organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Bi­phenyl-4-yl)(phen­yl)meth­yl]-1H-imidazole (bifonazole)

aDepartment of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, bLaboratory for Pharmacotechnology and Biopharmacy, K.U. Leuven, Gasthuisberg O&N2, Herestraat 49, Box 921, 3000, Leuven, Belgium, and cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
*Correspondence e-mail: lstaylor@purdue.edu

(Received 8 September 2010; accepted 21 September 2010; online 30 September 2010)

In the title compound, C22H18N2, the dihedral angles formed by the imidazole ring with the phenyl ring and the benzene ring of the biphenyl group are 87.02 (5) and 78.20 (4)°, respectively. In the crystal, mol­ecules inter­act through inter­molecular C—H⋯N hydrogen bonds, forming chains parallel to the b axis. These chains are further linked into a three-dimensional network by C—H⋯π stacking inter­actions

Related literature

For a review of the anti­microbial activity of bifonazole and its therapeutic use in superficial mycoses, see: Lackner and Clissold (1989[Lackner, T. E. & Clissold, S. P. (1989). Drugs, 38, 204-225.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2

  • Mr = 310.40

  • Monoclinic, P 21 /c

  • a = 7.9737 (7) Å

  • b = 6.2591 (6) Å

  • c = 33.265 (3) Å

  • β = 93.805 (8)°

  • V = 1656.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 150 K

  • 0.20 × 0.20 × 0.04 mm

Data collection
  • Rigaku RAPID II diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.860, Tmax = 0.979

  • 19391 measured reflections

  • 3064 independent reflections

  • 2801 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.06

  • 3064 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1/N2/C20–C22, C1–C6 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N2i 1.00 2.45 3.418 (2) 161
C3—H3⋯Cg1ii 0.95 2.76 3.609 (2) 149
C6—H6⋯Cg1iii 0.95 2.96 3.900 (3) 171
C18—H18⋯Cg2iv 0.95 3.01 3.797 (7) 141
C21—H21⋯Cg2v 0.95 2.76 3.694 (7) 170
C12—H12⋯Cg3vi 0.95 2.87 3.737 (5) 153
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y-1, z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y, -z; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and local programs.

Supporting information


Comment top

Bifonazole is a broad-spectrum antifungal agent, mainly used by topical application in the treatment of fungal skin infections, including nail infections (Lackner & Clissold, 1989). In the crystal structure of the racemate, layers of the R and S enantiomer alternate along the c axis. Figure 1 shows the S configuration of the chiral center at atom C7. The dihedral angles between the different rings are 26.17 (8)° for the two aromatic rings of the biphenyl group, 101.80 (4)° for the imidazole ring and the benzene ring of the biphenyl group, 62.34 (5)° for the phenyl ring and the benzene ring of the biphenyl group, and 92.98 (5)° for the imidazole ring and the phenyl ring. In the crystal structure, molecules are linked by intermolecular C—H···N hydrogen bonds (Table 1) into chains running parallel to the b axis. The chains are further connected by C—H···π stacking interactions to form a three-dimensional network.

Related literature top

For a review of the antimicrobial activity of bifonazole and its therapeutic use in superficial mycoses, see: Lackner and Clissold (1989). To date, no crystal structure of bifonazole has been published.

Experimental top

A saturated solution of the title compound was prepared by adding an excess of powder to 20 ml of diethyl ether. Subsequent to stirring the suspension overnight, filtration was performed using a 0.2 µm PTFE syringe filter (13 mm, VWR International, LLC, West Chester, PA, USA). The solution was transferred into a 20 ml scintillation vial in 20 ml scintillation vials (Research Products International Corp., Mt. Prospect, IL, USA) and three holes were pierced in the cap of the vial to allow the solvent to slowly evaporate. After one week, all solvent had evaporated and crystals of the title compound were obtained.

Refinement top

H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.95 Å (aromatic), 1.00 Å (aliphatic) and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are presented as small spheres of arbitrary radius.
1-[(Biphenyl-4-yl)(phenyl)methyl]-1H-imidazole top
Crystal data top
C22H18N2F(000) = 656
Mr = 310.40Dx = 1.245 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3380 reflections
a = 7.9737 (7) Åθ = 2–71°
b = 6.2591 (6) ŵ = 0.56 mm1
c = 33.265 (3) ÅT = 150 K
β = 93.805 (8)°Plate, colourless
V = 1656.5 (3) Å30.20 × 0.20 × 0.04 mm
Z = 4
Data collection top
Rigaku Rapid II
diffractometer
2801 reflections with I > 2σ(I)
Confocal optics monochromatorRint = 0.030
ω scansθmax = 71.8°, θmin = 2.7°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 09
Tmin = 0.860, Tmax = 0.979k = 07
19391 measured reflectionsl = 4040
3064 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0501P)2 + 0.7321P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.107Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.20 e Å3
3064 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008)
218 parametersExtinction coefficient: 0.20E-02
0 restraints
Crystal data top
C22H18N2V = 1656.5 (3) Å3
Mr = 310.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.9737 (7) ŵ = 0.56 mm1
b = 6.2591 (6) ÅT = 150 K
c = 33.265 (3) Å0.20 × 0.20 × 0.04 mm
β = 93.805 (8)°
Data collection top
Rigaku Rapid II
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2801 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.979Rint = 0.030
19391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
3064 reflectionsΔρmin = 0.20 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Outlier data were removed using a local program based on the method of Prince and Nicholson.

Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.15014 (12)0.10641 (19)0.07667 (3)0.0251 (3)
N20.26374 (14)0.2162 (2)0.07143 (3)0.0316 (3)
C10.10284 (15)0.3342 (2)0.07936 (4)0.0247 (3)
C20.21816 (16)0.1678 (2)0.08086 (4)0.0277 (3)
C30.38706 (16)0.2022 (2)0.06900 (4)0.0313 (3)
C40.44051 (16)0.4013 (3)0.05515 (4)0.0322 (3)
C50.32601 (17)0.5661 (2)0.05271 (4)0.0324 (3)
C60.15719 (16)0.5331 (2)0.06485 (4)0.0291 (3)
C70.08225 (15)0.3066 (2)0.09321 (4)0.0247 (3)
C80.12033 (15)0.3155 (2)0.13881 (4)0.0245 (3)
C90.02747 (16)0.2044 (2)0.16633 (4)0.0288 (3)
C100.07544 (16)0.2074 (2)0.20723 (4)0.0290 (3)
C110.21664 (15)0.3221 (2)0.22243 (4)0.0262 (3)
C120.30588 (16)0.4380 (2)0.19481 (4)0.0288 (3)
C130.25869 (16)0.4334 (2)0.15381 (4)0.0276 (3)
C140.27240 (15)0.3177 (2)0.26618 (4)0.0266 (3)
C150.36722 (17)0.4845 (2)0.28421 (4)0.0318 (3)
C160.42239 (18)0.4754 (3)0.32482 (4)0.0350 (3)
C170.38402 (17)0.3018 (2)0.34818 (4)0.0319 (3)
C180.28887 (17)0.1358 (3)0.33100 (4)0.0342 (3)
C190.23430 (17)0.1436 (2)0.29038 (4)0.0324 (3)
C200.21208 (16)0.0692 (2)0.09636 (4)0.0283 (3)
C210.23282 (16)0.1299 (2)0.03361 (4)0.0316 (3)
C220.16304 (17)0.0681 (2)0.03627 (4)0.0314 (3)
H20.18170.03060.09000.033*
H30.46570.08880.07040.038*
H40.55580.42460.04730.039*
H50.36240.70180.04280.039*
H60.07890.64670.06320.035*
H70.14450.42770.08140.030*
H90.06940.12610.15690.035*
H100.01100.12990.22530.035*
H120.40020.52100.20420.035*
H130.32210.51230.13570.033*
H150.39420.60520.26860.038*
H160.48700.58960.33660.042*
H170.42250.29620.37580.038*
H180.26090.01670.34690.041*
H190.16990.02860.27890.039*
H200.21770.08490.12480.034*
H210.25670.19850.00920.038*
H220.13000.16090.01460.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0191 (5)0.0280 (6)0.0278 (5)0.0017 (4)0.0006 (4)0.0008 (4)
N20.0282 (6)0.0301 (7)0.0369 (6)0.0021 (5)0.0042 (5)0.0010 (5)
C10.0227 (6)0.0281 (8)0.0231 (6)0.0019 (5)0.0004 (5)0.0019 (5)
C20.0263 (6)0.0274 (8)0.0293 (6)0.0016 (5)0.0002 (5)0.0023 (5)
C30.0239 (6)0.0358 (9)0.0342 (7)0.0037 (6)0.0024 (5)0.0001 (6)
C40.0217 (6)0.0417 (9)0.0331 (7)0.0063 (6)0.0002 (5)0.0025 (6)
C50.0309 (7)0.0316 (9)0.0341 (7)0.0090 (6)0.0016 (5)0.0006 (6)
C60.0277 (7)0.0270 (8)0.0324 (7)0.0007 (5)0.0003 (5)0.0004 (6)
C70.0213 (6)0.0220 (7)0.0307 (7)0.0002 (5)0.0012 (5)0.0004 (5)
C80.0213 (6)0.0229 (7)0.0293 (6)0.0039 (5)0.0006 (5)0.0006 (5)
C90.0213 (6)0.0305 (8)0.0343 (7)0.0044 (5)0.0003 (5)0.0015 (6)
C100.0233 (6)0.0326 (8)0.0314 (7)0.0033 (5)0.0039 (5)0.0017 (6)
C110.0218 (6)0.0268 (8)0.0301 (7)0.0022 (5)0.0010 (5)0.0013 (5)
C120.0239 (6)0.0290 (8)0.0330 (7)0.0040 (5)0.0015 (5)0.0006 (5)
C130.0241 (6)0.0269 (8)0.0318 (7)0.0017 (5)0.0019 (5)0.0028 (5)
C140.0197 (6)0.0308 (8)0.0296 (7)0.0012 (5)0.0026 (5)0.0009 (5)
C150.0299 (7)0.0335 (8)0.0319 (7)0.0032 (6)0.0011 (5)0.0007 (6)
C160.0327 (7)0.0381 (9)0.0337 (7)0.0041 (6)0.0016 (6)0.0051 (6)
C170.0270 (6)0.0408 (9)0.0276 (7)0.0029 (6)0.0001 (5)0.0020 (6)
C180.0305 (7)0.0398 (9)0.0325 (7)0.0019 (6)0.0041 (5)0.0055 (6)
C190.0281 (7)0.0360 (9)0.0328 (7)0.0052 (6)0.0003 (5)0.0006 (6)
C200.0255 (6)0.0288 (8)0.0306 (7)0.0018 (5)0.0007 (5)0.0020 (5)
C210.0281 (7)0.0359 (9)0.0308 (7)0.0006 (6)0.0031 (5)0.0045 (6)
C220.0301 (7)0.0370 (9)0.0267 (6)0.0041 (6)0.0003 (5)0.0005 (6)
Geometric parameters (Å, º) top
N1—C201.3560 (17)C10—C111.4011 (18)
N1—C221.3758 (17)C10—H100.9500
N1—C71.4854 (17)C11—C121.4012 (19)
N2—C201.3226 (18)C11—C141.4935 (18)
N2—C211.3765 (18)C12—C131.3907 (18)
C1—C21.3921 (19)C12—H120.9500
C1—C61.3940 (19)C13—H130.9500
C1—C71.5263 (16)C14—C191.400 (2)
C2—C31.3947 (18)C14—C151.4005 (19)
C2—H20.9500C15—C161.3939 (19)
C3—C41.386 (2)C15—H150.9500
C3—H30.9500C16—C171.381 (2)
C4—C51.384 (2)C16—H160.9500
C4—H40.9500C17—C181.387 (2)
C5—C61.3949 (19)C17—H170.9500
C5—H50.9500C18—C191.3928 (19)
C6—H60.9500C18—H180.9500
C7—C81.5280 (17)C19—H190.9500
C7—H71.0000C20—H200.9500
C8—C131.3921 (18)C21—C221.364 (2)
C8—C91.4000 (19)C21—H210.9500
C9—C101.3887 (18)C22—H220.9500
C9—H90.9500
C20—N1—C22106.39 (11)C10—C11—C12117.35 (12)
C20—N1—C7129.43 (11)C10—C11—C14121.48 (12)
C22—N1—C7124.18 (11)C12—C11—C14121.16 (12)
C20—N2—C21104.82 (12)C13—C12—C11121.09 (12)
C2—C1—C6119.30 (11)C13—C12—H12119.50
C2—C1—C7122.18 (12)C11—C12—H12119.50
C6—C1—C7118.52 (12)C12—C13—C8121.25 (12)
C1—C2—C3120.16 (13)C12—C13—H13119.40
C1—C2—H2119.90C8—C13—H13119.40
C3—C2—H2119.90C19—C14—C15117.75 (12)
C4—C3—C2120.16 (13)C19—C14—C11120.86 (12)
C4—C3—H3119.90C15—C14—C11121.38 (12)
C2—C3—H3119.90C16—C15—C14120.74 (14)
C5—C4—C3120.03 (12)C16—C15—H15119.60
C5—C4—H4120.00C14—C15—H15119.60
C3—C4—H4120.00C17—C16—C15120.66 (14)
C4—C5—C6120.02 (13)C17—C16—H16119.70
C4—C5—H5120.00C15—C16—H16119.70
C6—C5—H5120.00C16—C17—C18119.52 (13)
C1—C6—C5120.30 (13)C16—C17—H17120.20
C1—C6—H6119.80C18—C17—H17120.20
C5—C6—H6119.80C17—C18—C19120.02 (14)
N1—C7—C1110.62 (10)C17—C18—H18120.00
N1—C7—C8110.18 (10)C19—C18—H18120.00
C1—C7—C8114.84 (10)C18—C19—C14121.31 (13)
N1—C7—H7106.90C18—C19—H19119.30
C1—C7—H7106.90C14—C19—H19119.30
C8—C7—H7106.90N2—C20—N1112.32 (12)
C13—C8—C9118.03 (12)N2—C20—H20123.80
C13—C8—C7118.39 (11)N1—C20—H20123.80
C9—C8—C7123.53 (11)C22—C21—N2110.27 (12)
C10—C9—C8120.71 (12)C22—C21—H21124.90
C10—C9—H9119.60N2—C21—H21124.90
C8—C9—H9119.60C21—C22—N1106.21 (12)
C9—C10—C11121.53 (12)C21—C22—H22126.90
C9—C10—H10119.20N1—C22—H22126.90
C11—C10—H10119.20
C6—C1—C2—C31.77 (19)C10—C11—C12—C131.9 (2)
C7—C1—C2—C3178.09 (12)C14—C11—C12—C13176.77 (12)
C1—C2—C3—C40.9 (2)C11—C12—C13—C80.6 (2)
C2—C3—C4—C50.6 (2)C9—C8—C13—C121.3 (2)
C3—C4—C5—C61.1 (2)C7—C8—C13—C12176.27 (12)
C2—C1—C6—C51.24 (19)C10—C11—C14—C1925.82 (19)
C7—C1—C6—C5178.63 (12)C12—C11—C14—C19152.84 (13)
C4—C5—C6—C10.2 (2)C10—C11—C14—C15155.53 (13)
C20—N1—C7—C1116.94 (13)C12—C11—C14—C1525.82 (19)
C22—N1—C7—C163.98 (15)C19—C14—C15—C160.5 (2)
C20—N1—C7—C811.12 (17)C11—C14—C15—C16178.19 (12)
C22—N1—C7—C8167.95 (11)C14—C15—C16—C170.3 (2)
C2—C1—C7—N146.28 (16)C15—C16—C17—C180.3 (2)
C6—C1—C7—N1133.85 (12)C16—C17—C18—C190.7 (2)
C2—C1—C7—C879.20 (15)C17—C18—C19—C140.5 (2)
C6—C1—C7—C8100.67 (14)C15—C14—C19—C180.1 (2)
N1—C7—C8—C1398.12 (14)C11—C14—C19—C18178.57 (12)
C1—C7—C8—C13136.18 (12)C21—N2—C20—N10.11 (15)
N1—C7—C8—C979.26 (15)C22—N1—C20—N20.13 (15)
C1—C7—C8—C946.44 (18)C7—N1—C20—N2179.07 (11)
C13—C8—C9—C101.8 (2)C20—N2—C21—C220.04 (15)
C7—C8—C9—C10175.57 (12)N2—C21—C22—N10.03 (15)
C8—C9—C10—C110.5 (2)C20—N1—C22—C210.09 (14)
C9—C10—C11—C121.4 (2)C7—N1—C22—C21179.16 (11)
C9—C10—C11—C14177.33 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/N2/C20–C22, C1–C6 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···N2i1.002.453.418 (2)161
C3—H3···Cg1ii0.952.763.609 (2)149
C6—H6···Cg1iii0.952.963.900 (3)171
C18—H18···Cg2iv0.953.013.797 (7)141
C21—H21···Cg2v0.952.763.694 (7)170
C12—H12···Cg3vi0.952.873.737 (5)153
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+1/2, z+1/2; (v) x, y, z; (vi) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H18N2
Mr310.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)7.9737 (7), 6.2591 (6), 33.265 (3)
β (°) 93.805 (8)
V3)1656.5 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.20 × 0.20 × 0.04
Data collection
DiffractometerRigaku Rapid II
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.860, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
19391, 3064, 2801
Rint0.030
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.06
No. of reflections3064
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CrystalClear (Rigaku, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/N2/C20–C22, C1–C6 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···N2i1.002.453.418 (2)161
C3—H3···Cg1ii0.952.763.609 (2)149
C6—H6···Cg1iii0.952.963.900 (3)171
C18—H18···Cg2iv0.953.013.797 (7)141
C21—H21···Cg2v0.952.763.694 (7)170
C12—H12···Cg3vi0.952.873.737 (5)153
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+1/2, z+1/2; (v) x, y, z; (vi) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors would like to thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERC-SOPS)(EEC-0540855). The authors thank the National Science Foundation, Directorate for Mathematical & Physical Sciences, Division of Materials Research, for financial support (NSF MPS-DMR)(DMR-0804609). BVE is a Postdoctoral Researcher of the `Fonds voor Wetenschappelijk Onderzoek', Flanders, Belgium.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLackner, T. E. & Clissold, S. P. (1989). Drugs, 38, 204–225.  CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds