organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Absolute configuration of isovouacapenol C

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 11 July 2010; accepted 14 July 2010; online 17 July 2010)

The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur.

Related literature

For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For background to plants in Caesalpiniaceae, cassane furan­oditerpenes and their activities, see: Che et al. (1986[Che, C. T., McPherson, D. D., Cordell, G. A. & Fong, H. H. (1986). J. Nat. Prod. 49, 561-566.]); Jiang et al. (2001[Jiang, R.-W., Ma, S.-C., But, P. P.-H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266-1272.]); Patil et al. (1997[Patil, A. D., Freyer, A. J., Webb, R. L., Zuber, G., Reichwein, R., Bean, M. F., Faucette, L. & Johnson, R. K. (1997). Tetrahedron, 53, 1583-1592.]); Promsawan et al. (2003[Promsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776-777.]); Ragasa et al. (2002[Ragasa, C. Y., Hofilena, J. G. & Rideout, J. A. (2002). J. Nat. Prod. 65, 1107-1110.]); Smitinand & Larson (2001[Smitinand, T. & Larson, K. (2001). Flora of Thailand, p. 94. Bangkok: ASRCT Press.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S. & Rattanasuwan, P. (2003). Songklanakarin J. Sci. Technol. 25, 509-514.]). For related structures, see: Jiang et al. (2001[Jiang, R.-W., Ma, S.-C., But, P. P.-H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266-1272.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C27H34O5

  • Mr = 438.54

  • Monoclinic, P 21

  • a = 11.6236 (7) Å

  • b = 8.0871 (5) Å

  • c = 12.4193 (7) Å

  • β = 98.194 (3)°

  • V = 1155.51 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 100 K

  • 0.40 × 0.26 × 0.16 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.772, Tmax = 0.896

  • 23749 measured reflections

  • 3328 independent reflections

  • 3237 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.05

  • 3328 reflections

  • 289 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1365 Friedel pairs

  • Flack parameter: 0.07 (17)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C16/O1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O1i 0.85 (2) 2.27 (3) 2.9814 (19) 141 (2)
C19—H19C⋯O3 0.96 2.37 3.052 (2) 128
C3—H3ACg1ii 0.97 2.86 3.805 (2) 166
Symmetry codes: (i) x, y-1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The plants in Caesalpiniaceae are rich sources of cassane furanoditerpenes. The extracts from plants in this family have been found to possess bioactivities such as antiviral (Jiang et al., 2001), antitumor (Che et al., 1986) and HIV-1 protease inhibitory (Tewtrakul et al., 2003) properties. Caesalpinia pulcherrima (L.) Swartz, locally known as "Hang Nok Yung Thai" (Smitinand & Larson, 2001) is a large perennial shrub or small tree that is widely distributed in tropical areas. The plant has been used for ornamental (Smitinand & Larson, 2001), abortifacient and emmenagogue purposes. Isolated compounds from C. pulcherrima exhibits potential fertility regulating, antitumor (Che et al., 1986), antibacterial, antifungal (Ragasa et al., 2002) and anti-tubercular activities (Promsawan et al., 2003). These compounds are also active against DNA repair-deficient yeast mutant (Patil et al., 1997). In the course of our research of chemical constituents and bioactive compounds from the roots of C. pulcherrima which were collected from Songkhla province in the southern part of Thailand, the title cassane furanoditerpene (I), also known as isovouacapenol C (Ragasa et al., 2002) or 6β-cinnamoyl-7β-hydroxyvouacapen-5α-ol (Promsawan et al., 2003), was isolated. The previous reports showed that (I) exhibits moderate antimicrobial (Ragasa et al., 2002) and cytotoxic activities (Promsawan et al., 2003). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.07 (17). We report herein the crystal structure of (I).

Fig. 1 shows that the molecule of (I) is constructed from the fusion of three cyclohexane rings and a furan ring. The three cyclohexane rings are trans-fused. Two cyclohexane rings A and B are in standard chair conformations whereas ring C adopts twisted half-chair conformation with the puckered C8 and C9 atoms having the maximum deviation of -0.306 (1) and 0.280 (2) Å, respectively from the best plane of the remaining four atoms (C11–C14) and with the puckering parameters Q = 0.4532 (17) Å and θ = 47.1 (2)° and φ = 23.0 (3)° (Cremer & Pople, 1975). The furan ring (C12/C13/C15/C16/O1) is planar (rms 0.001 (2) Å). Atoms of the benzoate moiety (C21–C27/O3/O4) lie on the same plane with the rms 0.009 (2) Å. The orientation of the benzoate group is described by the torsion angles C21–O3–C6–C5 = 136.98 (16)° and C21–O3–C6–C7 = -99.22 (17)°. The bond angles around C12 and C13 atoms are indicative of sp2 hybridization for these atoms and the bond length of 1.344 (3) Å confirmed the C12 C13 bond. The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable with the related structures which are caesalmin C, D, E, F and G (Jiang et al., 2001). The absolute configuration at positions 4a, 5, 6, 6a, 7, 11a and 11b of the isovouacapenol C or atoms C5, C6, C7, C8, C14, C9 and C10 were R,R,R,S,R,S,R configurations.

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds (Table 1). The molecules are linked into infinite one dimensional chains along the [010] through O5—H1O5···O1 hydrogen bond (Fig. 2 and Table 1). C···O [3.306 (2)-3.347 (2) Å] short contacts and C—H···π interactions were also observed (Table 1); Cg1 is the centroid of the C12/C13/C15/C16/O1 ring.

Related literature top

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to plants in Caesalpiniaceae, cassane furanoditerpenes and their activity, see: Che et al. (1986); Jiang et al. (2001); Patil et al. (1997); Promsawan et al. (2003); Ragasa et al. (2002); Smitinand & Larson (2001); Tewtrakul et al. (2003). For related structures, see: Jiang et al. (2001). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The air-dried roots of C. pulcherrima (6.3 kg) were extracted with CH2Cl2 (2 x 2.5 L) for 5 days at room temperature. The combined extracts were concentrated under reduced pressure to afford a dark brownish extract (75.3 g) which was further purified by quick column chromatography (QCC) over silica gel using hexane as eluent and increasing polarity with EtOAc and MeOH to afford 16 fractions (F1-F16). Fraction F4 was then concentrated under reduced pressure to yield the title compound as white solid (10.0 g). Colorless block-shaped single crystals of the compound (I) were recrystallized from CH2Cl2 by the slow evaporation of the solvent at room temperature after several days, Mp. 389-391 K.

Refinement top

Hydroxy H atoms were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.81 Å from C24 and the deepest hole is located at 0.45 Å from H24A. 1365 Friedel pairs were used to determine the absolute configuration.

Structure description top

The plants in Caesalpiniaceae are rich sources of cassane furanoditerpenes. The extracts from plants in this family have been found to possess bioactivities such as antiviral (Jiang et al., 2001), antitumor (Che et al., 1986) and HIV-1 protease inhibitory (Tewtrakul et al., 2003) properties. Caesalpinia pulcherrima (L.) Swartz, locally known as "Hang Nok Yung Thai" (Smitinand & Larson, 2001) is a large perennial shrub or small tree that is widely distributed in tropical areas. The plant has been used for ornamental (Smitinand & Larson, 2001), abortifacient and emmenagogue purposes. Isolated compounds from C. pulcherrima exhibits potential fertility regulating, antitumor (Che et al., 1986), antibacterial, antifungal (Ragasa et al., 2002) and anti-tubercular activities (Promsawan et al., 2003). These compounds are also active against DNA repair-deficient yeast mutant (Patil et al., 1997). In the course of our research of chemical constituents and bioactive compounds from the roots of C. pulcherrima which were collected from Songkhla province in the southern part of Thailand, the title cassane furanoditerpene (I), also known as isovouacapenol C (Ragasa et al., 2002) or 6β-cinnamoyl-7β-hydroxyvouacapen-5α-ol (Promsawan et al., 2003), was isolated. The previous reports showed that (I) exhibits moderate antimicrobial (Ragasa et al., 2002) and cytotoxic activities (Promsawan et al., 2003). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.07 (17). We report herein the crystal structure of (I).

Fig. 1 shows that the molecule of (I) is constructed from the fusion of three cyclohexane rings and a furan ring. The three cyclohexane rings are trans-fused. Two cyclohexane rings A and B are in standard chair conformations whereas ring C adopts twisted half-chair conformation with the puckered C8 and C9 atoms having the maximum deviation of -0.306 (1) and 0.280 (2) Å, respectively from the best plane of the remaining four atoms (C11–C14) and with the puckering parameters Q = 0.4532 (17) Å and θ = 47.1 (2)° and φ = 23.0 (3)° (Cremer & Pople, 1975). The furan ring (C12/C13/C15/C16/O1) is planar (rms 0.001 (2) Å). Atoms of the benzoate moiety (C21–C27/O3/O4) lie on the same plane with the rms 0.009 (2) Å. The orientation of the benzoate group is described by the torsion angles C21–O3–C6–C5 = 136.98 (16)° and C21–O3–C6–C7 = -99.22 (17)°. The bond angles around C12 and C13 atoms are indicative of sp2 hybridization for these atoms and the bond length of 1.344 (3) Å confirmed the C12 C13 bond. The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable with the related structures which are caesalmin C, D, E, F and G (Jiang et al., 2001). The absolute configuration at positions 4a, 5, 6, 6a, 7, 11a and 11b of the isovouacapenol C or atoms C5, C6, C7, C8, C14, C9 and C10 were R,R,R,S,R,S,R configurations.

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds (Table 1). The molecules are linked into infinite one dimensional chains along the [010] through O5—H1O5···O1 hydrogen bond (Fig. 2 and Table 1). C···O [3.306 (2)-3.347 (2) Å] short contacts and C—H···π interactions were also observed (Table 1); Cg1 is the centroid of the C12/C13/C15/C16/O1 ring.

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to plants in Caesalpiniaceae, cassane furanoditerpenes and their activity, see: Che et al. (1986); Jiang et al. (2001); Patil et al. (1997); Promsawan et al. (2003); Ragasa et al. (2002); Smitinand & Larson (2001); Tewtrakul et al. (2003). For related structures, see: Jiang et al. (2001). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the c axis, showing one dimensional chains along [010]. Hydrogen bonds are shown as dashed lines.
(4aR,5R,6R,6aS,7R,11aS,11bR)- 4a,6-dihydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b- dodecahydrophenanthro[3,2-b]furan-5-yl benzoate top
Crystal data top
C27H34O5F(000) = 472
Mr = 438.54Dx = 1.260 Mg m3
Monoclinic, P21Melting point = 389–391 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 11.6236 (7) ÅCell parameters from 3328 reflections
b = 8.0871 (5) Åθ = 3.6–63.0°
c = 12.4193 (7) ŵ = 0.69 mm1
β = 98.194 (3)°T = 100 K
V = 1155.51 (12) Å3Block, colorless
Z = 20.40 × 0.26 × 0.16 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
3328 independent reflections
Radiation source: sealed tube3237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 63.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.772, Tmax = 0.896k = 97
23749 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.2626P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3328 reflectionsΔρmax = 0.26 e Å3
289 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 1365 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (17)
Crystal data top
C27H34O5V = 1155.51 (12) Å3
Mr = 438.54Z = 2
Monoclinic, P21Cu Kα radiation
a = 11.6236 (7) ŵ = 0.69 mm1
b = 8.0871 (5) ÅT = 100 K
c = 12.4193 (7) Å0.40 × 0.26 × 0.16 mm
β = 98.194 (3)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3328 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3237 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.896Rint = 0.037
23749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.26 e Å3
3328 reflectionsAbsolute structure: Flack (1983), 1365 Friedel pairs
289 parametersAbsolute structure parameter: 0.07 (17)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72763 (10)0.79601 (16)0.98396 (10)0.0293 (3)
O21.00416 (11)0.14126 (17)0.87430 (10)0.0289 (3)
H1O21.074 (2)0.170 (3)0.8862 (19)0.053 (8)*
O30.77060 (10)0.12442 (16)0.64968 (9)0.0277 (3)
O40.73247 (15)0.1497 (2)0.63427 (14)0.0558 (5)
O50.65515 (11)0.06283 (18)0.82285 (11)0.0305 (3)
H1O50.666 (2)0.039 (4)0.839 (2)0.064 (9)*
C11.05196 (15)0.4722 (2)0.79744 (15)0.0294 (4)
H1A1.04060.59100.79420.035*
H1B1.08620.44440.87110.035*
C21.13691 (16)0.4242 (3)0.71969 (17)0.0366 (5)
H2A1.10750.46340.64720.044*
H2B1.21110.47750.74260.044*
C31.15455 (16)0.2376 (3)0.71644 (17)0.0362 (5)
H3A1.19150.20070.78730.043*
H3B1.20660.21250.66420.043*
C41.04021 (15)0.1404 (3)0.68549 (15)0.0290 (4)
C50.95342 (15)0.1960 (2)0.76622 (14)0.0248 (4)
C60.83929 (14)0.0968 (2)0.75469 (14)0.0246 (4)
H6A0.85890.02100.76070.030*
C70.76787 (14)0.1395 (2)0.84429 (13)0.0241 (4)
H7A0.80810.09510.91290.029*
C80.74771 (14)0.3233 (2)0.85970 (14)0.0218 (4)
H8A0.69800.36250.79430.026*
C90.86259 (14)0.4231 (2)0.86921 (14)0.0225 (4)
H9A0.91110.38760.93630.027*
C100.93235 (15)0.3867 (2)0.77260 (14)0.0239 (4)
C110.84125 (15)0.6107 (2)0.87951 (15)0.0274 (4)
H11A0.91260.66490.91120.033*
H11B0.81710.65780.80800.033*
C120.74973 (14)0.6380 (2)0.94925 (14)0.0251 (4)
C130.67533 (14)0.5290 (2)0.98321 (15)0.0237 (4)
C140.67929 (15)0.3493 (2)0.95730 (14)0.0250 (4)
H14A0.59920.31290.93410.030*
C150.60120 (15)0.6225 (2)1.04398 (14)0.0288 (4)
H15A0.54110.58131.07830.035*
C160.63540 (16)0.7802 (3)1.04160 (16)0.0313 (4)
H16A0.60150.86741.07440.038*
C170.72635 (18)0.2509 (2)1.05976 (15)0.0336 (5)
H17A0.68650.28431.11880.050*
H17B0.80800.27181.07850.050*
H17C0.71390.13501.04610.050*
C181.06580 (18)0.0460 (3)0.69936 (17)0.0389 (5)
H18A1.13150.07400.66410.058*
H18B0.99920.10800.66720.058*
H18C1.08260.07200.77540.058*
C191.00152 (17)0.1669 (3)0.56272 (15)0.0369 (5)
H19A1.05380.10990.52230.055*
H19B1.00240.28300.54650.055*
H19C0.92430.12450.54300.055*
C200.86451 (16)0.4592 (2)0.66677 (14)0.0273 (4)
H20A0.88260.57450.66170.041*
H20B0.78260.44630.66780.041*
H20C0.88630.40170.60510.041*
C210.72050 (17)0.0116 (3)0.59848 (17)0.0360 (5)
C220.65118 (16)0.0302 (3)0.49182 (17)0.0376 (5)
C230.63903 (19)0.1895 (3)0.45270 (17)0.0479 (6)
H23A0.67470.27670.49350.058*
C240.5734 (2)0.2196 (4)0.35231 (19)0.0622 (5)
H24A0.56380.32680.32550.075*
C250.5217 (2)0.0850 (4)0.2917 (2)0.0622 (5)
H25A0.47820.10410.22400.075*
C260.5340 (2)0.0717 (4)0.33011 (19)0.0622 (5)
H26A0.49920.15920.28910.075*
C270.59853 (17)0.1005 (3)0.43053 (18)0.0481 (6)
H27A0.60690.20780.45740.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0331 (6)0.0197 (7)0.0365 (7)0.0005 (5)0.0095 (5)0.0016 (5)
O20.0268 (7)0.0338 (8)0.0243 (6)0.0014 (6)0.0022 (5)0.0040 (6)
O30.0287 (6)0.0291 (7)0.0236 (6)0.0015 (5)0.0019 (5)0.0036 (5)
O40.0678 (11)0.0314 (11)0.0606 (10)0.0050 (8)0.0172 (8)0.0079 (8)
O50.0286 (7)0.0240 (8)0.0393 (8)0.0063 (5)0.0060 (6)0.0004 (6)
C10.0276 (9)0.0312 (12)0.0305 (10)0.0040 (8)0.0079 (8)0.0014 (8)
C20.0291 (9)0.0439 (14)0.0392 (12)0.0084 (9)0.0130 (8)0.0051 (9)
C30.0263 (9)0.0469 (14)0.0369 (11)0.0003 (9)0.0097 (8)0.0052 (9)
C40.0288 (9)0.0301 (11)0.0288 (9)0.0044 (8)0.0065 (7)0.0029 (8)
C50.0248 (9)0.0301 (11)0.0185 (9)0.0028 (7)0.0005 (7)0.0022 (7)
C60.0281 (9)0.0213 (11)0.0232 (9)0.0003 (7)0.0010 (7)0.0006 (7)
C70.0243 (8)0.0217 (10)0.0252 (9)0.0029 (7)0.0002 (7)0.0013 (8)
C80.0229 (8)0.0207 (10)0.0218 (9)0.0000 (7)0.0026 (7)0.0023 (7)
C90.0234 (8)0.0242 (10)0.0194 (8)0.0011 (7)0.0016 (6)0.0020 (7)
C100.0251 (9)0.0263 (11)0.0211 (9)0.0026 (7)0.0058 (7)0.0006 (7)
C110.0306 (9)0.0247 (11)0.0281 (9)0.0065 (8)0.0092 (7)0.0004 (8)
C120.0266 (9)0.0224 (10)0.0257 (9)0.0011 (8)0.0016 (7)0.0002 (8)
C130.0220 (9)0.0233 (11)0.0255 (9)0.0016 (7)0.0027 (7)0.0019 (7)
C140.0220 (8)0.0250 (11)0.0282 (9)0.0036 (7)0.0043 (7)0.0006 (8)
C150.0246 (8)0.0290 (12)0.0337 (10)0.0013 (8)0.0074 (7)0.0017 (8)
C160.0300 (9)0.0266 (12)0.0393 (11)0.0047 (8)0.0117 (8)0.0020 (8)
C170.0486 (11)0.0251 (12)0.0291 (10)0.0025 (8)0.0127 (9)0.0047 (8)
C180.0398 (11)0.0367 (13)0.0405 (12)0.0101 (9)0.0069 (9)0.0042 (9)
C190.0415 (11)0.0432 (14)0.0281 (10)0.0028 (9)0.0129 (8)0.0046 (9)
C200.0358 (10)0.0246 (11)0.0228 (9)0.0011 (8)0.0088 (7)0.0029 (7)
C210.0319 (10)0.0379 (14)0.0370 (11)0.0010 (9)0.0011 (8)0.0091 (10)
C220.0247 (9)0.0591 (16)0.0285 (10)0.0002 (9)0.0020 (8)0.0113 (10)
C230.0408 (12)0.0675 (19)0.0327 (12)0.0012 (11)0.0042 (9)0.0043 (11)
C240.0404 (7)0.1039 (14)0.0392 (8)0.0010 (8)0.0052 (6)0.0099 (8)
C250.0404 (7)0.1039 (14)0.0392 (8)0.0010 (8)0.0052 (6)0.0099 (8)
C260.0404 (7)0.1039 (14)0.0392 (8)0.0010 (8)0.0052 (6)0.0099 (8)
C270.0267 (10)0.0698 (18)0.0466 (13)0.0034 (10)0.0011 (9)0.0195 (12)
Geometric parameters (Å, º) top
O1—C161.377 (2)C11—C121.481 (2)
O1—C121.384 (2)C11—H11A0.9700
O2—C51.456 (2)C11—H11B0.9700
O2—H1O20.84 (3)C12—C131.344 (3)
O3—C211.359 (2)C13—C151.438 (3)
O3—C61.446 (2)C13—C141.490 (3)
O4—C211.203 (3)C14—C171.534 (3)
O5—C71.440 (2)C14—H14A0.9800
O5—H1O50.85 (3)C15—C161.338 (3)
C1—C21.526 (2)C15—H15A0.9300
C1—C101.544 (2)C16—H16A0.9300
C1—H1A0.9700C17—H17A0.9600
C1—H1B0.9700C17—H17B0.9600
C2—C31.524 (3)C17—H17C0.9600
C2—H2A0.9700C18—H18A0.9600
C2—H2B0.9700C18—H18B0.9600
C3—C41.545 (3)C18—H18C0.9600
C3—H3A0.9700C19—H19A0.9600
C3—H3B0.9700C19—H19B0.9600
C4—C181.541 (3)C19—H19C0.9600
C4—C191.542 (3)C20—H20A0.9600
C4—C51.586 (2)C20—H20B0.9600
C5—C61.539 (2)C20—H20C0.9600
C5—C101.565 (3)C21—C221.488 (3)
C6—C71.520 (2)C22—C231.377 (3)
C6—H6A0.9800C22—C271.392 (3)
C7—C81.522 (3)C23—C241.387 (3)
C7—H7A0.9800C23—H23A0.9300
C8—C91.550 (2)C24—C251.409 (4)
C8—C141.556 (2)C24—H24A0.9300
C8—H8A0.9800C25—C261.355 (4)
C9—C111.546 (3)C25—H25A0.9300
C9—C101.569 (2)C26—C271.381 (3)
C9—H9A0.9800C26—H26A0.9300
C10—C201.548 (2)C27—H27A0.9300
C16—O1—C12105.61 (14)C12—C11—H11B109.8
C5—O2—H1O2109.4 (17)C9—C11—H11B109.8
C21—O3—C6116.21 (15)H11A—C11—H11B108.2
C7—O5—H1O5105.5 (18)C13—C12—O1110.58 (15)
C2—C1—C10113.90 (15)C13—C12—C11129.30 (17)
C2—C1—H1A108.8O1—C12—C11120.04 (15)
C10—C1—H1A108.8C12—C13—C15106.26 (16)
C2—C1—H1B108.8C12—C13—C14122.06 (16)
C10—C1—H1B108.8C15—C13—C14131.68 (16)
H1A—C1—H1B107.7C13—C14—C17110.19 (15)
C3—C2—C1111.70 (17)C13—C14—C8109.57 (14)
C3—C2—H2A109.3C17—C14—C8114.49 (15)
C1—C2—H2A109.3C13—C14—H14A107.4
C3—C2—H2B109.3C17—C14—H14A107.4
C1—C2—H2B109.3C8—C14—H14A107.4
H2A—C2—H2B107.9C16—C15—C13106.71 (16)
C2—C3—C4113.34 (16)C16—C15—H15A126.6
C2—C3—H3A108.9C13—C15—H15A126.6
C4—C3—H3A108.9C15—C16—O1110.84 (16)
C2—C3—H3B108.9C15—C16—H16A124.6
C4—C3—H3B108.9O1—C16—H16A124.6
H3A—C3—H3B107.7C14—C17—H17A109.5
C18—C4—C19105.75 (16)C14—C17—H17B109.5
C18—C4—C3108.93 (16)H17A—C17—H17B109.5
C19—C4—C3107.13 (16)C14—C17—H17C109.5
C18—C4—C5109.68 (16)H17A—C17—H17C109.5
C19—C4—C5117.61 (15)H17B—C17—H17C109.5
C3—C4—C5107.49 (15)C4—C18—H18A109.5
O2—C5—C699.09 (14)C4—C18—H18B109.5
O2—C5—C10107.37 (14)H18A—C18—H18B109.5
C6—C5—C10112.28 (14)C4—C18—H18C109.5
O2—C5—C4106.62 (13)H18A—C18—H18C109.5
C6—C5—C4114.27 (15)H18B—C18—H18C109.5
C10—C5—C4115.46 (15)C4—C19—H19A109.5
O3—C6—C7109.65 (13)C4—C19—H19B109.5
O3—C6—C5111.17 (14)H19A—C19—H19B109.5
C7—C6—C5111.53 (14)C4—C19—H19C109.5
O3—C6—H6A108.1H19A—C19—H19C109.5
C7—C6—H6A108.1H19B—C19—H19C109.5
C5—C6—H6A108.1C10—C20—H20A109.5
O5—C7—C6110.15 (14)C10—C20—H20B109.5
O5—C7—C8106.96 (14)H20A—C20—H20B109.5
C6—C7—C8115.08 (14)C10—C20—H20C109.5
O5—C7—H7A108.1H20A—C20—H20C109.5
C6—C7—H7A108.1H20B—C20—H20C109.5
C8—C7—H7A108.1O4—C21—O3124.00 (18)
C7—C8—C9111.82 (13)O4—C21—C22124.02 (19)
C7—C8—C14109.57 (14)O3—C21—C22111.97 (19)
C9—C8—C14113.63 (13)C23—C22—C27120.2 (2)
C7—C8—H8A107.2C23—C22—C21122.82 (19)
C9—C8—H8A107.2C27—C22—C21117.0 (2)
C14—C8—H8A107.2C22—C23—C24119.8 (2)
C11—C9—C8111.75 (14)C22—C23—H23A120.1
C11—C9—C10110.75 (14)C24—C23—H23A120.1
C8—C9—C10112.18 (14)C23—C24—C25118.9 (3)
C11—C9—H9A107.3C23—C24—H24A120.6
C8—C9—H9A107.3C25—C24—H24A120.6
C10—C9—H9A107.3C26—C25—C24121.3 (2)
C1—C10—C20109.58 (15)C26—C25—H25A119.4
C1—C10—C5107.96 (14)C24—C25—H25A119.4
C20—C10—C5113.24 (15)C25—C26—C27119.5 (3)
C1—C10—C9108.18 (14)C25—C26—H26A120.2
C20—C10—C9108.77 (14)C27—C26—H26A120.2
C5—C10—C9108.99 (14)C26—C27—C22120.4 (3)
C12—C11—C9109.39 (14)C26—C27—H27A119.8
C12—C11—H11A109.8C22—C27—H27A119.8
C9—C11—H11A109.8
C10—C1—C2—C355.8 (2)C6—C5—C10—C956.19 (18)
C1—C2—C3—C456.5 (2)C4—C5—C10—C9170.43 (13)
C2—C3—C4—C18172.61 (16)C11—C9—C10—C162.08 (18)
C2—C3—C4—C1973.4 (2)C8—C9—C10—C1172.31 (14)
C2—C3—C4—C553.8 (2)C11—C9—C10—C2056.87 (18)
C18—C4—C5—O252.99 (19)C8—C9—C10—C2068.74 (18)
C19—C4—C5—O2173.81 (17)C11—C9—C10—C5179.23 (13)
C3—C4—C5—O265.30 (19)C8—C9—C10—C555.16 (18)
C18—C4—C5—C655.39 (19)C8—C9—C11—C1238.72 (19)
C19—C4—C5—C665.4 (2)C10—C9—C11—C12164.58 (13)
C3—C4—C5—C6173.68 (15)C16—O1—C12—C130.04 (18)
C18—C4—C5—C10172.14 (15)C16—O1—C12—C11177.07 (15)
C19—C4—C5—C1067.0 (2)C9—C11—C12—C1313.3 (3)
C3—C4—C5—C1053.85 (19)C9—C11—C12—O1170.25 (14)
C21—O3—C6—C799.22 (17)O1—C12—C13—C150.31 (19)
C21—O3—C6—C5136.98 (16)C11—C12—C13—C15176.98 (17)
O2—C5—C6—O3178.22 (14)O1—C12—C13—C14179.95 (15)
C10—C5—C6—O368.69 (18)C11—C12—C13—C143.3 (3)
C4—C5—C6—O365.27 (18)C12—C13—C14—C17108.18 (19)
O2—C5—C6—C759.06 (17)C15—C13—C14—C1771.5 (2)
C10—C5—C6—C754.03 (19)C12—C13—C14—C818.7 (2)
C4—C5—C6—C7172.01 (15)C15—C13—C14—C8161.67 (17)
O3—C6—C7—O548.39 (19)C7—C8—C14—C13171.36 (14)
C5—C6—C7—O5171.97 (14)C9—C8—C14—C1345.48 (19)
O3—C6—C7—C872.59 (18)C7—C8—C14—C1747.00 (19)
C5—C6—C7—C850.99 (19)C9—C8—C14—C1778.89 (19)
O5—C7—C8—C9172.92 (13)C12—C13—C15—C160.5 (2)
C6—C7—C8—C950.21 (18)C14—C13—C15—C16179.83 (19)
O5—C7—C8—C1460.18 (16)C13—C15—C16—O10.4 (2)
C6—C7—C8—C14177.12 (13)C12—O1—C16—C150.3 (2)
C7—C8—C9—C11177.36 (14)C6—O3—C21—O41.7 (3)
C14—C8—C9—C1157.96 (18)C6—O3—C21—C22179.54 (14)
C7—C8—C9—C1052.30 (18)O4—C21—C22—C23179.9 (2)
C14—C8—C9—C10176.98 (14)O3—C21—C22—C231.1 (3)
C2—C1—C10—C2071.1 (2)O4—C21—C22—C270.6 (3)
C2—C1—C10—C552.7 (2)O3—C21—C22—C27178.17 (17)
C2—C1—C10—C9170.49 (16)C27—C22—C23—C240.5 (3)
O2—C5—C10—C165.60 (17)C21—C22—C23—C24179.76 (19)
C6—C5—C10—C1173.47 (14)C22—C23—C24—C250.8 (3)
C4—C5—C10—C153.14 (18)C23—C24—C25—C260.6 (4)
O2—C5—C10—C20172.90 (13)C24—C25—C26—C270.0 (4)
C6—C5—C10—C2065.02 (18)C25—C26—C27—C220.3 (3)
C4—C5—C10—C2068.36 (18)C23—C22—C27—C260.1 (3)
O2—C5—C10—C951.69 (17)C21—C22—C27—C26179.21 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C16/O1 ring.
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O1i0.85 (2)2.27 (3)2.9814 (19)141 (2)
C19—H19C···O30.962.373.052 (2)128
C3—H3A···Cg1ii0.972.863.805 (2)166
Symmetry codes: (i) x, y1, z; (ii) x+2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC27H34O5
Mr438.54
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)11.6236 (7), 8.0871 (5), 12.4193 (7)
β (°) 98.194 (3)
V3)1155.51 (12)
Z2
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.40 × 0.26 × 0.16
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.772, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
23749, 3328, 3237
Rint0.037
(sin θ/λ)max1)0.578
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.05
No. of reflections3328
No. of parameters289
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.26
Absolute structureFlack (1983), 1365 Friedel pairs
Absolute structure parameter0.07 (17)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C16/O1 ring.
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O1i0.85 (2)2.27 (3)2.9814 (19)141 (2)
C19—H19C···O30.962.373.052 (2)128
C3—H3A···Cg1ii0.972.863.805 (2)166
Symmetry codes: (i) x, y1, z; (ii) x+2, y1/2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

OY thanks the Office of the Higher Education Commission, Thailand, for financial support by a grant fund under the program "Strategic Scholarships for Frontier Research Network for the Joint PhD Program Thai Doctoral Degree". The authors thank the Thailand Research Fund (BRG5280013) and the Prince of Songkla University for financial support. They also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, C. T., McPherson, D. D., Cordell, G. A. & Fong, H. H. (1986). J. Nat. Prod. 49, 561–566.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, R.-W., Ma, S.-C., But, P. P.-H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266–1272.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPatil, A. D., Freyer, A. J., Webb, R. L., Zuber, G., Reichwein, R., Bean, M. F., Faucette, L. & Johnson, R. K. (1997). Tetrahedron, 53, 1583–1592.  CrossRef CAS Web of Science Google Scholar
First citationPromsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776–777.  Web of Science PubMed CAS Google Scholar
First citationRagasa, C. Y., Hofilena, J. G. & Rideout, J. A. (2002). J. Nat. Prod. 65, 1107–1110.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitinand, T. & Larson, K. (2001). Flora of Thailand, p. 94. Bangkok: ASRCT Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S. & Rattanasuwan, P. (2003). Songklanakarin J. Sci. Technol. 25, 509–514.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds