organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5,6-Dimeth­­oxy-2-(pyridin-4-yl­methyl­­idene)-2,3-di­hydro-1H-inden-1-one

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 September 2010; accepted 3 October 2010; online 9 October 2010)

The mol­ecule of the title compound, C17H15NO3, is slightly twisted, with a dihedral angle of 12.12 (3)° between the dihydro­indenone group and the pyridine ring. In the crystal, mol­ecules are connected into layers parallel to the ab plane via inter­molecular C—H⋯O hydrogen bonds. Weak ππ [centroid–centroid distance = 3.5680 (6) Å] inter­actions are also observed.

Related literature

For general background and the biological activity of chalcone derivatives, see: Nowakowska (2008[Nowakowska, Z. (2008). Eur. J. Med. Chem. 42, 125-137.]); Akihisa et al. (2006[Akihisa, T., Tokuda, H., Hasegawa, D., Ukiya, M., Kimura, Y. & Enjo, F. (2006). J. Nat. Prod. 69, 38-42.]); Narender et al. (2005[Narender, T., Shweta, Tanvir, K., Srinivasa Rao, M., Srivastava, K. & Puri, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 2453-2455.]); Zhang et al. (2006[Zhang, Y., Shi, S., Zhao, M., Jiang, Y. & Tu, P. (2006). Biochem. Syst. Ecol. 34, 766-769.]); Dicarlo et al. (1999[Dicarlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]); Heidenreich et al. (2008[Heidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P. & Zattoni, F. (2008). Eur. Urol. 53, 68-80.]); Syed et al. (2008[Syed, D. N., Suh, Y., Afag, F. & Mukhtar, H. (2008). Cancer Lett. 265, 167-176.]); D'Archivio et al. (2008[D'Archivio, M., Santangelo, C., Scazzocchio, B., Vari, R., Filesi, C., Masella, R. & Giovannini, C. (2008). Int. J. Mol. Sci. 9, 213-228.]). For a related structure, see: Ali et al. (2010[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2531-o2532.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO3

  • Mr = 281.30

  • Monoclinic, P 21 /c

  • a = 10.7572 (14) Å

  • b = 8.6057 (11) Å

  • c = 17.2961 (17) Å

  • β = 123.394 (6)°

  • V = 1336.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.45 × 0.32 × 0.23 mm

Data collection
  • Bruker APEXII Duo CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.979

  • 21745 measured reflections

  • 5874 independent reflections

  • 5138 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.132

  • S = 1.10

  • 5874 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.93 2.57 3.4787 (12) 167
C14—H14A⋯O3i 0.93 2.57 3.2708 (12) 133
C16—H16A⋯O1ii 0.96 2.53 3.0486 (11) 114
Symmetry codes: (i) x-1, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcone moieties are common substructures in numerous natural products belonging to the flavonoid family (Nowakowska, 2008; Akihisa et al. 2006; Narender et al., 2005; Zhang et al., 2006).Chalcone derivatives are very versatile as physiologically active compounds and substrates for the evaluation of various organic syntheses. Chalcones, one of the major classes of natural products with widespread distribution in spices, tea, beer, fruits and vegetables, have been recently subject of great interest for their pharmacological activities (Dicarlo et al., 2009). Prostate cancer is one of the most commonly diagnosed cancers in men, and the second leading cause of cancer deaths in the European Union and United States of America (Heidenreich et al., 2008). Many antitumor drugs have been developed for prostate cancer patients, but their intolerable systemic toxicity often limits their clinical use. Chemoprevention is one of the most promising approaches in prostate cancer research, in which natural or synthetic agents are used to prevent this malignant disease (Heidenreich et al., 2008; Syed et al., 2008; D'Archivio et al., 2008).

The molecular structure of the title compound is slightly twisted (Fig. 1). The torsion angles of the two methoxy groups are [C16–O2–C4–C5] -175.13 (6) and [C17–O3–C5–C4] -178.48 (6)°. The maximum deviation of the dihydroindenone group is 0.028 (1) Å and it makes dihedral angle of 12.12 (3)° with the pyridine ring [C11–C13/N1/C14–C15]. The geometry parameters are comparable to those observed in a closely related structure (Ali et al., 2010).

In the crystal structure, the molecules are linked together into chains by a bifurcated hydrogen bonds involving the intermolecular C14—H14A···O3 and C14—H14A···O3 hydrogen bonds (Table 1) generating a R21(5) ring motif. These chains are arranged in an anti-parallel layer (Fig. 2) and each pair of anti-parallel layers are interconnected into a two-dimensional plane parallel to ab plane via intermolecular C16—H16A···O1 hydrogen bonds (Fig. 3, Table 1). Weak π···π interactions are also observed [Cg1···Cg2iii of 3.5680 (6) Å; (iii) 1 - x, 1 - y, -z. Cg1 and Cg2 are centroids of C1–C2/C7–C9 and C2–C7 ring, respectively].

Related literature top

For general background and the biological activity of chalcone derivatives, see: Nowakowska (2008); Akihisa et al. (2006); Narender et al. (2005); Zhang et al. (2006); Dicarlo et al. (1999); Heidenreich et al. (2008); Syed et al. (2008); D'Archivio et al. (2008). For a related structure, see: Ali et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 5,6-dimethoxy-2,3-dihydro-1H-indene-1-one (0.001 mmol) and isonicotinaldehyde (0.001 mmol) were dissolved in methanol (10 ml) and 30% sodium hydroxide solution (5 ml) was added and the solution stirred for 5 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to reveal the title compound as light yellow crystals.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating-group model was applied for the methyl groups.

Structure description top

Chalcone moieties are common substructures in numerous natural products belonging to the flavonoid family (Nowakowska, 2008; Akihisa et al. 2006; Narender et al., 2005; Zhang et al., 2006).Chalcone derivatives are very versatile as physiologically active compounds and substrates for the evaluation of various organic syntheses. Chalcones, one of the major classes of natural products with widespread distribution in spices, tea, beer, fruits and vegetables, have been recently subject of great interest for their pharmacological activities (Dicarlo et al., 2009). Prostate cancer is one of the most commonly diagnosed cancers in men, and the second leading cause of cancer deaths in the European Union and United States of America (Heidenreich et al., 2008). Many antitumor drugs have been developed for prostate cancer patients, but their intolerable systemic toxicity often limits their clinical use. Chemoprevention is one of the most promising approaches in prostate cancer research, in which natural or synthetic agents are used to prevent this malignant disease (Heidenreich et al., 2008; Syed et al., 2008; D'Archivio et al., 2008).

The molecular structure of the title compound is slightly twisted (Fig. 1). The torsion angles of the two methoxy groups are [C16–O2–C4–C5] -175.13 (6) and [C17–O3–C5–C4] -178.48 (6)°. The maximum deviation of the dihydroindenone group is 0.028 (1) Å and it makes dihedral angle of 12.12 (3)° with the pyridine ring [C11–C13/N1/C14–C15]. The geometry parameters are comparable to those observed in a closely related structure (Ali et al., 2010).

In the crystal structure, the molecules are linked together into chains by a bifurcated hydrogen bonds involving the intermolecular C14—H14A···O3 and C14—H14A···O3 hydrogen bonds (Table 1) generating a R21(5) ring motif. These chains are arranged in an anti-parallel layer (Fig. 2) and each pair of anti-parallel layers are interconnected into a two-dimensional plane parallel to ab plane via intermolecular C16—H16A···O1 hydrogen bonds (Fig. 3, Table 1). Weak π···π interactions are also observed [Cg1···Cg2iii of 3.5680 (6) Å; (iii) 1 - x, 1 - y, -z. Cg1 and Cg2 are centroids of C1–C2/C7–C9 and C2–C7 ring, respectively].

For general background and the biological activity of chalcone derivatives, see: Nowakowska (2008); Akihisa et al. (2006); Narender et al. (2005); Zhang et al. (2006); Dicarlo et al. (1999); Heidenreich et al. (2008); Syed et al. (2008); D'Archivio et al. (2008). For a related structure, see: Ali et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, showing chains arranged anti-parallelly. Intermolecular hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of title compound, showing a two-dimensional plane parallel to ab plane. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-5,6-Dimethoxy-2-(pyridin-4-ylmethylidene)- 2,3-dihydro-1H-inden-1-one top
Crystal data top
C17H15NO3F(000) = 592
Mr = 281.30Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9933 reflections
a = 10.7572 (14) Åθ = 2.8–35.1°
b = 8.6057 (11) ŵ = 0.10 mm1
c = 17.2961 (17) ÅT = 100 K
β = 123.394 (6)°Block, yellow
V = 1336.8 (3) Å30.45 × 0.32 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII Duo CCD area-detector
diffractometer
5874 independent reflections
Radiation source: fine-focus sealed tube5138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 35.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.958, Tmax = 0.979k = 1313
21745 measured reflectionsl = 1727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.2242P]
where P = (Fo2 + 2Fc2)/3
5874 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H15NO3V = 1336.8 (3) Å3
Mr = 281.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7572 (14) ŵ = 0.10 mm1
b = 8.6057 (11) ÅT = 100 K
c = 17.2961 (17) Å0.45 × 0.32 × 0.23 mm
β = 123.394 (6)°
Data collection top
Bruker APEXII Duo CCD area-detector
diffractometer
5874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5138 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.979Rint = 0.023
21745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.10Δρmax = 0.61 e Å3
5874 reflectionsΔρmin = 0.27 e Å3
192 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32457 (7)0.81081 (8)0.16256 (4)0.02006 (13)
O20.80183 (6)0.43182 (7)0.05682 (4)0.01665 (11)
O30.92680 (6)0.42839 (7)0.11848 (4)0.01546 (11)
N10.16589 (8)1.13656 (9)0.15678 (5)0.01914 (13)
C10.41258 (8)0.78448 (8)0.07968 (5)0.01273 (12)
C20.54736 (7)0.68903 (7)0.03693 (4)0.01082 (11)
C30.60522 (8)0.60592 (8)0.08026 (4)0.01211 (12)
H3A0.55870.60930.14420.015*
C40.73270 (7)0.51920 (8)0.02574 (4)0.01175 (12)
C50.80361 (7)0.51765 (8)0.07250 (4)0.01137 (11)
C60.74738 (7)0.60432 (8)0.11466 (4)0.01135 (11)
H6A0.79550.60550.17870.014*
C70.61696 (7)0.68941 (7)0.05839 (4)0.01039 (11)
C80.53304 (8)0.78599 (8)0.08831 (4)0.01196 (12)
H8A0.50180.72330.12130.014*
H8B0.59340.87170.12750.014*
C90.40070 (7)0.84391 (8)0.00227 (4)0.01164 (11)
C100.28495 (8)0.93423 (8)0.02118 (5)0.01312 (12)
H10A0.21760.95670.08350.016*
C110.24992 (7)1.00219 (8)0.04230 (5)0.01233 (12)
C120.31954 (9)0.96061 (10)0.13540 (5)0.01933 (15)
H12A0.39650.88830.16180.023*
C130.27285 (10)1.02821 (11)0.18809 (6)0.02310 (17)
H13A0.31880.99620.24930.028*
C140.10022 (8)1.17804 (9)0.06768 (5)0.01567 (13)
H14A0.02621.25360.04400.019*
C150.13705 (8)1.11388 (8)0.00888 (5)0.01385 (12)
H15A0.08661.14530.05270.017*
C160.74321 (9)0.43840 (10)0.15362 (5)0.01808 (14)
H16A0.80140.37300.16700.027*
H16B0.74710.54350.17080.027*
H16C0.64180.40320.18810.027*
C171.00081 (9)0.41893 (10)0.21693 (5)0.01939 (14)
H17A1.08490.35050.24150.029*
H17B0.93300.37940.23190.029*
H17C1.03420.52050.24340.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (3)0.0275 (3)0.0098 (2)0.0087 (2)0.0067 (2)0.00324 (19)
O20.0182 (2)0.0220 (3)0.0120 (2)0.00551 (19)0.00975 (19)0.00182 (18)
O30.0142 (2)0.0200 (2)0.0111 (2)0.00625 (18)0.00627 (18)0.00077 (17)
N10.0189 (3)0.0226 (3)0.0175 (3)0.0056 (2)0.0109 (2)0.0015 (2)
C10.0138 (3)0.0142 (3)0.0106 (3)0.0021 (2)0.0070 (2)0.0008 (2)
C20.0119 (2)0.0118 (2)0.0096 (2)0.00066 (19)0.0065 (2)0.00052 (19)
C30.0132 (3)0.0140 (3)0.0095 (2)0.0003 (2)0.0065 (2)0.00105 (19)
C40.0130 (3)0.0135 (3)0.0106 (2)0.0005 (2)0.0076 (2)0.00177 (19)
C50.0115 (2)0.0128 (3)0.0104 (2)0.00140 (19)0.0064 (2)0.00031 (19)
C60.0122 (2)0.0129 (3)0.0095 (2)0.00100 (19)0.0063 (2)0.00042 (19)
C70.0118 (2)0.0111 (2)0.0094 (2)0.00076 (19)0.0066 (2)0.00013 (18)
C80.0136 (3)0.0131 (3)0.0101 (2)0.0024 (2)0.0071 (2)0.00030 (19)
C90.0131 (3)0.0122 (3)0.0105 (2)0.0015 (2)0.0071 (2)0.00038 (19)
C100.0138 (3)0.0144 (3)0.0115 (3)0.0024 (2)0.0072 (2)0.0007 (2)
C110.0121 (3)0.0128 (3)0.0129 (3)0.0015 (2)0.0074 (2)0.0003 (2)
C120.0212 (3)0.0241 (3)0.0141 (3)0.0106 (3)0.0105 (3)0.0025 (2)
C130.0249 (4)0.0309 (4)0.0149 (3)0.0132 (3)0.0118 (3)0.0027 (3)
C140.0146 (3)0.0147 (3)0.0185 (3)0.0023 (2)0.0096 (3)0.0008 (2)
C150.0131 (3)0.0139 (3)0.0154 (3)0.0019 (2)0.0083 (2)0.0009 (2)
C160.0212 (3)0.0235 (3)0.0127 (3)0.0006 (3)0.0113 (3)0.0035 (2)
C170.0184 (3)0.0259 (4)0.0118 (3)0.0083 (3)0.0070 (2)0.0035 (2)
Geometric parameters (Å, º) top
O1—C11.2283 (8)C8—H8A0.9700
O2—C41.3593 (8)C8—H8B0.9700
O2—C161.4289 (9)C9—C101.3465 (9)
O3—C51.3486 (8)C10—C111.4646 (10)
O3—C171.4310 (9)C10—H10A0.9300
N1—C131.3419 (10)C11—C121.3980 (10)
N1—C141.3427 (10)C11—C151.3999 (10)
C1—C21.4640 (10)C12—C131.3874 (11)
C1—C91.5029 (9)C12—H12A0.9300
C2—C71.3857 (9)C13—H13A0.9300
C2—C31.4050 (9)C14—C151.3928 (10)
C3—C41.3796 (9)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9300
C4—C51.4291 (9)C16—H16A0.9600
C5—C61.3926 (9)C16—H16B0.9600
C6—C71.3959 (9)C16—H16C0.9600
C6—H6A0.9300C17—H17A0.9600
C7—C81.5124 (9)C17—H17B0.9600
C8—C91.5081 (9)C17—H17C0.9600
C4—O2—C16117.18 (6)C1—C9—C8108.57 (5)
C5—O3—C17117.17 (6)C9—C10—C11129.30 (6)
C13—N1—C14116.14 (7)C9—C10—H10A115.3
O1—C1—C2127.28 (6)C11—C10—H10A115.3
O1—C1—C9126.02 (6)C12—C11—C15116.38 (6)
C2—C1—C9106.69 (5)C12—C11—C10124.44 (6)
C7—C2—C3121.87 (6)C15—C11—C10119.16 (6)
C7—C2—C1109.63 (5)C13—C12—C11119.41 (7)
C3—C2—C1128.51 (6)C13—C12—H12A120.3
C4—C3—C2118.44 (6)C11—C12—H12A120.3
C4—C3—H3A120.8N1—C13—C12124.49 (7)
C2—C3—H3A120.8N1—C13—H13A117.8
O2—C4—C3125.68 (6)C12—C13—H13A117.8
O2—C4—C5114.52 (6)N1—C14—C15123.45 (7)
C3—C4—C5119.80 (6)N1—C14—H14A118.3
O3—C5—C6124.43 (6)C15—C14—H14A118.3
O3—C5—C4114.50 (6)C14—C15—C11120.09 (7)
C6—C5—C4121.07 (6)C14—C15—H15A120.0
C5—C6—C7118.39 (6)C11—C15—H15A120.0
C5—C6—H6A120.8O2—C16—H16A109.5
C7—C6—H6A120.8O2—C16—H16B109.5
C2—C7—C6120.38 (6)H16A—C16—H16B109.5
C2—C7—C8112.02 (6)O2—C16—H16C109.5
C6—C7—C8127.58 (6)H16A—C16—H16C109.5
C9—C8—C7103.07 (5)H16B—C16—H16C109.5
C9—C8—H8A111.1O3—C17—H17A109.5
C7—C8—H8A111.1O3—C17—H17B109.5
C9—C8—H8B111.1H17A—C17—H17B109.5
C7—C8—H8B111.1O3—C17—H17C109.5
H8A—C8—H8B109.1H17A—C17—H17C109.5
C10—C9—C1120.04 (6)H17B—C17—H17C109.5
C10—C9—C8131.39 (6)
O1—C1—C2—C7179.48 (7)C5—C6—C7—C21.08 (10)
C9—C1—C2—C71.11 (8)C5—C6—C7—C8177.43 (6)
O1—C1—C2—C30.64 (12)C2—C7—C8—C90.57 (7)
C9—C1—C2—C3178.78 (7)C6—C7—C8—C9178.05 (7)
C7—C2—C3—C41.86 (10)O1—C1—C9—C100.39 (12)
C1—C2—C3—C4178.02 (7)C2—C1—C9—C10179.04 (6)
C16—O2—C4—C34.42 (10)O1—C1—C9—C8179.11 (7)
C16—O2—C4—C5175.13 (6)C2—C1—C9—C81.46 (7)
C2—C3—C4—O2179.51 (6)C7—C8—C9—C10179.35 (7)
C2—C3—C4—C50.96 (10)C7—C8—C9—C11.23 (7)
C17—O3—C5—C62.22 (10)C1—C9—C10—C11178.89 (7)
C17—O3—C5—C4178.48 (6)C8—C9—C10—C111.74 (13)
O2—C4—C5—O30.69 (9)C9—C10—C11—C1212.38 (13)
C3—C4—C5—O3179.73 (6)C9—C10—C11—C15169.28 (7)
O2—C4—C5—C6178.64 (6)C15—C11—C12—C131.08 (12)
C3—C4—C5—C60.94 (10)C10—C11—C12—C13177.30 (8)
O3—C5—C6—C7178.78 (6)C14—N1—C13—C121.08 (14)
C4—C5—C6—C71.96 (10)C11—C12—C13—N11.95 (15)
C3—C2—C7—C60.83 (10)C13—N1—C14—C150.58 (12)
C1—C2—C7—C6179.06 (6)N1—C14—C15—C111.33 (12)
C3—C2—C7—C8179.56 (6)C12—C11—C15—C140.43 (11)
C1—C2—C7—C80.33 (8)C10—C11—C15—C14178.90 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.932.573.4787 (12)167
C14—H14A···O3i0.932.573.2708 (12)133
C16—H16A···O1ii0.962.533.0486 (11)114
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H15NO3
Mr281.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.7572 (14), 8.6057 (11), 17.2961 (17)
β (°) 123.394 (6)
V3)1336.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.32 × 0.23
Data collection
DiffractometerBruker APEXII Duo CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.958, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
21745, 5874, 5138
Rint0.023
(sin θ/λ)max1)0.809
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.132, 1.10
No. of reflections5874
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.932.573.4787 (12)167
C14—H14A···O3i0.932.573.2708 (12)133
C16—H16A···O1ii0.962.533.0486 (11)114
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Universiti Sains Malysia (USM) for providing research facilities. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160 and CSY thanks USM for the award of a USM Fellowship.

References

First citationAkihisa, T., Tokuda, H., Hasegawa, D., Ukiya, M., Kimura, Y. & Enjo, F. (2006). J. Nat. Prod. 69, 38–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2531–o2532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationD'Archivio, M., Santangelo, C., Scazzocchio, B., Vari, R., Filesi, C., Masella, R. & Giovannini, C. (2008). Int. J. Mol. Sci. 9, 213–228.  Web of Science PubMed Google Scholar
First citationDicarlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science PubMed CAS Google Scholar
First citationHeidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P. & Zattoni, F. (2008). Eur. Urol. 53, 68–80.  Web of Science CrossRef PubMed Google Scholar
First citationNarender, T., Shweta, Tanvir, K., Srinivasa Rao, M., Srivastava, K. & Puri, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 2453–2455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNowakowska, Z. (2008). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyed, D. N., Suh, Y., Afag, F. & Mukhtar, H. (2008). Cancer Lett. 265, 167–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Y., Shi, S., Zhao, M., Jiang, Y. & Tu, P. (2006). Biochem. Syst. Ecol. 34, 766–769.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds