organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2559-o2560

(E)-1-(2-Fur­yl)-3-(2,4,6-trimeth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 31 August 2010; accepted 6 September 2010; online 15 September 2010)

In the title heteroaryl chalcone derivative, C16H16O5, the dihedral angle between the furan and benzene rings is 14.45 (6)°. The three meth­oxy groups are almost coplanar with their attached benzene ring [C—C—O—C torsion angles = 2.07 (17), −5.04 (17) and 2.85 (16)°]. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, adjacent mol­ecules are linked into X-shaped chains along the c axis by weak C—H⋯O(enone) inter­actions. These chains are stacked along the b axis. C⋯O [3.3308 (13)–3.4123 (14) Å] short contacts are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893-o894.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]. For background to and applications of chalcones and heteroaryl chalcones, see: Gaber et al. (2008[Gaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). Opt. Laser Technol. 40, 528-537.]); Go et al. (2005[Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.]); Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron. 27, 861-867.]); Ng et al. (2009[Ng, L.-T., Ko, H.-H. & Lu, T.-M. (2009). Bioorg. Med. Chem. 17, 4360-4366.]); Ni et al. (2004[Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Exp. Opin. Ther. Patents, 14, 1669-1691.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]) and Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O5

  • Mr = 288.29

  • Monoclinic, C 2/c

  • a = 38.5688 (5) Å

  • b = 3.93493 (5) Å

  • c = 18.2638 (3) Å

  • β = 103.901 (1)°

  • V = 2690.68 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.41 × 0.15 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.990

  • 20657 measured reflections

  • 3941 independent reflections

  • 3077 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.06

  • 3941 reflections

  • 254 parameters

  • All H-atom parameters refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.956 (15) 2.496 (15) 3.3512 (14) 148.9 (13)
C6—H6⋯O5 0.965 (15) 2.260 (14) 2.8197 (15) 116.0 (11)
C14—H14A⋯O4ii 0.975 (15) 2.589 (16) 3.4462 (14) 146.7 (11)
C15—H15A⋯O1iii 0.989 (16) 2.546 (16) 3.4293 (18) 148.6 (12)
C16—H16A⋯O1iii 0.982 (16) 2.575 (16) 3.4120 (16) 143.0 (12)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) -x, -y, -z+1; (iii) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcone and heteroaryl chalcones are very interesting due to their variety of applications with biological activities. Many of them possess analgesic, anti-inflammatory and antibacterial properties (Go et al., 2005; Ni et al., 2004; Nowakowska, 2007) as well as HIV-1 protease inhibitory (Tewtrakul et al., 2003) and tyrosinase inhibitory (Ng et al., 2009) activities. Moreover synthetic chalcones and heteroaryl chalcones have also been found to exhibit non-linear optical (Patil & Dharmaprakash, 2008), fluorescent (Jung et al., 2008) and laser properties (Gaber et al., 2008) . In continuing our on-going research on antibacterial activities and fluorescence properties of chalcones and heteroaryl chalcone derivatives, the title heteroaryl chalcone was synthesized in order to study its antibacterial and fluorescence properties. However our results show that (I) do not possess fluorescence property. In addition our biological testing found that (I) was inactive against the tested bacteria strains which are Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus faecalis, Pseudomonas aeruginosa, Salmonella typhi and Shigella sonnei. Herein we report the crystal structure of (I).

The molecule of the title heteroaryl chalcone (Fig. 1) exists in an E configuration with respect to the C6C7 double bond [1.3512 (16) Å] with the C5–C6–C7–C8 torsion angle being -176.44 (12)°. The whole molecule is slightly twisted with the dihedral angle between the furan and benzene rings being 14.45 (6)°. Atoms of the propenone unit (C5, C6, C7 and O1) lie on the same plane [r.m.s. 0.0179 (1)]. This plane makes dihedral angles of 11.38 (8) and 9.12 (8)° with furan and phenyl rings, respectively. All the three substituted methoxy groups of 2,4,6-trimethoxyphenyl unit are almost co-planar with the phenyl ring as indicated by torsion angles C14–O3–C9–C10 = 2.07 (17)°, C15–O4–C11–C12 = -5.04 (17)° and C16–O5–C13–C12 = 2.85 (16)°. In the structure, a weak intramolecular C6—H6···O5 interaction generates an S(6) ring motif (Bernstein et al., 1995) (Table 1). The bond lengths have normal values (Allen et al., 1987) and bond lengths and angles are comparable with its related structures (Chantrapromma et al., 2009; Suwunwong et al., 2009).

In the crystal packing, all the three methoxy groups involve in weak intermolecular C—H···O interactions (Table 1). The adjacent molecules are linked into X-shape chains along the c axis through the enone unit by weak C—H···O interactions (Fig. 2, Table 1). The adjacent chains are arranged into face-to-face manner (Fig. 3) and stacked along the b axis (Fig. 3). The crystal is further stabilized by C···O[3.3308 (13)-3.4123 (14) Å] short contacts.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Suwunwong et al. (2009. For background to and applications of chalcones and heteroaryl chalcones, see: Gaber et al. (2008); Go et al. (2005); Jung et al. (2008); Ng et al. (2009); Ni et al. (2004); Nowakowska (2007); Patil & Dharmaprakash (2008) and Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was prepared by the condensation of the solution of 2-furyl methylketone (2 mmol, 0.22 g) in ethanol (15 ml) and 2,4,6-trimethoxybenzaldehyde (2 mmol, 0.40 g) in ethanol (15 ml) in the presence of 20% NaOH (aq) 5 ml at 278 K for 5 hr. The resulting solid which was obtained was further collected by filtration, washed with distilled water and dried in air. Colorless blocks of (I) were recrystalized from acetone/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 390–391 K.

Refinement top

All H atoms were located in difference maps and refined isotropically. The highest residual electron density peak is located at 0.63 Å from C10 and the deepest hole is located at 1.12 Å from C2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. Weak intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the c axis, showing X-chains running along the c axis. Weak C—H···O interactions are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of (I) viewed along the b axis, showing chains stacking along the b axis. Weak C—H···O interactions are shown as dashed lines.
(E)-1-(2-Furyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H16O5F(000) = 1216
Mr = 288.29Dx = 1.423 Mg m3
Monoclinic, C2/cMelting point = 390–391 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 38.5688 (5) ÅCell parameters from 3941 reflections
b = 3.93493 (5) Åθ = 1.1–30.0°
c = 18.2638 (3) ŵ = 0.11 mm1
β = 103.901 (1)°T = 100 K
V = 2690.68 (6) Å3Block, colorless
Z = 80.41 × 0.15 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3941 independent reflections
Radiation source: sealed tube3077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 30.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 5454
Tmin = 0.957, Tmax = 0.990k = 55
20657 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0556P)2 + 1.4768P]
where P = (Fo2 + 2Fc2)/3
3941 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H16O5V = 2690.68 (6) Å3
Mr = 288.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.5688 (5) ŵ = 0.11 mm1
b = 3.93493 (5) ÅT = 100 K
c = 18.2638 (3) Å0.41 × 0.15 × 0.09 mm
β = 103.901 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3077 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.990Rint = 0.038
20657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113All H-atom parameters refined
S = 1.06Δρmax = 0.35 e Å3
3941 reflectionsΔρmin = 0.24 e Å3
254 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15077 (2)0.0988 (3)0.84899 (5)0.0215 (2)
O20.21727 (2)0.3478 (2)0.90839 (4)0.01663 (19)
O30.05690 (2)0.2197 (2)0.65467 (5)0.01694 (19)
O40.04708 (2)0.1724 (2)0.39117 (5)0.01735 (19)
O50.15024 (2)0.2851 (2)0.56781 (5)0.01639 (19)
C10.25039 (3)0.4913 (3)0.92049 (7)0.0174 (2)
H10.2651 (4)0.474 (4)0.9706 (8)0.018 (4)*
C20.25591 (3)0.6274 (3)0.85645 (7)0.0188 (3)
H20.2775 (4)0.741 (4)0.8513 (9)0.027 (4)*
C30.22403 (3)0.5659 (3)0.79963 (7)0.0174 (2)
H30.2194 (4)0.630 (4)0.7461 (9)0.021 (4)*
C40.20144 (3)0.3929 (3)0.83315 (6)0.0141 (2)
C50.16581 (3)0.2391 (3)0.80482 (6)0.0150 (2)
C60.15171 (3)0.2521 (3)0.72275 (7)0.0153 (2)
H60.1649 (4)0.381 (4)0.6935 (8)0.019 (4)*
C70.12181 (3)0.0762 (3)0.69077 (6)0.0145 (2)
H70.1101 (4)0.049 (4)0.7240 (8)0.020 (4)*
C80.10376 (3)0.0332 (3)0.61194 (6)0.0133 (2)
C90.06997 (3)0.1318 (3)0.59416 (6)0.0132 (2)
C100.05156 (3)0.1931 (3)0.52043 (7)0.0150 (2)
H100.0282 (4)0.310 (4)0.5082 (9)0.027 (4)*
C110.06682 (3)0.0939 (3)0.46185 (6)0.0140 (2)
C120.09968 (3)0.0689 (3)0.47557 (6)0.0139 (2)
H120.1100 (4)0.127 (4)0.4359 (8)0.018 (4)*
C130.11766 (3)0.1321 (3)0.55034 (6)0.0131 (2)
C140.02326 (3)0.3920 (3)0.63942 (7)0.0177 (2)
H14A0.0040 (4)0.255 (4)0.6091 (8)0.018 (4)*
H14B0.0253 (4)0.612 (4)0.6129 (8)0.021 (4)*
H14C0.0183 (4)0.431 (4)0.6887 (9)0.023 (4)*
C150.06015 (4)0.0546 (4)0.32866 (7)0.0206 (3)
H15A0.0833 (4)0.158 (4)0.3269 (9)0.024 (4)*
H15B0.0411 (5)0.122 (4)0.2834 (9)0.032 (4)*
H15C0.0620 (4)0.196 (4)0.3296 (9)0.024 (4)*
C160.16511 (3)0.3953 (3)0.50694 (7)0.0158 (2)
H16A0.1703 (4)0.200 (4)0.4778 (9)0.021 (4)*
H16B0.1490 (4)0.555 (4)0.4762 (8)0.015 (3)*
H16C0.1875 (4)0.511 (4)0.5307 (8)0.020 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0194 (4)0.0314 (5)0.0145 (4)0.0052 (4)0.0057 (3)0.0020 (4)
O20.0151 (4)0.0227 (5)0.0111 (4)0.0018 (3)0.0012 (3)0.0000 (3)
O30.0143 (4)0.0231 (5)0.0142 (4)0.0047 (3)0.0049 (3)0.0000 (3)
O40.0162 (4)0.0239 (5)0.0111 (4)0.0038 (3)0.0015 (3)0.0018 (3)
O50.0130 (4)0.0242 (5)0.0119 (4)0.0051 (3)0.0029 (3)0.0009 (3)
C10.0152 (5)0.0204 (6)0.0157 (6)0.0013 (4)0.0017 (4)0.0018 (5)
C20.0174 (6)0.0211 (6)0.0182 (6)0.0039 (5)0.0049 (5)0.0022 (5)
C30.0193 (6)0.0193 (6)0.0133 (5)0.0018 (4)0.0037 (4)0.0014 (5)
C40.0152 (5)0.0171 (6)0.0094 (5)0.0016 (4)0.0016 (4)0.0009 (4)
C50.0149 (5)0.0171 (6)0.0131 (5)0.0011 (4)0.0038 (4)0.0007 (4)
C60.0155 (5)0.0172 (6)0.0131 (5)0.0002 (4)0.0033 (4)0.0004 (4)
C70.0146 (5)0.0169 (6)0.0122 (5)0.0018 (4)0.0038 (4)0.0003 (4)
C80.0129 (5)0.0147 (5)0.0124 (5)0.0009 (4)0.0032 (4)0.0001 (4)
C90.0135 (5)0.0139 (5)0.0129 (5)0.0006 (4)0.0048 (4)0.0008 (4)
C100.0125 (5)0.0170 (6)0.0150 (5)0.0007 (4)0.0027 (4)0.0006 (4)
C110.0132 (5)0.0153 (6)0.0121 (5)0.0011 (4)0.0003 (4)0.0012 (4)
C120.0133 (5)0.0163 (6)0.0121 (5)0.0014 (4)0.0031 (4)0.0006 (4)
C130.0106 (5)0.0133 (5)0.0152 (5)0.0001 (4)0.0028 (4)0.0002 (4)
C140.0142 (5)0.0197 (6)0.0199 (6)0.0029 (4)0.0058 (5)0.0018 (5)
C150.0232 (6)0.0265 (7)0.0117 (5)0.0043 (5)0.0036 (5)0.0000 (5)
C160.0143 (5)0.0205 (6)0.0133 (5)0.0023 (4)0.0043 (4)0.0024 (5)
Geometric parameters (Å, º) top
O1—C51.2315 (14)C7—C81.4507 (16)
O2—C11.3652 (14)C7—H70.974 (15)
O2—C41.3745 (13)C8—C131.4123 (15)
O3—C91.3648 (13)C8—C91.4220 (15)
O3—C141.4307 (14)C9—C101.3844 (16)
O4—C111.3673 (14)C10—C111.3949 (16)
O4—C151.4317 (15)C10—H100.988 (16)
O5—C131.3602 (13)C11—C121.3883 (16)
O5—C161.4352 (14)C12—C131.3974 (16)
C1—C21.3492 (17)C12—H120.936 (15)
C1—H10.956 (15)C14—H14A0.976 (15)
C2—C31.4264 (17)C14—H14B1.003 (16)
C2—H20.970 (16)C14—H14C0.977 (16)
C3—C41.3617 (17)C15—H15A0.989 (16)
C3—H30.984 (15)C15—H15B1.001 (17)
C4—C51.4766 (16)C15—H15C0.990 (17)
C5—C61.4675 (16)C16—H16A0.982 (16)
C6—C71.3512 (16)C16—H16B0.963 (15)
C6—H60.967 (15)C16—H16C0.982 (16)
C1—O2—C4106.39 (9)C9—C10—C11119.01 (10)
C9—O3—C14117.18 (9)C9—C10—H10121.8 (9)
C11—O4—C15117.18 (9)C11—C10—H10119.2 (9)
C13—O5—C16118.08 (9)O4—C11—C12123.50 (10)
C2—C1—O2111.12 (10)O4—C11—C10114.76 (10)
C2—C1—H1132.6 (9)C12—C11—C10121.74 (10)
O2—C1—H1116.2 (9)C11—C12—C13118.39 (10)
C1—C2—C3105.98 (11)C11—C12—H12120.9 (9)
C1—C2—H2125.8 (10)C13—C12—H12120.7 (9)
C3—C2—H2128.2 (10)O5—C13—C12121.43 (10)
C4—C3—C2106.90 (11)O5—C13—C8116.18 (10)
C4—C3—H3126.4 (9)C12—C13—C8122.37 (10)
C2—C3—H3126.7 (9)O3—C14—H14A112.3 (9)
C3—C4—O2109.60 (10)O3—C14—H14B109.3 (8)
C3—C4—C5133.59 (11)H14A—C14—H14B109.8 (12)
O2—C4—C5116.74 (10)O3—C14—H14C105.3 (9)
O1—C5—C6124.57 (11)H14A—C14—H14C108.5 (12)
O1—C5—C4119.95 (10)H14B—C14—H14C111.5 (13)
C6—C5—C4115.40 (10)O4—C15—H15A112.7 (9)
C7—C6—C5119.48 (11)O4—C15—H15B104.0 (10)
C7—C6—H6122.6 (9)H15A—C15—H15B110.8 (13)
C5—C6—H6117.9 (9)O4—C15—H15C110.3 (9)
C6—C7—C8130.17 (11)H15A—C15—H15C110.6 (13)
C6—C7—H7117.8 (9)H15B—C15—H15C108.2 (14)
C8—C7—H7112.0 (9)O5—C16—H16A110.8 (9)
C13—C8—C9116.51 (10)O5—C16—H16B109.1 (8)
C13—C8—C7125.09 (10)H16A—C16—H16B112.5 (12)
C9—C8—C7118.36 (10)O5—C16—H16C105.8 (8)
O3—C9—C10122.72 (10)H16A—C16—H16C109.3 (12)
O3—C9—C8115.31 (10)H16B—C16—H16C109.2 (13)
C10—C9—C8121.96 (10)
C4—O2—C1—C20.63 (14)C7—C8—C9—O33.17 (16)
O2—C1—C2—C30.01 (15)C13—C8—C9—C100.06 (17)
C1—C2—C3—C40.63 (14)C7—C8—C9—C10177.77 (11)
C2—C3—C4—O21.03 (14)O3—C9—C10—C11179.79 (11)
C2—C3—C4—C5175.73 (13)C8—C9—C10—C110.80 (18)
C1—O2—C4—C31.03 (13)C15—O4—C11—C125.04 (17)
C1—O2—C4—C5176.35 (10)C15—O4—C11—C10175.53 (11)
C3—C4—C5—O1178.75 (13)C9—C10—C11—O4178.49 (10)
O2—C4—C5—O14.67 (17)C9—C10—C11—C120.95 (18)
C3—C4—C5—C64.4 (2)O4—C11—C12—C13179.17 (11)
O2—C4—C5—C6172.18 (10)C10—C11—C12—C130.22 (18)
O1—C5—C6—C76.08 (19)C16—O5—C13—C122.85 (16)
C4—C5—C6—C7170.60 (11)C16—O5—C13—C8178.91 (10)
C5—C6—C7—C8176.44 (12)C11—C12—C13—O5178.81 (10)
C6—C7—C8—C1310.2 (2)C11—C12—C13—C80.69 (18)
C6—C7—C8—C9172.18 (12)C9—C8—C13—O5179.03 (10)
C14—O3—C9—C102.07 (17)C7—C8—C13—O51.37 (17)
C14—O3—C9—C8178.87 (10)C9—C8—C13—C120.82 (17)
C13—C8—C9—O3179.00 (10)C7—C8—C13—C12176.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.956 (15)2.496 (15)3.3512 (14)148.9 (13)
C6—H6···O50.965 (15)2.260 (14)2.8197 (15)116.0 (11)
C14—H14A···O4ii0.975 (15)2.589 (16)3.4462 (14)146.7 (11)
C15—H15A···O1iii0.989 (16)2.546 (16)3.4293 (18)148.6 (12)
C16—H16A···O1iii0.982 (16)2.575 (16)3.4120 (16)143.0 (12)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y, z+1; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC16H16O5
Mr288.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)38.5688 (5), 3.93493 (5), 18.2638 (3)
β (°) 103.901 (1)
V3)2690.68 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.15 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
20657, 3941, 3077
Rint0.038
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.06
No. of reflections3941
No. of parameters254
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.35, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.956 (15)2.496 (15)3.3512 (14)148.9 (13)
C6—H6···O50.965 (15)2.260 (14)2.8197 (15)116.0 (11)
C14—H14A···O4ii0.975 (15)2.589 (16)3.4462 (14)146.7 (11)
C15—H15A···O1iii0.989 (16)2.546 (16)3.4293 (18)148.6 (12)
C16—H16A···O1iii0.982 (16)2.575 (16)3.4120 (16)143.0 (12)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y, z+1; (iii) x, y, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for a research grant (RSA 5280033) and the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). Opt. Laser Technol. 40, 528–537.  Web of Science CrossRef CAS Google Scholar
First citationGo, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron. 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationNg, L.-T., Ko, H.-H. & Lu, T.-M. (2009). Bioorg. Med. Chem. 17, 4360–4366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNi, L., Meng, C. Q. & Sikorski, J. A. (2004). Exp. Opin. Ther. Patents, 14, 1669–1691.  Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2559-o2560
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds