organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-Eth­­oxy­carbonyl-5-(3,4-methyl­ene­di­oxy­phen­yl)-3-oxo­cyclo­hex-1-en-1-yl]-3-phenyl­sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 August 2010; accepted 17 August 2010; online 21 August 2010)

In the title compound {systematic name: 4-[4-eth­oxy­carbonyl-5-(3,4-methyl­ene­dioxy­phen­yl)-3-oxocyclo­hex-1-en-1-yl]-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate}, C24H20N2O7, the cyclo­hexene and dioxole rings adopt envelope conformations. The sydnone ring and the attached phenyl ring form a dihedral angle of 79.0 (1)°. In the mol­ecular structure, a C—H⋯O hydrogen bond generates an S(6) ring and a C—H⋯π inter­action involving the phenyl ring is observed. In the crystal structure, mol­ecules are linked into a ribbon-like structure along the a axis by C—H⋯O hydrogen bonds.

Related literature

For general background and applications of sydnone compounds, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Jyothi et al. (2008[Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]). For the synthesis of sydnone derivatives, see: Kalluraya et al. (2003[Kalluraya, B. & Rahiman, A. M. (2003). Indian J. Chem. Sect. B, 42, 1141-1148.]). For related structures, see: Goh et al. (2010a[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303.],b[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394-o1395.],c[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o2198-o2199.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2O7

  • Mr = 448.42

  • Triclinic, [P \overline 1]

  • a = 8.8026 (2) Å

  • b = 11.5133 (2) Å

  • c = 11.6981 (2) Å

  • α = 66.860 (1)°

  • β = 86.545 (1)°

  • γ = 71.115 (1)°

  • V = 1028.44 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.37 × 0.13 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.994

  • 18550 measured reflections

  • 4703 independent reflections

  • 3710 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.119

  • S = 1.03

  • 4703 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O4i 0.93 2.49 3.304 (3) 146
C5—H5A⋯O7ii 0.93 2.44 3.258 (2) 146
C14—H14A⋯O6 0.93 2.29 2.998 (2) 133
C10—H10ACg1 0.97 2.48 3.570 (2) 133
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well defined class of mesoionic compounds that contain the 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities displayed by some of them (Rai et al., 2008). Recently sydnone derivatives have been found to exhibit promising antimicrobial properties (Jyothi et al., 2008). The base-catalyzed condensation of 4-acetyl-3-phenyl sydnones with pipernol in aqueous alcoholic medium at 0–50°C gave chalcones. Michael addition of chalcones with ethyl acetoacetate in presence of K2CO3, followed by Claisen condensation afforded 3-aryl-4-[6-carbethoxy-5-(3,4-methylenedioxyphenyl)cyclohex-2-en-1-one-3yl] phenylsydnone (Kalluraya et al., 2003).

In the title molecule (Fig.1), the cyclohexene ring (C9–C14) adopts an envelope conformation, with the puckering parameters Q = 0.495 (2) Å, Θ = 55.7 (2)°, φ = 126.6 (3)° (Cremer & Pople, 1975). The dioxole ring also adopts an envelope conformation with atom C19 as the flap. The dihedral angle between the sydnone ring and the attached phenyl ring is 79.0 (1)°. The bond lengths (Allen et al., 1987) and angles are comparable to related structures (Goh et al., 2010a,b,c). An intramolecular C14—H14A···O6 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995). An intramolecular C—H···π interaction (Table 1) involving the C1–C6 ring is also observed.

In the crystal packing, intermolecular C4—H4A···O4 and C5—H5A···O7 hydrogen bonds (Table 1) link the molecules into a ribbon-like structure along the a axis (Fig. 2).

Related literature top

For general background and applications of sydnone compounds, see: Rai et al. (2008); Jyothi et al. (2008). For the synthesis of sydnone derivatives, see: Kalluraya et al. (2003). For related structures, see: Goh et al. (2010a,b,c). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 1-(3-phenylsydnonyl)-3(3,4-methylenedioxyphenyl)-2-propen-1-one (0.01 mol) in dry acetone (50 ml) was added dry potassium carbonate (0.04 mol) and ethyl acetoacetate (0.02 mol) and the mixture was stirred at room temperature overnight and was filtered. The solvent from the filtrate on evaporation gave a solid which was recrystallized from a mixture of ethanol-dioxan. Single crystals suitable for X-ray analysis were obtained from a ethanol solution by slow evaporation.

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 to 0.97 Å]. A rotating group model was applied to the methyl group.

Structure description top

Sydnones constitute a well defined class of mesoionic compounds that contain the 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities displayed by some of them (Rai et al., 2008). Recently sydnone derivatives have been found to exhibit promising antimicrobial properties (Jyothi et al., 2008). The base-catalyzed condensation of 4-acetyl-3-phenyl sydnones with pipernol in aqueous alcoholic medium at 0–50°C gave chalcones. Michael addition of chalcones with ethyl acetoacetate in presence of K2CO3, followed by Claisen condensation afforded 3-aryl-4-[6-carbethoxy-5-(3,4-methylenedioxyphenyl)cyclohex-2-en-1-one-3yl] phenylsydnone (Kalluraya et al., 2003).

In the title molecule (Fig.1), the cyclohexene ring (C9–C14) adopts an envelope conformation, with the puckering parameters Q = 0.495 (2) Å, Θ = 55.7 (2)°, φ = 126.6 (3)° (Cremer & Pople, 1975). The dioxole ring also adopts an envelope conformation with atom C19 as the flap. The dihedral angle between the sydnone ring and the attached phenyl ring is 79.0 (1)°. The bond lengths (Allen et al., 1987) and angles are comparable to related structures (Goh et al., 2010a,b,c). An intramolecular C14—H14A···O6 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995). An intramolecular C—H···π interaction (Table 1) involving the C1–C6 ring is also observed.

In the crystal packing, intermolecular C4—H4A···O4 and C5—H5A···O7 hydrogen bonds (Table 1) link the molecules into a ribbon-like structure along the a axis (Fig. 2).

For general background and applications of sydnone compounds, see: Rai et al. (2008); Jyothi et al. (2008). For the synthesis of sydnone derivatives, see: Kalluraya et al. (2003). For related structures, see: Goh et al. (2010a,b,c). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound showing a hydrogen-bonded ribbon, along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-[4-Ethoxycarbonyl-5-(3,4-methylenedioxyphenyl)- 3-oxocyclohex-1-en-1-yl]-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C24H20N2O7Z = 2
Mr = 448.42F(000) = 468
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8026 (2) ÅCell parameters from 5688 reflections
b = 11.5133 (2) Åθ = 2.2–30.2°
c = 11.6981 (2) ŵ = 0.11 mm1
α = 66.860 (1)°T = 100 K
β = 86.545 (1)°Needle, colourless
γ = 71.115 (1)°0.37 × 0.13 × 0.06 mm
V = 1028.44 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4703 independent reflections
Radiation source: fine-focus sealed tube3710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.962, Tmax = 0.994k = 1414
18550 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.6557P]
where P = (Fo2 + 2Fc2)/3
4703 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C24H20N2O7γ = 71.115 (1)°
Mr = 448.42V = 1028.44 (4) Å3
Triclinic, P1Z = 2
a = 8.8026 (2) ÅMo Kα radiation
b = 11.5133 (2) ŵ = 0.11 mm1
c = 11.6981 (2) ÅT = 100 K
α = 66.860 (1)°0.37 × 0.13 × 0.06 mm
β = 86.545 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3710 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.994Rint = 0.035
18550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
4703 reflectionsΔρmin = 0.34 e Å3
299 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54796 (15)0.47982 (12)0.24568 (11)0.0225 (3)
O20.09931 (15)0.43102 (12)0.42387 (11)0.0228 (3)
O30.34786 (15)0.29504 (13)0.53026 (11)0.0244 (3)
O40.73361 (16)0.19987 (13)0.20782 (12)0.0263 (3)
O50.63381 (15)0.31720 (12)0.00796 (11)0.0234 (3)
O60.73888 (15)0.39479 (12)0.14030 (12)0.0249 (3)
O70.79429 (16)0.03513 (13)0.01666 (12)0.0271 (3)
N10.39657 (17)0.31654 (14)0.28604 (13)0.0175 (3)
N20.41071 (19)0.43911 (14)0.30166 (14)0.0227 (3)
C10.2822 (2)0.29087 (18)0.47181 (16)0.0219 (4)
H1A0.37680.35420.51750.026*
C20.1577 (2)0.23095 (19)0.52984 (17)0.0255 (4)
H2A0.16800.25360.61520.031*
C30.0177 (2)0.13688 (19)0.45938 (19)0.0279 (4)
H3A0.06580.09630.49800.033*
C40.0010 (2)0.10279 (19)0.33208 (18)0.0277 (4)
H4A0.09350.03950.28610.033*
C50.1236 (2)0.16201 (18)0.27268 (16)0.0231 (4)
H5A0.11290.14040.18750.028*
C60.2628 (2)0.25450 (16)0.34455 (15)0.0181 (3)
C70.6164 (2)0.37744 (16)0.19344 (15)0.0186 (4)
C80.5132 (2)0.26951 (16)0.22242 (15)0.0165 (3)
C90.5348 (2)0.14190 (16)0.19358 (14)0.0155 (3)
C100.4237 (2)0.03949 (16)0.23803 (15)0.0161 (3)
H10A0.39240.08530.32020.019*
H10B0.32690.00990.18190.019*
C110.5027 (2)0.05872 (17)0.24418 (16)0.0196 (4)
H11A0.59490.00750.30640.023*
C120.5672 (2)0.12241 (17)0.11849 (16)0.0209 (4)
H12A0.47630.17280.05500.025*
C130.6849 (2)0.01333 (18)0.08194 (16)0.0200 (4)
C140.6583 (2)0.11497 (17)0.12458 (15)0.0177 (3)
H14A0.72940.18190.10350.021*
C150.3878 (2)0.16253 (17)0.28630 (16)0.0193 (4)
C160.2380 (2)0.24512 (18)0.22215 (16)0.0225 (4)
H16A0.20900.23700.15120.027*
C170.1295 (2)0.34015 (17)0.26119 (16)0.0212 (4)
H17A0.02980.39470.21830.025*
C180.1795 (2)0.34732 (16)0.36599 (15)0.0180 (4)
C190.1948 (2)0.38560 (18)0.53747 (17)0.0232 (4)
H19A0.14180.34070.60800.028*
H19B0.20930.46080.54820.028*
C200.3280 (2)0.26646 (17)0.42936 (16)0.0190 (4)
C210.4350 (2)0.17364 (17)0.39255 (16)0.0193 (4)
H21A0.53460.12040.43620.023*
C220.6534 (2)0.21628 (17)0.11888 (16)0.0187 (4)
C230.7312 (2)0.40341 (18)0.00653 (18)0.0267 (4)
H23A0.73490.41770.06950.032*
H23B0.68250.48960.07400.032*
C240.8997 (2)0.3393 (2)0.0344 (2)0.0348 (5)
H24A0.96490.39290.03740.052*
H24B0.89650.33250.11340.052*
H24C0.94500.25160.02980.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (7)0.0144 (6)0.0231 (6)0.0049 (5)0.0041 (5)0.0082 (5)
O20.0216 (6)0.0217 (6)0.0233 (6)0.0021 (5)0.0006 (5)0.0142 (5)
O30.0209 (7)0.0281 (7)0.0225 (6)0.0006 (5)0.0002 (5)0.0150 (5)
O40.0303 (7)0.0250 (7)0.0251 (7)0.0094 (6)0.0006 (5)0.0109 (5)
O50.0281 (7)0.0187 (6)0.0231 (6)0.0081 (5)0.0003 (5)0.0076 (5)
O60.0263 (7)0.0211 (7)0.0299 (7)0.0048 (5)0.0064 (5)0.0158 (5)
O70.0295 (7)0.0278 (7)0.0315 (7)0.0141 (6)0.0156 (6)0.0175 (6)
N10.0233 (8)0.0134 (7)0.0153 (7)0.0058 (6)0.0011 (5)0.0052 (5)
N20.0304 (9)0.0148 (7)0.0217 (7)0.0066 (6)0.0047 (6)0.0069 (6)
C10.0248 (9)0.0215 (9)0.0191 (8)0.0096 (7)0.0013 (7)0.0061 (7)
C20.0312 (10)0.0313 (10)0.0212 (9)0.0166 (9)0.0083 (7)0.0134 (8)
C30.0280 (10)0.0265 (10)0.0360 (11)0.0117 (8)0.0134 (8)0.0185 (8)
C40.0237 (10)0.0201 (9)0.0345 (10)0.0037 (8)0.0019 (8)0.0087 (8)
C50.0281 (10)0.0198 (9)0.0193 (8)0.0082 (8)0.0008 (7)0.0053 (7)
C60.0221 (9)0.0152 (8)0.0200 (8)0.0087 (7)0.0053 (7)0.0085 (6)
C70.0246 (9)0.0138 (8)0.0166 (8)0.0040 (7)0.0021 (7)0.0062 (6)
C80.0190 (8)0.0156 (8)0.0150 (8)0.0039 (7)0.0010 (6)0.0074 (6)
C90.0185 (8)0.0149 (8)0.0125 (7)0.0032 (6)0.0018 (6)0.0062 (6)
C100.0179 (8)0.0141 (8)0.0167 (8)0.0044 (6)0.0029 (6)0.0073 (6)
C110.0216 (9)0.0179 (8)0.0210 (8)0.0062 (7)0.0035 (7)0.0099 (7)
C120.0238 (9)0.0194 (9)0.0214 (9)0.0073 (7)0.0028 (7)0.0101 (7)
C130.0225 (9)0.0232 (9)0.0188 (8)0.0086 (7)0.0044 (7)0.0122 (7)
C140.0200 (8)0.0175 (8)0.0172 (8)0.0032 (7)0.0023 (6)0.0109 (6)
C150.0199 (9)0.0152 (8)0.0237 (9)0.0068 (7)0.0083 (7)0.0086 (7)
C160.0287 (10)0.0235 (9)0.0203 (8)0.0105 (8)0.0051 (7)0.0127 (7)
C170.0220 (9)0.0183 (9)0.0211 (9)0.0046 (7)0.0013 (7)0.0070 (7)
C180.0199 (9)0.0129 (8)0.0207 (8)0.0036 (7)0.0070 (7)0.0081 (6)
C190.0234 (9)0.0227 (9)0.0235 (9)0.0024 (7)0.0021 (7)0.0132 (7)
C200.0212 (9)0.0164 (8)0.0195 (8)0.0063 (7)0.0043 (7)0.0075 (6)
C210.0179 (8)0.0151 (8)0.0225 (9)0.0033 (7)0.0041 (7)0.0071 (7)
C220.0187 (8)0.0175 (8)0.0210 (8)0.0038 (7)0.0051 (7)0.0108 (7)
C230.0346 (11)0.0187 (9)0.0287 (10)0.0136 (8)0.0014 (8)0.0071 (7)
C240.0315 (11)0.0345 (12)0.0395 (12)0.0176 (9)0.0060 (9)0.0107 (9)
Geometric parameters (Å, º) top
O1—N21.3739 (19)C10—C111.532 (2)
O1—C71.405 (2)C10—H10A0.97
O2—C181.379 (2)C10—H10B0.97
O2—C191.432 (2)C11—C151.521 (2)
O3—C201.378 (2)C11—C121.531 (2)
O3—C191.434 (2)C11—H11A0.98
O4—C221.210 (2)C12—C221.509 (2)
O5—C221.333 (2)C12—C131.536 (2)
O5—C231.466 (2)C12—H12A0.98
O6—C71.211 (2)C13—C141.455 (2)
O7—C131.221 (2)C14—H14A0.93
N1—N21.314 (2)C15—C161.397 (3)
N1—C81.361 (2)C15—C211.399 (2)
N1—C61.452 (2)C16—C171.408 (2)
C1—C61.384 (2)C16—H16A0.93
C1—C21.388 (3)C17—C181.368 (2)
C1—H1A0.93C17—H17A0.93
C2—C31.389 (3)C18—C201.383 (2)
C2—H2A0.93C19—H19A0.97
C3—C41.387 (3)C19—H19B0.97
C3—H3A0.93C20—C211.370 (2)
C4—C51.385 (3)C21—H21A0.93
C4—H4A0.93C23—C241.508 (3)
C5—C61.385 (2)C23—H23A0.97
C5—H5A0.9300C23—H23B0.97
C7—C81.431 (2)C24—H24A0.96
C8—C91.446 (2)C24—H24B0.96
C9—C141.358 (2)C24—H24C0.96
C9—C101.514 (2)
N2—O1—C7110.82 (12)C11—C12—C13110.07 (14)
C18—O2—C19105.46 (13)C22—C12—H12A108.5
C20—O3—C19105.33 (13)C11—C12—H12A108.5
C22—O5—C23115.58 (14)C13—C12—H12A108.5
N2—N1—C8115.22 (14)O7—C13—C14121.36 (16)
N2—N1—C6114.75 (14)O7—C13—C12120.91 (16)
C8—N1—C6129.96 (14)C14—C13—C12117.71 (15)
N1—N2—O1104.74 (13)C9—C14—C13123.30 (16)
C6—C1—C2118.67 (17)C9—C14—H14A118.4
C6—C1—H1A120.7C13—C14—H14A118.4
C2—C1—H1A120.7C16—C15—C21119.99 (16)
C1—C2—C3119.48 (17)C16—C15—C11121.71 (16)
C1—C2—H2A120.3C21—C15—C11118.30 (15)
C3—C2—H2A120.3C15—C16—C17122.31 (16)
C4—C3—C2120.67 (18)C15—C16—H16A118.8
C4—C3—H3A119.7C17—C16—H16A118.8
C2—C3—H3A119.7C18—C17—C16115.96 (16)
C5—C4—C3120.66 (18)C18—C17—H17A122.0
C5—C4—H4A119.7C16—C17—H17A122.0
C3—C4—H4A119.7C17—C18—O2128.32 (16)
C6—C5—C4117.67 (17)C17—C18—C20121.97 (16)
C6—C5—H5A121.2O2—C18—C20109.71 (15)
C4—C5—H5A121.2O2—C19—O3107.89 (13)
C1—C6—C5122.84 (16)O2—C19—H19A110.1
C1—C6—N1117.38 (15)O3—C19—H19A110.1
C5—C6—N1119.77 (15)O2—C19—H19B110.1
O6—C7—O1120.52 (15)O3—C19—H19B110.1
O6—C7—C8134.77 (16)H19A—C19—H19B108.4
O1—C7—C8104.70 (14)C21—C20—O3127.31 (16)
N1—C8—C7104.51 (14)C21—C20—C18122.79 (16)
N1—C8—C9128.77 (15)O3—C20—C18109.90 (15)
C7—C8—C9126.68 (15)C20—C21—C15116.97 (16)
C14—C9—C8118.32 (15)C20—C21—H21A121.5
C14—C9—C10120.05 (15)C15—C21—H21A121.5
C8—C9—C10121.62 (14)O4—C22—O5124.34 (16)
C9—C10—C11112.31 (14)O4—C22—C12124.18 (16)
C9—C10—H10A109.1O5—C22—C12111.46 (14)
C11—C10—H10A109.1O5—C23—C24109.97 (15)
C9—C10—H10B109.1O5—C23—H23A109.7
C11—C10—H10B109.1C24—C23—H23A109.7
H10A—C10—H10B107.9O5—C23—H23B109.7
C15—C11—C12112.34 (14)C24—C23—H23B109.7
C15—C11—C10111.42 (14)H23A—C23—H23B108.2
C12—C11—C10109.94 (14)C23—C24—H24A109.5
C15—C11—H11A107.6C23—C24—H24B109.5
C12—C11—H11A107.6H24A—C24—H24B109.5
C10—C11—H11A107.6C23—C24—H24C109.5
C22—C12—C11113.06 (14)H24A—C24—H24C109.5
C22—C12—C13108.19 (14)H24B—C24—H24C109.5
C8—N1—N2—O10.58 (18)C11—C12—C13—O7151.39 (16)
C6—N1—N2—O1176.69 (13)C22—C12—C13—C14154.41 (15)
C7—O1—N2—N10.90 (17)C11—C12—C13—C1430.4 (2)
C6—C1—C2—C30.1 (3)C8—C9—C14—C13175.29 (15)
C1—C2—C3—C40.2 (3)C10—C9—C14—C134.6 (2)
C2—C3—C4—C50.1 (3)O7—C13—C14—C9177.63 (16)
C3—C4—C5—C60.7 (3)C12—C13—C14—C90.5 (2)
C2—C1—C6—C50.8 (3)C12—C11—C15—C1666.7 (2)
C2—C1—C6—N1178.54 (15)C10—C11—C15—C1657.2 (2)
C4—C5—C6—C11.1 (3)C12—C11—C15—C21113.64 (17)
C4—C5—C6—N1178.24 (15)C10—C11—C15—C21122.49 (16)
N2—N1—C6—C178.33 (19)C21—C15—C16—C170.7 (3)
C8—N1—C6—C198.4 (2)C11—C15—C16—C17178.99 (16)
N2—N1—C6—C5102.29 (18)C15—C16—C17—C180.2 (3)
C8—N1—C6—C580.9 (2)C16—C17—C18—O2179.39 (16)
N2—O1—C7—O6179.69 (15)C16—C17—C18—C200.3 (3)
N2—O1—C7—C80.88 (17)C19—O2—C18—C17172.59 (18)
N2—N1—C8—C70.05 (19)C19—O2—C18—C208.19 (18)
C6—N1—C8—C7176.72 (15)C18—O2—C19—O312.89 (18)
N2—N1—C8—C9177.79 (16)C20—O3—C19—O212.72 (18)
C6—N1—C8—C91.0 (3)C19—O3—C20—C21172.51 (17)
O6—C7—C8—N1179.06 (19)C19—O3—C20—C187.75 (18)
O1—C7—C8—N10.50 (17)C17—C18—C20—C210.2 (3)
O6—C7—C8—C91.3 (3)O2—C18—C20—C21179.48 (15)
O1—C7—C8—C9177.31 (15)C17—C18—C20—O3179.55 (15)
N1—C8—C9—C14177.80 (16)O2—C18—C20—O30.27 (19)
C7—C8—C9—C144.9 (3)O3—C20—C21—C15180.00 (16)
N1—C8—C9—C102.0 (3)C18—C20—C21—C150.3 (3)
C7—C8—C9—C10175.23 (15)C16—C15—C21—C200.7 (2)
C14—C9—C10—C1123.1 (2)C11—C15—C21—C20178.98 (15)
C8—C9—C10—C11157.03 (15)C23—O5—C22—O46.4 (2)
C9—C10—C11—C15178.75 (14)C23—O5—C22—C12171.70 (14)
C9—C10—C11—C1253.54 (18)C11—C12—C22—O434.7 (2)
C15—C11—C12—C2257.8 (2)C13—C12—C22—O487.5 (2)
C10—C11—C12—C22177.53 (14)C11—C12—C22—O5147.17 (15)
C15—C11—C12—C13178.89 (14)C13—C12—C22—O590.67 (17)
C10—C11—C12—C1356.42 (18)C22—O5—C23—C2480.80 (19)
C22—C12—C13—O727.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O4i0.932.493.304 (3)146
C5—H5A···O7ii0.932.443.258 (2)146
C14—H14A···O60.932.292.998 (2)133
C10—H10A···Cg10.972.483.570 (2)133
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H20N2O7
Mr448.42
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8026 (2), 11.5133 (2), 11.6981 (2)
α, β, γ (°)66.860 (1), 86.545 (1), 71.115 (1)
V3)1028.44 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.37 × 0.13 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
18550, 4703, 3710
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.03
No. of reflections4703
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O4i0.932.493.304 (3)146
C5—H5A···O7ii0.932.443.258 (2)146
C14—H14A···O60.932.292.998 (2)133
C10—H10A···Cg10.972.483.570 (2)133
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394–o1395.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o2198–o2199.  Google Scholar
First citationJyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B. & Rahiman, A. M. (2003). Indian J. Chem. Sect. B, 42, 1141–1148.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds