-4310.]); Huang et al. (2005[Huang, W., Xie, X. K., Cui, K., Gou, S. H. & Li, Y. Z. (2005). Inorg. Chim. Acta, 358, 875-884.]); for B—O bond lengths, see: Li et al. (1999[Li, Q., Xue, F. & Mak, T. C. W. (1999). Inorg. Chem. 38, 4142-4145.]); Andrews et al. (1983[Andrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880-882.]); Roy et al. (2002[Roy, A., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 613, 61-66.]).

[Scheme 1]

Experimental

Crystal data
  • [Na2(C4H2O4)(H3BO3)(H2O)4]·H3BO3

  • Mr = 355.77

  • Orthorhombic, P n m a

  • a = 14.116 (3) Å

  • b = 6.9347 (14) Å

  • c = 14.997 (3) Å

  • V = 1468.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.39 × 0.26 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.924, Tmax = 0.950

  • 13772 measured reflections

  • 1806 independent reflections

  • 1460 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.10

  • 1806 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Na1—O5 2.3756 (17)
Na1—O1 2.3771 (17)
Na1—O12 2.4140 (12)
Na1—O11 2.4529 (12)
Na2—O6 2.3606 (16)
Na2—O12i 2.4353 (12)
Na2—O11 2.4541 (12)
Na2—O4 2.5727 (17)
B1—O7 1.357 (3)
B1—O5 1.364 (3)
B1—O6 1.366 (3)
B2—O8 1.348 (3)
B2—O10 1.372 (2)
B2—O9 1.373 (2)
O7—B1—O5 123.60 (18)
O7—B1—O6 119.43 (18)
O5—B1—O6 116.97 (18)
O8—B2—O10 120.84 (18)
O8—B2—O9 122.36 (17)
O10—B2—O9 116.80 (17)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O8 0.90 1.79 2.690 (2) 177
O10—H10A⋯O7 0.84 1.86 2.6973 (19) 178
O5—H5A⋯O4ii 0.88 1.80 2.6713 (19) 177
O7—H7A⋯O3ii 0.87 1.74 2.6104 (18) 178
O12—H12B⋯O3iii 0.95 2.04 2.9355 (15) 157.8
O12—H12A⋯O9iv 0.80 2.02 2.8063 (14) 171.5
O11—H11B⋯O2iii 0.82 1.98 2.8042 (14) 175.5
O11—H11A⋯O10iv 0.90 2.24 3.0494 (15) 150.5
O8—H8A⋯O1i 0.86 1.79 2.6559 (19) 180
O9—H9A⋯O2i 0.84 1.82 2.6504 (19) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+1; (iv) -x+1, -y, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg & Putz, 2008[Brandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Borates have attracted great attention owing to their rich structural chemistry and important technical applications. Borate materials with various main group, rare earths and transition metals have been widely explored. In contrast, less work has been carried out on inorganic-organic hybrid borates. Up to date, only a few organic amines have been successfully introduced in their cationic forms into borate systems, such as [NH3CH2CH2NH3][B6O9(OH)2] (Li et al., 2006), [H3N(C6H10)NH3][B4O5(OH)4] and [H3N(C6H10)NH3][B5O8(OH)] (Wang et al., 2004) and [C6H13N2][B5O6(OH)4] (Liu et al., 2008), or metals coordinated by neutral amines, such as [Cu(en)2][B7O13H3]n (en is ethylenediamine; Sung et al., 2000), [Mn(C10H18N6)][B5O6(OH)4]2 (Zhang et al., 2004), [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 (Liu et al., 2006) and [Zn(dien)2][B5O6(OH)4]2 and [B5O7(OH)3Zn(tren)] (dien is diethylenetriamine and tren is tris(2-aminoethyl)amine; Wang et al., 2005]. However, borates involving organic acids are scarce (Tombul et al., 2007; Wu et al., 2009). We describe here the synthesis and crystal structure of the title inorganic-organic hybrid borate, [Na2(fum)(H3BO3)(H2O)4].(H3BO3) (H2fum is fumaric acid), (I), which represents the first one-dimensional Na+ coordination polymer involving both boric acid and an organic anion.

As shown in Fig. 1, the asymmetric unit of the structure of compound (I) contains two crystallographically independent Na+ cations (Na1 and Na2). Each Na atom is six-coordinated in the form of a distorted octahedron by two oxygen atoms (one from the carboxyl group of the fumarate (fum) anion, one from the hydroxyl group of the coordinated boric acid molecule) that occupy the axial positions, and by four water molecules in the equatorial plane. Both the fumarate anion and the coordinated boric acid act as bidentate bridging ligands to link two neighboring Na+ ions. The cations are again linked via doubly µ2-bridging water molecules [O(11) and O(12)] to generate a [Na2(fum)(H3BO3)(H2O)4]n infinite wave-like chain running parallel to [100], with alternating Na···Na distances of 3.5942 (7) and 3.6561 (7) Å. The Na2—O4 bond length is 2.5727 (17) Å, whereas the other Na—O distances vary from 2.3606 (16) to 2.4541 (12) Å, which is in good agreement with the reported Na—O bond lengths of other Na+ complexes (Yi et al., 2005; Huang et al., 2005). The mean B—O distance of the trigonal BO3 groups of 1.361 (3) Å conforms with the reported B—OH distances in other boric acid adducts like [K2(C4H2O4).B(OH)3] (1.363 (3) Å) (Tombul et al., 2007), [(C2H5)4N+]2.CO32-.(NH2)2CO.2B(OH)3.H2O (1.362 (2) Å), [(PPh3)2N+.Cl-].B(OH)3 (1.360 (2) Å) and the 1:2 adduct of melamine with boric acid (1.362 (3) Å) (Li et al., 1999; Andrews et al., 1983; Roy et al., 2002).

The most striking structural feature of the title compound is the oxygen-bridged one-dimensional Na infinite chain. To the best of our knowledge, no previous carboxylato-MBO (MBO is a metal borate with M being an alkali metal) one-dimensional coordination polymer has been reported. There is only one report about the crystal structure of a B(OH)3 unit bridging metal ions (Tombul et al., 2007). In this example, the B(OH)3 molecule may be considered as coexisting with the dipotassium maleate salt. However, in structure (I), the coordinated B(OH)3 molecule distinctly acts as a bidentate ligand bridging two neighboring Na+ ions into an infinite chain, and such a coordination mode for B(OH)3 is unprecedented until now.

The fumarate anion, the coordinated and the free boric acid molecules are all involved in the formation of strong to medium O—H···O hydrogen bonds. From Fig. 2 it can be seen that each free B(OH)3 unit interacts as a donator with the fumarate ligand and the coordinated boric acid through strong O—H···O hydrogen bonding interactions [O10—H10A···O7, O8—H8A···O1, O9—H9A···O2; Table 2]. The free boric acid likewise acts as an acceptor molecule with the water and coordinated boric acid molecules as donators [O6—H6A···O8, O12—H12A···O9, O11—H11A···O10; Table 2]. Together with hydrogen bonds between the coordinated boric acid molecule and the fumarate anion [O5—H5A···O4, O7—H7···O3; Table 2] and between the water molecules and the coordinated boric acid molecule [O12—H12B···O3, O11—H11B···O2; Table 2] a three-dimensional hydrogen- bonding supported supramolecular network is generated (Fig. 3).

Related literature top

For the synthesis of organic ammonium borates, see: Li et al. (2006); Wang et al. (2004); Liu et al. (2008). For the synthesis of metal borates with neutral amines, see: Sung et al. (2000); Zhang et al. (2004); Liu et al. (2006); Wang et al. (2005). For borates involving organic acids, see: Tombul et al. (2007); Wu et al. (2009). For typical Na—O bond lengths, see: Yi et al. (2005); Huang et al. (2005); for B—O bond lengths, see: Li et al. (1999); Andrews et al. (1983); Roy et al. (2002).

Experimental top

A mixture of borax (0.604 g), fumaric acid (0.234 g) and water (15 ml) was homogenized at 373 K for 1 h, producing a colourless solution. Colourless transparent block-like crystals of (I) were obtained by slow evaporation from a concentrated solution of the compound in water after standing for two weeks.

Refinement top

H atoms of the coordinated boric acid, water molecules and O8 were located in a difference Fourier map and were allowed for as riding parent atoms with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C). Other H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation, with hydroxyl O—H = 0.84 Å, methylene C—H = 0.99 Å, and with Uiso(H) = 1.5Ueq(O), 1.2Ueq(C).

Structure description top

Borates have attracted great attention owing to their rich structural chemistry and important technical applications. Borate materials with various main group, rare earths and transition metals have been widely explored. In contrast, less work has been carried out on inorganic-organic hybrid borates. Up to date, only a few organic amines have been successfully introduced in their cationic forms into borate systems, such as [NH3CH2CH2NH3][B6O9(OH)2] (Li et al., 2006), [H3N(C6H10)NH3][B4O5(OH)4] and [H3N(C6H10)NH3][B5O8(OH)] (Wang et al., 2004) and [C6H13N2][B5O6(OH)4] (Liu et al., 2008), or metals coordinated by neutral amines, such as [Cu(en)2][B7O13H3]n (en is ethylenediamine; Sung et al., 2000), [Mn(C10H18N6)][B5O6(OH)4]2 (Zhang et al., 2004), [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 (Liu et al., 2006) and [Zn(dien)2][B5O6(OH)4]2 and [B5O7(OH)3Zn(tren)] (dien is diethylenetriamine and tren is tris(2-aminoethyl)amine; Wang et al., 2005]. However, borates involving organic acids are scarce (Tombul et al., 2007; Wu et al., 2009). We describe here the synthesis and crystal structure of the title inorganic-organic hybrid borate, [Na2(fum)(H3BO3)(H2O)4].(H3BO3) (H2fum is fumaric acid), (I), which represents the first one-dimensional Na+ coordination polymer involving both boric acid and an organic anion.

As shown in Fig. 1, the asymmetric unit of the structure of compound (I) contains two crystallographically independent Na+ cations (Na1 and Na2). Each Na atom is six-coordinated in the form of a distorted octahedron by two oxygen atoms (one from the carboxyl group of the fumarate (fum) anion, one from the hydroxyl group of the coordinated boric acid molecule) that occupy the axial positions, and by four water molecules in the equatorial plane. Both the fumarate anion and the coordinated boric acid act as bidentate bridging ligands to link two neighboring Na+ ions. The cations are again linked via doubly µ2-bridging water molecules [O(11) and O(12)] to generate a [Na2(fum)(H3BO3)(H2O)4]n infinite wave-like chain running parallel to [100], with alternating Na···Na distances of 3.5942 (7) and 3.6561 (7) Å. The Na2—O4 bond length is 2.5727 (17) Å, whereas the other Na—O distances vary from 2.3606 (16) to 2.4541 (12) Å, which is in good agreement with the reported Na—O bond lengths of other Na+ complexes (Yi et al., 2005; Huang et al., 2005). The mean B—O distance of the trigonal BO3 groups of 1.361 (3) Å conforms with the reported B—OH distances in other boric acid adducts like [K2(C4H2O4).B(OH)3] (1.363 (3) Å) (Tombul et al., 2007), [(C2H5)4N+]2.CO32-.(NH2)2CO.2B(OH)3.H2O (1.362 (2) Å), [(PPh3)2N+.Cl-].B(OH)3 (1.360 (2) Å) and the 1:2 adduct of melamine with boric acid (1.362 (3) Å) (Li et al., 1999; Andrews et al., 1983; Roy et al., 2002).

The most striking structural feature of the title compound is the oxygen-bridged one-dimensional Na infinite chain. To the best of our knowledge, no previous carboxylato-MBO (MBO is a metal borate with M being an alkali metal) one-dimensional coordination polymer has been reported. There is only one report about the crystal structure of a B(OH)3 unit bridging metal ions (Tombul et al., 2007). In this example, the B(OH)3 molecule may be considered as coexisting with the dipotassium maleate salt. However, in structure (I), the coordinated B(OH)3 molecule distinctly acts as a bidentate ligand bridging two neighboring Na+ ions into an infinite chain, and such a coordination mode for B(OH)3 is unprecedented until now.

The fumarate anion, the coordinated and the free boric acid molecules are all involved in the formation of strong to medium O—H···O hydrogen bonds. From Fig. 2 it can be seen that each free B(OH)3 unit interacts as a donator with the fumarate ligand and the coordinated boric acid through strong O—H···O hydrogen bonding interactions [O10—H10A···O7, O8—H8A···O1, O9—H9A···O2; Table 2]. The free boric acid likewise acts as an acceptor molecule with the water and coordinated boric acid molecules as donators [O6—H6A···O8, O12—H12A···O9, O11—H11A···O10; Table 2]. Together with hydrogen bonds between the coordinated boric acid molecule and the fumarate anion [O5—H5A···O4, O7—H7···O3; Table 2] and between the water molecules and the coordinated boric acid molecule [O12—H12B···O3, O11—H11B···O2; Table 2] a three-dimensional hydrogen- bonding supported supramolecular network is generated (Fig. 3).

For the synthesis of organic ammonium borates, see: Li et al. (2006); Wang et al. (2004); Liu et al. (2008). For the synthesis of metal borates with neutral amines, see: Sung et al. (2000); Zhang et al. (2004); Liu et al. (2006); Wang et al. (2005). For borates involving organic acids, see: Tombul et al. (2007); Wu et al. (2009). For typical Na—O bond lengths, see: Yi et al. (2005); Huang et al. (2005); for B—O bond lengths, see: Li et al. (1999); Andrews et al. (1983); Roy et al. (2002).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: Crystal Structure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labelling. Displacement ellipsoids are drawn at the 30% probability level and all H atoms are shown as small spheres of arbitrary radius. [Symmetry codes: (ii) x, -y+1/2, z; (iii) x-1/2, y, -z+3/2; (iv) x-1/2, -y+1/2, -z+3/2.]
[Figure 2] Fig. 2. A representation of the one-dimensional infinite chain propagating parallel to [100] in the structure of (I).
[Figure 3] Fig. 3. The three-dimensional supramolecular network in the structure of (I).
catena-Poly[[[di-µ-aqua-µ-fumarato-µ-(boric acid)-disodium]-di-µ-aqua] boric acid monosolvate] top
Crystal data top
[Na2(C4H2O4)(H3BO3)(H2O)4]·H3BO3F(000) = 736
Mr = 355.77Dx = 1.610 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 10305 reflections
a = 14.116 (3) Åθ = 3.1–27.4°
b = 6.9347 (14) ŵ = 0.21 mm1
c = 14.997 (3) ÅT = 295 K
V = 1468.1 (5) Å3Block, colorless
Z = 40.39 × 0.26 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1806 independent reflections
Radiation source: fine-focus sealed tube1460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1818
Tmin = 0.924, Tmax = 0.950k = 88
13772 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.2607P]
where P = (Fo2 + 2Fc2)/3
1806 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Na2(C4H2O4)(H3BO3)(H2O)4]·H3BO3V = 1468.1 (5) Å3
Mr = 355.77Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.116 (3) ŵ = 0.21 mm1
b = 6.9347 (14) ÅT = 295 K
c = 14.997 (3) Å0.39 × 0.26 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1806 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1460 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.950Rint = 0.023
13772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.10Δρmax = 0.48 e Å3
1806 reflectionsΔρmin = 0.23 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.62506 (5)0.25000.69475 (5)0.0291 (2)
Na20.37214 (5)0.25000.74696 (5)0.0329 (2)
B10.54673 (15)0.25000.91475 (15)0.0306 (5)
B20.34246 (15)0.25001.10354 (14)0.0272 (4)
C10.58145 (12)0.25000.48138 (12)0.0239 (4)
C20.48259 (12)0.25000.51652 (12)0.0285 (4)
H2A0.47530.25000.57950.034*
C30.40513 (13)0.25000.46889 (13)0.0315 (4)
H3A0.41110.25000.40580.038*
C40.30740 (12)0.25000.50783 (13)0.0269 (4)
O10.64692 (9)0.25000.53758 (9)0.0352 (4)
O20.59437 (9)0.25000.39758 (8)0.0287 (3)
O30.24072 (9)0.25000.45118 (9)0.0367 (4)
O40.29720 (9)0.25000.59059 (9)0.0374 (4)
O50.61770 (9)0.25000.85300 (10)0.0401 (4)
H5A0.67590.25000.87320.050*
O60.45594 (10)0.25000.88318 (10)0.0481 (5)
H6A0.41450.25000.92890.050*
O70.56202 (8)0.25001.00406 (9)0.0402 (4)
H7A0.62180.25001.01740.050*
O80.32662 (9)0.25001.01491 (10)0.0423 (4)
H8A0.26830.25000.99770.050*
O90.27009 (9)0.25001.16470 (9)0.0315 (3)
H9A0.21780.25001.13790.047*
O100.43302 (9)0.25001.13675 (9)0.0366 (4)
H10A0.47190.25001.09430.055*
O110.49721 (7)0.01436 (15)0.71463 (6)0.0354 (3)
H11B0.46940.05810.68000.050*
H11A0.50380.03410.76960.050*
O120.75426 (7)0.02208 (15)0.69870 (6)0.0358 (3)
H12B0.76080.03620.64190.050*
H12A0.74150.05220.73740.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0239 (4)0.0398 (4)0.0238 (4)0.0000.0013 (3)0.000
Na20.0238 (4)0.0429 (5)0.0321 (5)0.0000.0002 (3)0.000
B10.0218 (10)0.0481 (13)0.0219 (10)0.0000.0013 (8)0.000
B20.0218 (9)0.0366 (11)0.0231 (10)0.0000.0009 (8)0.000
C10.0207 (8)0.0298 (9)0.0211 (8)0.0000.0003 (6)0.000
C20.0206 (8)0.0431 (10)0.0218 (9)0.0000.0024 (7)0.000
C30.0213 (8)0.0503 (12)0.0230 (9)0.0000.0040 (7)0.000
C40.0175 (8)0.0367 (10)0.0266 (9)0.0000.0022 (7)0.000
O10.0185 (6)0.0632 (10)0.0239 (7)0.0000.0020 (5)0.000
O20.0210 (6)0.0441 (8)0.0210 (6)0.0000.0005 (5)0.000
O30.0186 (6)0.0645 (10)0.0270 (7)0.0000.0007 (5)0.000
O40.0231 (7)0.0661 (10)0.0231 (7)0.0000.0019 (5)0.000
O50.0186 (6)0.0795 (11)0.0223 (7)0.0000.0008 (5)0.000
O60.0194 (7)0.1019 (14)0.0229 (7)0.0000.0010 (5)0.000
O70.0175 (6)0.0822 (12)0.0208 (7)0.0000.0013 (5)0.000
O80.0172 (6)0.0852 (11)0.0243 (7)0.0000.0002 (5)0.000
O90.0206 (6)0.0504 (8)0.0235 (7)0.0000.0002 (5)0.000
O100.0206 (6)0.0642 (10)0.0248 (7)0.0000.0012 (5)0.000
O110.0378 (5)0.0379 (5)0.0303 (5)0.0042 (4)0.0043 (4)0.0039 (4)
O120.0384 (5)0.0371 (5)0.0318 (5)0.0006 (4)0.0005 (4)0.0004 (4)
Geometric parameters (Å, º) top
Na1—O52.3756 (17)C1—O11.251 (2)
Na1—O12.3771 (17)C1—O21.270 (2)
Na1—O12i2.4140 (12)C1—C21.492 (2)
Na1—O122.4140 (12)C2—C31.306 (3)
Na1—O112.4529 (12)C2—H2A0.9500
Na1—O11i2.4529 (12)C3—C41.498 (2)
Na1—Na2ii3.5955 (12)C3—H3A0.9500
Na1—Na23.6552 (12)C4—O41.250 (2)
Na2—O62.3606 (16)C4—O31.268 (2)
Na2—O12iii2.4353 (12)O5—H5A0.8756
Na2—O12iv2.4353 (12)O6—H6A0.9013
Na2—O11i2.4541 (12)O7—H7A0.8673
Na2—O112.4541 (12)O8—H8A0.8627
Na2—O42.5727 (17)O9—H9A0.8400
Na2—Na1iii3.5955 (12)O10—H10A0.8400
B1—O71.357 (3)O11—H11B0.8224
B1—O51.364 (3)O11—H11A0.8951
B1—O61.366 (3)O12—Na2ii2.4353 (12)
B2—O81.348 (3)O12—H12B0.9473
B2—O101.372 (2)O12—H12A0.7967
B2—O91.373 (2)
O5—Na1—O1175.05 (6)O1—C1—O2124.12 (17)
O5—Na1—O12i90.49 (4)O1—C1—C2116.94 (17)
O1—Na1—O12i85.77 (4)O2—C1—C2118.94 (16)
O5—Na1—O1290.49 (4)C3—C2—C1126.15 (18)
O1—Na1—O1285.77 (4)C3—C2—H2A116.9
O12i—Na1—O1281.80 (5)C1—C2—H2A116.9
O5—Na1—O1181.16 (4)C2—C3—C4123.90 (18)
O1—Na1—O11102.48 (4)C2—C3—H3A118.1
O12i—Na1—O11171.52 (5)C4—C3—H3A118.1
O12—Na1—O1196.70 (4)O4—C4—O3125.46 (16)
O5—Na1—O11i81.16 (4)O4—C4—C3119.56 (16)
O1—Na1—O11i102.48 (4)O3—C4—C3114.98 (16)
O12i—Na1—O11i96.70 (4)C1—O1—Na1124.91 (12)
O12—Na1—O11i171.52 (5)C4—O4—Na2149.11 (12)
O11—Na1—O11i83.55 (5)B1—O5—Na1135.26 (12)
O6—Na2—O12iii93.03 (4)B1—O5—H5A117.0
O6—Na2—O12iv93.03 (4)Na1—O5—H5A107.7
O12iii—Na2—O12iv80.93 (5)B1—O6—Na2140.35 (13)
O6—Na2—O11i79.08 (4)B1—O6—H6A110.2
O12iii—Na2—O11i171.82 (5)Na2—O6—H6A109.5
O12iv—Na2—O11i97.21 (4)B1—O7—H7A112.5
O6—Na2—O1179.08 (4)B2—O8—H8A117.0
O12iii—Na2—O1197.21 (4)B2—O9—H9A109.5
O12iv—Na2—O11171.82 (5)B2—O10—H10A109.5
O11i—Na2—O1183.50 (5)Na1—O11—Na296.30 (4)
O6—Na2—O4174.20 (6)Na1—O11—H11B133.0
O12iii—Na2—O491.38 (4)Na2—O11—H11B100.9
O12iv—Na2—O491.38 (4)Na1—O11—H11A106.6
O11i—Na2—O496.64 (4)Na2—O11—H11A98.2
O11—Na2—O496.64 (4)H11B—O11—H11A113.7
O7—B1—O5123.60 (18)Na1—O12—Na2ii95.71 (4)
O7—B1—O6119.43 (18)Na1—O12—H12B109.3
O5—B1—O6116.97 (18)Na2ii—O12—H12B120.7
O8—B2—O10120.84 (18)Na1—O12—H12A105.7
O8—B2—O9122.36 (17)Na2ii—O12—H12A109.3
O10—B2—O9116.80 (17)H12B—O12—H12A113.7
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y, z+3/2; (iii) x1/2, y, z+3/2; (iv) x1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O80.901.792.690 (2)177
O10—H10A···O70.841.862.6973 (19)178
O5—H5A···O4ii0.881.802.6713 (19)177
O7—H7A···O3ii0.871.742.6104 (18)178
O12—H12B···O3v0.952.042.9355 (15)157.8
O12—H12A···O9vi0.802.022.8063 (14)171.5
O11—H11B···O2v0.821.982.8042 (14)175.5
O11—H11A···O10vi0.902.243.0494 (15)150.5
O8—H8A···O1iii0.861.792.6559 (19)180
O9—H9A···O2iii0.841.822.6504 (19)168
Symmetry codes: (ii) x+1/2, y, z+3/2; (iii) x1/2, y, z+3/2; (v) x+1, y, z+1; (vi) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Na2(C4H2O4)(H3BO3)(H2O)4]·H3BO3
Mr355.77
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)14.116 (3), 6.9347 (14), 14.997 (3)
V3)1468.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.39 × 0.26 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.924, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
13772, 1806, 1460
Rint0.023
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.10
No. of reflections1806
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.23

Computer programs: RAPID-AUTO (Rigaku, 1998), Crystal Structure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 2008).

Selected geometric parameters (Å, º) top
Na1—O52.3756 (17)Na2—O42.5727 (17)
Na1—O12.3771 (17)B1—O71.357 (3)
Na1—O122.4140 (12)B1—O51.364 (3)
Na1—O112.4529 (12)B1—O61.366 (3)
Na2—O62.3606 (16)B2—O81.348 (3)
Na2—O12i2.4353 (12)B2—O101.372 (2)
Na2—O112.4541 (12)B2—O91.373 (2)
O7—B1—O5123.60 (18)O8—B2—O10120.84 (18)
O7—B1—O6119.43 (18)O8—B2—O9122.36 (17)
O5—B1—O6116.97 (18)O10—B2—O9116.80 (17)
Symmetry code: (i) x1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O80.901.792.690 (2)176.6
O10—H10A···O70.841.862.6973 (19)177.5
O5—H5A···O4ii0.881.802.6713 (19)177.4
O7—H7A···O3ii0.871.742.6104 (18)177.7
O12—H12B···O3iii0.952.042.9355 (15)157.8
O12—H12A···O9iv0.802.022.8063 (14)171.5
O11—H11B···O2iii0.821.982.8042 (14)175.5
O11—H11A···O10iv0.902.243.0494 (15)150.5
O8—H8A···O1i0.861.792.6559 (19)179.8
O9—H9A···O2i0.841.822.6504 (19)168.3
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y, z+3/2; (iii) x+1, y, z+1; (iv) x+1, y, z+2.
 

Acknowledgements

This work was supported by the Ningbo Natural Science Foundation (grant No. 2009 A610052) and the K. C. Wong Magna Fund of Ningbo University.

References

First citationAndrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880–882.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, W., Xie, X. K., Cui, K., Gou, S. H. & Li, Y. Z. (2005). Inorg. Chim. Acta, 358, 875–884.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, M., Chang, J. Z., Wang, Z. L. & Shi, H. Z. (2006). J. Solid State Chem. 179, 3265–3269.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Q., Xue, F. & Mak, T. C. W. (1999). Inorg. Chem. 38, 4142–4145.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, H. X., Liang, Y. X. & Jiang, X. (2008). J. Solid State Chem. 181, 3243–3247.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Z. H., Zhang, J. J. & Zhang, W. J. (2006). Inorg. Chim. Acta, 359, 519–524.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRoy, A., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 613, 61–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSung, H. H. Y., Wu, M. M. & Williams, I. D. (2000). Inorg. Chem. Commun. 3, 401–403.  Web of Science CSD CrossRef CAS Google Scholar
First citationTombul, M., Guven, K., Büyükgüngör, O., Aktas, H. & Durlu, T. N. (2007). Acta Cryst. C63, m430–m432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, G. M., Sun, Y. Q. & Yang, G. Y. (2004). J. Solid State Chem. 177, 4648–4654.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, G. M., Sun, Y. Q. & Yang, G. Y. (2005). J. Solid State Chem. 178, 729–735.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, S.-L., Liu, H.-X., Jiang, X., Shao, Z.-D. & Liang, Y.-X. (2009). Acta Cryst. C65, m308–m310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYi, X. Y., Liu, B., Urbanos, F. A., Gao, S., Xu, W., Chen, J. S., Song, Y. & Zheng, L. M. (2005). Inorg. Chem. 44, 4309–4310.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, H.-X., Zheng, S.-T. & Yang, G.-Y. (2004). Acta Cryst. C60, m241–m243.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds