metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(perchlorato)(1,10-phenanthroline)copper(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bYoungstown State University, Department of Chemistry, One University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 6 August 2010; accepted 17 August 2010; online 21 August 2010)

In the title compound, [Cu(ClO4)2(C12H8N2)(H2O)2], the CuII atom is coordinated in a square-planar fashion by the two N atoms of a chelating 1,10-phenanthroline ligand and by two water mol­ecules trans to the N atoms. The coordination sphere of the metal atom is augmented by O atoms of two weakly bonded perchlorate anions, thus yielding a strongly distorted CuN2O4 octa­hedral environment. The crystal packing is stabilized by O—H⋯O hydrogen bonds between the water mol­ecules and the perchlorate anions. In addition, the organic mol­ecules are associated by ππ stacking inter­actions between symmetry-equivalent anti­parallel non-nitro­gen aromatic rings, with inter­planar distances of 3.543 (2) Å.

Related literature

For common applications of metal-organic coordination compounds, see: Kubo (1976[Kubo, M. (1976). Coord. Chem. Rev. 21, 1-27.]); Kobel & Hanack (1986[Kobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103-107.]); Pierpont & Jung (1994[Pierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229-2230.]); Huskins & Robson (1990[Huskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546-1554.]). For a related structure, see: Kaabi et al. (2010[Kaabi, K., El Glaoui, M., Pereira Silva, P. S., Ramos Silva, M. & Ben Nasr, C. (2010). Acta Cryst. E66, m617.]). For π-π inter­actions, see: Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(ClO4)2(C12H8N2)(H2O)2]

  • Mr = 478.68

  • Triclinic, [P \overline 1]

  • a = 7.7882 (10) Å

  • b = 10.4226 (14) Å

  • c = 10.8065 (14) Å

  • α = 76.567 (1)°

  • β = 75.227 (2)°

  • γ = 79.801 (2)°

  • V = 818.50 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 100 K

  • 0.45 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, USA.]) Tmin = 0.587, Tmax = 0.746

  • 17211 measured reflections

  • 4872 independent reflections

  • 4647 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.074

  • S = 1.13

  • 4872 reflections

  • 256 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.9600 (11)
Cu1—N2 1.9764 (12)
Cu1—O1 1.9784 (10)
Cu1—N1 1.9953 (12)
Cu1—O9 2.3805 (11)
Cu1—O3 2.5508 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5i 0.82 (2) 1.96 (2) 2.7619 (15) 166 (2)
O1—H1B⋯O7ii 0.80 (2) 1.95 (2) 2.7486 (16) 175 (2)
O2—H2A⋯O5 0.83 (2) 1.95 (2) 2.7566 (16) 164 (2)
O2—H2B⋯O8 0.80 (2) 2.20 (2) 2.8339 (18) 136 (2)
O2—H2B⋯O8iii 0.80 (2) 2.29 (2) 2.8802 (17) 132 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn., Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there has been an active and concerted attention in developing metal-organic coordination materials owing to their potentially useful magnetic, electric, photochemical and catalytic properties (Kubo, 1976; Kobel & Hanack, 1986; Pierpont & Jung, 1994; Huskins & Robson, 1990). Here, the title compound, [Cu(H2O)2(C12H8N2)](ClO4)2, is presented, which has been obtained in continuation of our studies of new coordination compounds (Kaabi, et al., 2010).

In the atomic arrangement of the title material, the Cu ion is surrounded by one 1,10-phenanthroline ligand, two ClO4- anions and two water molecules. The CuII atom is coordinated in a square-planar fashion by two nitrogen atoms of a chelating o-phenanthroline ligand and two water molecules trans to the nitrogen atoms with Cu—N1 and Cu—N2 distances of 1.9953 (12) and 1.9764 (12) Å, and Cu—O1 and Cu—O2 distances of 1.9784 (10) and 1.9600 (11) Å, respectively. The coordination sphere around the metal is augmented by oxygen atoms of two weakly bound perchlorate anions, thus yielding a strongly distorted octahedral environment for the copper(II) ion (Fig. 1). The two Cu—O distances to the perchlorate anions, 2.3805 (11) and 2.5508 (11) Å, are much longer than the Cu—O(water) distances (Table 1), and especially the longer of these two distances should be regarded as a very weak interaction rather than an actual metal-oxygen bond.

The complexes are interconnected by a set of O—H···O hydrogen bonds between the water molecules and the perchlorate anions (Table 2), leading to the formation of a three dimensional network (Fig. 2). As expected, the ClO4- anion has a characteristic tetrahedral geometry where the Cl—O bond lengths and O—Cl—O angles are slightly different from one another and vary with the coordination of the individual O atoms, such as hydrogen bonds or metal coordination. In the title compound, the Cl—O bond lengths vary between 1.4272 (13) and 1.4728 (11) Å and 1.4230 (14) and 1.4490 (11) Å for the two ClO4- anions. The O—Cl—O angles range from 107.95 (7) to 111.67 (10)° for the first anion and from 108.62 (7) to 110.48 (11)° for the second anion.

Intermolecular ππ stacking interactions between neighboring non-nitrogen aromatic rings of 1,10-phenanthroline are also observed, with a face-to-face distance of 3.543 (2) Å (Fig. 3), less than 3.8 Å, the maximum value regarded as relevant for ππ interactions (Janiak, 2000).

Related literature top

For common applications of metal-organic coordination compounds, see: Kubo (1976); Kobel & Hanack (1986); Pierpont & Jung (1994); Huskins & Robson (1990). For a related structure, see: Kaabi et al. (2010). For π-π interactions, see: Janiak (2000).

Experimental top

An aqueous solution of Cu(ClO4)2 (1 mmol, 0.263 g) was added dropwise to a solution of 1,10-phenanthroline (1 mmol, 0.180 g) in ethanol. The resultant mixture was evaporated at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X-ray diffraction analysis (yield 63%).

Refinement top

C—H hydrogen atoms were placed in calculated positions with C—H distances in the range 0.93–0.97 Å. The water hydrogen atom postitions were refined with O—H distance restraints of 0.84 (2) Å. The Uiso(H) values of all H atoms were constrained to 1.2 or 1.5× Ueq of the respective parent atom.

Structure description top

In recent years, there has been an active and concerted attention in developing metal-organic coordination materials owing to their potentially useful magnetic, electric, photochemical and catalytic properties (Kubo, 1976; Kobel & Hanack, 1986; Pierpont & Jung, 1994; Huskins & Robson, 1990). Here, the title compound, [Cu(H2O)2(C12H8N2)](ClO4)2, is presented, which has been obtained in continuation of our studies of new coordination compounds (Kaabi, et al., 2010).

In the atomic arrangement of the title material, the Cu ion is surrounded by one 1,10-phenanthroline ligand, two ClO4- anions and two water molecules. The CuII atom is coordinated in a square-planar fashion by two nitrogen atoms of a chelating o-phenanthroline ligand and two water molecules trans to the nitrogen atoms with Cu—N1 and Cu—N2 distances of 1.9953 (12) and 1.9764 (12) Å, and Cu—O1 and Cu—O2 distances of 1.9784 (10) and 1.9600 (11) Å, respectively. The coordination sphere around the metal is augmented by oxygen atoms of two weakly bound perchlorate anions, thus yielding a strongly distorted octahedral environment for the copper(II) ion (Fig. 1). The two Cu—O distances to the perchlorate anions, 2.3805 (11) and 2.5508 (11) Å, are much longer than the Cu—O(water) distances (Table 1), and especially the longer of these two distances should be regarded as a very weak interaction rather than an actual metal-oxygen bond.

The complexes are interconnected by a set of O—H···O hydrogen bonds between the water molecules and the perchlorate anions (Table 2), leading to the formation of a three dimensional network (Fig. 2). As expected, the ClO4- anion has a characteristic tetrahedral geometry where the Cl—O bond lengths and O—Cl—O angles are slightly different from one another and vary with the coordination of the individual O atoms, such as hydrogen bonds or metal coordination. In the title compound, the Cl—O bond lengths vary between 1.4272 (13) and 1.4728 (11) Å and 1.4230 (14) and 1.4490 (11) Å for the two ClO4- anions. The O—Cl—O angles range from 107.95 (7) to 111.67 (10)° for the first anion and from 108.62 (7) to 110.48 (11)° for the second anion.

Intermolecular ππ stacking interactions between neighboring non-nitrogen aromatic rings of 1,10-phenanthroline are also observed, with a face-to-face distance of 3.543 (2) Å (Fig. 3), less than 3.8 Å, the maximum value regarded as relevant for ππ interactions (Janiak, 2000).

For common applications of metal-organic coordination compounds, see: Kubo (1976); Kobel & Hanack (1986); Pierpont & Jung (1994); Huskins & Robson (1990). For a related structure, see: Kaabi et al. (2010). For π-π interactions, see: Janiak (2000).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, showing 50% probability displacement ellipsoids, arbitrary spheres for the H atoms, and the atom numbering scheme.
[Figure 2] Fig. 2. The packing of [Cu(H2O)2(C12H8N2)](ClO4)2, viewed down the b axis. Hydrogen bonds are denoted by dotted lines.
[Figure 3] Fig. 3. π-π stacking interactions in [Cu(H2O)2(C12H8N2)](ClO4)2.
Diaquabis(perchlorato)(1,10-phenanthroline)copper(II) top
Crystal data top
[Cu(ClO4)2(C12H8N2)(H2O)2]Z = 2
Mr = 478.68F(000) = 482
Triclinic, P1Dx = 1.942 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7882 (10) ÅCell parameters from 6809 reflections
b = 10.4226 (14) Åθ = 2.5–31.1°
c = 10.8065 (14) ŵ = 1.72 mm1
α = 76.567 (1)°T = 100 K
β = 75.227 (2)°Rod, blue
γ = 79.801 (2)°0.45 × 0.25 × 0.21 mm
V = 818.50 (19) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4872 independent reflections
Radiation source: fine-focus sealed tube4647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 31.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.587, Tmax = 0.746k = 1414
17211 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.4561P]
where P = (Fo2 + 2Fc2)/3
4872 reflections(Δ/σ)max = 0.003
256 parametersΔρmax = 0.48 e Å3
4 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu(ClO4)2(C12H8N2)(H2O)2]γ = 79.801 (2)°
Mr = 478.68V = 818.50 (19) Å3
Triclinic, P1Z = 2
a = 7.7882 (10) ÅMo Kα radiation
b = 10.4226 (14) ŵ = 1.72 mm1
c = 10.8065 (14) ÅT = 100 K
α = 76.567 (1)°0.45 × 0.25 × 0.21 mm
β = 75.227 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4872 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4647 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.746Rint = 0.020
17211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0244 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.48 e Å3
4872 reflectionsΔρmin = 0.53 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48090 (19)1.03799 (14)0.78959 (15)0.0155 (2)
H10.41561.03020.87760.019*
C20.4523 (2)1.15657 (14)0.70023 (16)0.0186 (3)
H20.36901.22820.72810.022*
C30.5448 (2)1.16911 (14)0.57240 (16)0.0189 (3)
H30.52581.24930.51160.023*
C40.66839 (19)1.06189 (14)0.53204 (14)0.0151 (2)
C50.69072 (18)0.94807 (13)0.62763 (13)0.0122 (2)
C60.81967 (18)0.83761 (13)0.59601 (13)0.0129 (2)
C70.91968 (19)0.84133 (15)0.46757 (14)0.0160 (3)
C81.0478 (2)0.72975 (16)0.44474 (15)0.0191 (3)
H81.11640.72540.35910.023*
C91.0719 (2)0.62824 (16)0.54732 (16)0.0200 (3)
H91.16020.55430.53350.024*
C100.96612 (19)0.63344 (15)0.67308 (15)0.0174 (3)
H100.98450.56230.74330.021*
C110.7716 (2)1.06372 (16)0.40131 (15)0.0188 (3)
H110.75641.14040.33560.023*
C120.8908 (2)0.95768 (16)0.36975 (15)0.0192 (3)
H120.95570.96050.28210.023*
Cl10.49764 (5)0.52161 (3)0.72929 (3)0.01545 (7)
Cl20.99352 (4)0.77378 (3)1.00887 (3)0.01565 (7)
Cu10.65728 (2)0.758637 (15)0.858913 (15)0.01130 (6)
N10.84121 (16)0.73496 (12)0.69669 (12)0.0131 (2)
N20.59768 (15)0.93583 (11)0.75385 (12)0.0124 (2)
O10.45249 (14)0.78997 (10)1.00501 (10)0.01413 (19)
H1A0.446 (3)0.7260 (18)1.0657 (18)0.021*
H1B0.357 (2)0.808 (2)0.986 (2)0.021*
O20.70251 (15)0.57653 (11)0.95518 (11)0.0177 (2)
H2A0.689 (3)0.520 (2)0.918 (2)0.027*
H2B0.786 (3)0.555 (2)0.989 (2)0.027*
O30.45492 (15)0.64314 (11)0.77965 (12)0.0194 (2)
O40.5846 (2)0.54920 (15)0.59434 (12)0.0395 (4)
O50.62326 (14)0.42954 (10)0.79995 (11)0.0176 (2)
O60.33842 (17)0.46231 (12)0.74967 (14)0.0276 (3)
O71.13473 (15)0.84737 (12)0.92507 (12)0.0240 (2)
O81.02607 (18)0.64014 (13)0.98634 (18)0.0372 (4)
O90.82443 (14)0.83601 (12)0.97691 (13)0.0219 (2)
O100.9878 (2)0.77359 (19)1.14159 (13)0.0417 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (6)0.0133 (6)0.0188 (6)0.0006 (5)0.0038 (5)0.0044 (5)
C20.0178 (7)0.0118 (6)0.0260 (7)0.0001 (5)0.0062 (5)0.0031 (5)
C30.0184 (7)0.0125 (6)0.0253 (7)0.0030 (5)0.0088 (5)0.0021 (5)
C40.0162 (6)0.0150 (6)0.0155 (6)0.0056 (5)0.0064 (5)0.0004 (5)
C50.0123 (6)0.0128 (5)0.0127 (6)0.0030 (4)0.0042 (4)0.0020 (4)
C60.0115 (6)0.0146 (6)0.0137 (6)0.0030 (4)0.0032 (4)0.0039 (5)
C70.0143 (6)0.0210 (6)0.0146 (6)0.0059 (5)0.0023 (5)0.0055 (5)
C80.0155 (6)0.0273 (7)0.0167 (7)0.0045 (5)0.0004 (5)0.0117 (6)
C90.0149 (6)0.0225 (7)0.0233 (7)0.0009 (5)0.0013 (5)0.0117 (6)
C100.0138 (6)0.0165 (6)0.0212 (7)0.0015 (5)0.0031 (5)0.0058 (5)
C110.0207 (7)0.0208 (7)0.0153 (6)0.0085 (5)0.0058 (5)0.0020 (5)
C120.0201 (7)0.0265 (7)0.0126 (6)0.0097 (6)0.0029 (5)0.0025 (5)
Cl10.01850 (16)0.01185 (14)0.01345 (15)0.00302 (11)0.00298 (11)0.00183 (11)
Cl20.01062 (14)0.01961 (15)0.01699 (16)0.00126 (11)0.00489 (11)0.00257 (12)
Cu10.01059 (9)0.01082 (8)0.01119 (9)0.00001 (6)0.00176 (6)0.00135 (6)
N10.0114 (5)0.0138 (5)0.0140 (5)0.0007 (4)0.0025 (4)0.0034 (4)
N20.0107 (5)0.0117 (5)0.0144 (5)0.0011 (4)0.0022 (4)0.0026 (4)
O10.0117 (4)0.0152 (5)0.0138 (5)0.0007 (4)0.0025 (3)0.0006 (4)
O20.0173 (5)0.0162 (5)0.0179 (5)0.0019 (4)0.0068 (4)0.0002 (4)
O30.0171 (5)0.0128 (5)0.0294 (6)0.0025 (4)0.0069 (4)0.0076 (4)
O40.0498 (9)0.0364 (7)0.0130 (6)0.0210 (6)0.0030 (5)0.0024 (5)
O50.0173 (5)0.0136 (4)0.0185 (5)0.0028 (4)0.0046 (4)0.0009 (4)
O60.0281 (6)0.0185 (5)0.0433 (8)0.0014 (5)0.0200 (5)0.0080 (5)
O70.0150 (5)0.0291 (6)0.0238 (6)0.0059 (4)0.0039 (4)0.0046 (5)
O80.0221 (6)0.0175 (6)0.0769 (11)0.0048 (5)0.0222 (7)0.0121 (6)
O90.0120 (5)0.0236 (5)0.0347 (6)0.0050 (4)0.0109 (4)0.0142 (5)
O100.0322 (7)0.0777 (12)0.0163 (6)0.0136 (7)0.0070 (5)0.0046 (7)
Geometric parameters (Å, º) top
C1—N21.3338 (17)C11—C121.360 (2)
C1—C21.403 (2)C11—H110.9500
C1—H10.9500C12—H120.9500
C2—C31.373 (2)Cl1—O61.4272 (13)
C2—H20.9500Cl1—O41.4277 (13)
C3—C41.413 (2)Cl1—O31.4456 (11)
C3—H30.9500Cl1—O51.4728 (11)
C4—C51.3978 (19)Cl2—O101.4230 (14)
C4—C111.434 (2)Cl2—O81.4369 (13)
C5—N21.3600 (18)Cl2—O71.4443 (12)
C5—C61.4315 (19)Cl2—O91.4490 (11)
C6—N11.3583 (18)Cu1—O21.9600 (11)
C6—C71.4033 (19)Cu1—N21.9764 (12)
C7—C81.416 (2)Cu1—O11.9784 (10)
C7—C121.438 (2)Cu1—N11.9953 (12)
C8—C91.369 (2)Cu1—O92.3805 (11)
C8—H80.9500Cu1—O32.5508 (11)
C9—C101.406 (2)O1—H1A0.818 (15)
C9—H90.9500O1—H1B0.800 (16)
C10—N11.3287 (18)O2—H2A0.828 (16)
C10—H100.9500O2—H2B0.796 (16)
N2—C1—C2121.54 (14)O6—Cl1—O5109.27 (7)
N2—C1—H1119.2O4—Cl1—O5107.95 (7)
C2—C1—H1119.2O3—Cl1—O5108.49 (7)
C3—C2—C1119.98 (14)O10—Cl2—O8110.48 (11)
C3—C2—H2120.0O10—Cl2—O7109.54 (9)
C1—C2—H2120.0O8—Cl2—O7109.21 (9)
C2—C3—C4119.50 (13)O10—Cl2—O9109.96 (9)
C2—C3—H3120.2O8—Cl2—O9108.62 (7)
C4—C3—H3120.2O7—Cl2—O9109.00 (7)
C5—C4—C3116.85 (13)O2—Cu1—N2174.66 (5)
C5—C4—C11118.86 (14)O2—Cu1—O188.24 (5)
C3—C4—C11124.28 (14)N2—Cu1—O191.93 (5)
N2—C5—C4123.37 (13)O2—Cu1—N196.05 (5)
N2—C5—C6116.35 (12)N2—Cu1—N183.24 (5)
C4—C5—C6120.26 (13)O1—Cu1—N1172.57 (5)
N1—C6—C7123.64 (13)O2—Cu1—O990.50 (5)
N1—C6—C5116.32 (12)N2—Cu1—O994.84 (5)
C7—C6—C5120.02 (13)O1—Cu1—O984.57 (4)
C6—C7—C8116.66 (14)N1—Cu1—O9101.41 (5)
C6—C7—C12118.86 (14)O2—Cu1—O379.80 (4)
C8—C7—C12124.45 (14)N2—Cu1—O394.87 (4)
C9—C8—C7119.34 (14)O1—Cu1—O387.45 (4)
C9—C8—H8120.3N1—Cu1—O387.35 (4)
C7—C8—H8120.3O9—Cu1—O3167.63 (4)
C8—C9—C10120.01 (14)C10—N1—C6118.35 (13)
C8—C9—H9120.0C10—N1—Cu1130.12 (11)
C10—C9—H9120.0C6—N1—Cu1111.33 (9)
N1—C10—C9121.96 (14)C1—N2—C5118.73 (12)
N1—C10—H10119.0C1—N2—Cu1129.24 (10)
C9—C10—H10119.0C5—N2—Cu1112.01 (9)
C12—C11—C4121.18 (14)Cu1—O1—H1A111.7 (15)
C12—C11—H11119.4Cu1—O1—H1B114.7 (16)
C4—C11—H11119.4H1A—O1—H1B108 (2)
C11—C12—C7120.77 (14)Cu1—O2—H2A113.0 (16)
C11—C12—H12119.6Cu1—O2—H2B120.8 (17)
C7—C12—H12119.6H2A—O2—H2B112 (2)
O6—Cl1—O4111.67 (10)Cl1—O3—Cu1128.58 (6)
O6—Cl1—O3109.72 (7)Cl2—O9—Cu1127.20 (7)
O4—Cl1—O3109.67 (8)
N2—C1—C2—C30.4 (2)O2—Cu1—N1—C6166.74 (9)
C1—C2—C3—C40.0 (2)N2—Cu1—N1—C67.93 (9)
C2—C3—C4—C50.9 (2)O9—Cu1—N1—C6101.53 (9)
C2—C3—C4—C11179.75 (14)O3—Cu1—N1—C687.29 (9)
C3—C4—C5—N21.5 (2)C2—C1—N2—C50.1 (2)
C11—C4—C5—N2179.12 (12)C2—C1—N2—Cu1178.36 (11)
C3—C4—C5—C6176.98 (12)C4—C5—N2—C11.1 (2)
C11—C4—C5—C62.4 (2)C6—C5—N2—C1177.41 (12)
N2—C5—C6—N12.95 (18)C4—C5—N2—Cu1177.62 (11)
C4—C5—C6—N1175.62 (12)C6—C5—N2—Cu13.86 (15)
N2—C5—C6—C7179.11 (12)O1—Cu1—N2—C110.63 (13)
C4—C5—C6—C72.3 (2)N1—Cu1—N2—C1175.03 (13)
N1—C6—C7—C80.6 (2)O9—Cu1—N2—C174.08 (13)
C5—C6—C7—C8178.41 (12)O3—Cu1—N2—C198.24 (12)
N1—C6—C7—C12177.39 (13)O1—Cu1—N2—C5167.92 (9)
C5—C6—C7—C120.4 (2)N1—Cu1—N2—C56.42 (9)
C6—C7—C8—C92.3 (2)O9—Cu1—N2—C5107.37 (9)
C12—C7—C8—C9175.64 (14)O3—Cu1—N2—C580.32 (9)
C7—C8—C9—C102.0 (2)O6—Cl1—O3—Cu1154.80 (8)
C8—C9—C10—N10.0 (2)O4—Cl1—O3—Cu182.19 (11)
C5—C4—C11—C120.6 (2)O5—Cl1—O3—Cu135.50 (10)
C3—C4—C11—C12178.75 (14)O2—Cu1—O3—Cl149.19 (9)
C4—C11—C12—C71.4 (2)N2—Cu1—O3—Cl1130.42 (9)
C6—C7—C12—C111.4 (2)O1—Cu1—O3—Cl1137.86 (9)
C8—C7—C12—C11176.41 (14)N1—Cu1—O3—Cl147.44 (9)
C9—C10—N1—C61.7 (2)O9—Cu1—O3—Cl188.04 (19)
C9—C10—N1—Cu1172.69 (11)O10—Cl2—O9—Cu1134.98 (11)
C7—C6—N1—C101.3 (2)O8—Cl2—O9—Cu113.97 (13)
C5—C6—N1—C10176.52 (12)O7—Cl2—O9—Cu1104.93 (10)
C7—C6—N1—Cu1174.04 (11)O2—Cu1—O9—Cl242.89 (10)
C5—C6—N1—Cu18.10 (14)N2—Cu1—O9—Cl2137.45 (10)
O2—Cu1—N1—C107.94 (14)O1—Cu1—O9—Cl2131.07 (10)
N2—Cu1—N1—C10177.39 (13)N1—Cu1—O9—Cl253.38 (10)
O9—Cu1—N1—C1083.79 (13)O3—Cu1—O9—Cl281.01 (19)
O3—Cu1—N1—C1087.39 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.82 (2)1.96 (2)2.7619 (15)166 (2)
O1—H1B···O7ii0.80 (2)1.95 (2)2.7486 (16)175 (2)
O2—H2A···O50.83 (2)1.95 (2)2.7566 (16)164 (2)
O2—H2B···O80.80 (2)2.20 (2)2.8339 (18)136 (2)
O2—H2B···O8iii0.80 (2)2.29 (2)2.8802 (17)132 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)2(C12H8N2)(H2O)2]
Mr478.68
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7882 (10), 10.4226 (14), 10.8065 (14)
α, β, γ (°)76.567 (1), 75.227 (2), 79.801 (2)
V3)818.50 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.45 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.587, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17211, 4872, 4647
Rint0.020
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.074, 1.13
No. of reflections4872
No. of parameters256
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Selected bond lengths (Å) top
Cu1—O21.9600 (11)Cu1—N11.9953 (12)
Cu1—N21.9764 (12)Cu1—O92.3805 (11)
Cu1—O11.9784 (10)Cu1—O32.5508 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.818 (15)1.961 (16)2.7619 (15)166 (2)
O1—H1B···O7ii0.800 (16)1.950 (16)2.7486 (16)175 (2)
O2—H2A···O50.828 (16)1.952 (17)2.7566 (16)164 (2)
O2—H2B···O80.796 (16)2.20 (2)2.8339 (18)136 (2)
O2—H2B···O8iii0.796 (16)2.29 (2)2.8802 (17)132 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+2, y+1, z+2.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn., Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, USA.  Google Scholar
First citationHuskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546–1554.  Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKaabi, K., El Glaoui, M., Pereira Silva, P. S., Ramos Silva, M. & Ben Nasr, C. (2010). Acta Cryst. E66, m617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103–107.  CrossRef CAS Web of Science Google Scholar
First citationKubo, M. (1976). Coord. Chem. Rev. 21, 1–27.  Google Scholar
First citationPierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229–2230.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds