organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 3-(8-bromo-4H,10H-1,2-oxazolo[4,3-c][1]benzoxepin-10-yl)-2-methyl-1H-indole-1-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bCLRI, Adyar, Chennai 600 020, India
*Correspondence e-mail: gunaunom@gmail.com

(Received 13 June 2010; accepted 9 July 2010; online 17 July 2010)

In the title compound, C25H23BrN2O4, the seven-membered ring adopts a twisted-boat conformation. The indole ring system is planar within 0.021 (2) Å and the ester group [–C(=O)—O—C–] is almost coplanar with it [dihedral angle = 3.0 (2)°]. The conformation of the ester group is influenced by intra­molecular C—H⋯O inter­actions. In the crystal structure, mol­ecules are linked into chains along the b axis by C—H⋯N hydrogen bonds.

Related literature

For general background to and biological applications of nitro­gen- and oxygen-containing heterocyclic compounds, see: Furstner (2003[Furstner, A. (2003). Angew. Chem. 115, 3706-3728.]); Liddell (2002[Liddell, J. R. (2002). Nat. Prod. Rep. 19, 773-781.]); Caramella & Grunanger (1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-392. New York: Wiley.]); Stormer et al. (2004[Stormer, F. C., Koller, G. E. & Janak, K. (2004). Mycologist, 18, 114-117]); Erdelyi et al. (2008[Erdelyi, P., Fodor, T., Varga, A. K., Czugler, M. & Gere, A. (2008). Bioorg. Med. Chem. 16, 5322-5330.]). Hou et al. (2003[Hou, X. L., Yang, Z. & Wong, H. N. C. (2003). Progress in Heterocyclic Chemistry, Vol. 15, edited by G. W. Gribble & T. L. Gilchrist, pp. 167-205. Oxford: Pergamon.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23BrN2O4

  • Mr = 495.36

  • Monoclinic, P 21 /c

  • a = 16.0494 (6) Å

  • b = 9.6497 (4) Å

  • c = 16.2202 (7) Å

  • β = 116.267 (2)°

  • V = 2252.66 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.982, Tmax = 0.982

  • 20668 measured reflections

  • 5584 independent reflections

  • 2780 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.00

  • 5584 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O3 0.96 1.93 2.694 (4) 135
C24—H24B⋯O3 0.96 2.37 2.961 (5) 120
C11—H11⋯N1i 0.93 2.53 3.404 (4) 156
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrogen and oxygen containing heterocycles are ubiquitous substructures in myriad of biologically active natural products and small-molecule pharmaceuticals (Furstner, 2003; Liddell, 2002). The nitrile oxide cycloaddition is a useful method to prepare heterocyclic compounds (Caramella & Grunanger, 1984). Isoxazole, the cycloadduct of nitrile oxide, is regarded as a versatile synthetic precursor for γ-amino alcohols and β-hydroxy ketones. Isoxazoles are found in some natural products, such as ibotenic acid. Ibotenic acid is naturally occurring in mushrooms Amanita muscaria and Amanita pantherina. Ibotenic acid is a powerful neurotoxin that is used as a brain-lesioning agent and has shown to be highly neurotoxic when injected directly into the brains of mice and rats. Isoxazoles also form the basis for a number of drugs, including the COX-2 inhibitor valdecoxib. Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, painful menstruation and menstrual symptoms (Stormer et al., 2004; Erdelyi et al., 2008).

In the title (Fig. 1), the indole ring system is planar within ±0.021 (2) Å. The oxepane ring adopts a twisted boat conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.654 (3) Å, φ2 = 179.9 (3)°, q3 = 0.380 (3) Å, φ3 = 222.4 (3)° and Δs(C7) = 34.3 (3)°. The position of atom O2 which lies between bromobenzene and isooxazone rings is defined by torsion angles O2—C8—C7—C5 of -34.0 (4)° and O2—C9—C10—C11 of 176.4 (3)°.

The ester group [-C(O)-O-C-] is coplanar with the indole ring system [dihedral angle 3.0 (2)°]. The planarity is facilitated by intramolecular C14—H14A···O3 C24—H24B···O3 hydrogen bonds (Table 1). A free rotation about the O4—C22 single bond [1.492 (3) Å] is restricted by the C24—H24B···O3 hydrogen bond. The angles around atom C4 [C12—C4—C3 = 113.6 (2)° and C5—C4—C3 = 115.6 (2)°] deviates significantly from ideal tetrahedral values which may be as a result of steric interactions between isooxazole, bromophenol and indole groups.

Atom C11 in the molecule at (x,y,z) acts as donar to atom N1 at (x, 1+y, z), forming a chain running along the b axis (Fig. 2).

Related literature top

For general background to and biological applications of nitrogen- and oxygen-containing heterocyclic compounds, see: Furstner (2003); Liddell (2002); Caramella & Grunanger (1984); Stormer et al. (2004); Erdelyi et al. (2008). Hou et al. (2003). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

[3-(5-Bromo-2-prop-2-ynyloxy-phenyl)-2-nitro-ethyl]-2-methyl-1H-indole] (1.0 mmol) and N,N-dimethyl-4-aminopyridine (0.2 mmol) were dissolved in toluene (5 ml). Di-tert-butyl dicarbonate (2.5 mmol) in toluene (5 ml) was added in portions over a period of 0.5 h at 363 K to the nitroalkane solution and the reaction was allowed to proceed for a further 2 h. The mixture was evaporated and the product was purified by column chromatography using ethyl acetate-petroleum ether (2:8) as eluent. Single crystals appeared from the same eluent mixture.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Structure description top

Nitrogen and oxygen containing heterocycles are ubiquitous substructures in myriad of biologically active natural products and small-molecule pharmaceuticals (Furstner, 2003; Liddell, 2002). The nitrile oxide cycloaddition is a useful method to prepare heterocyclic compounds (Caramella & Grunanger, 1984). Isoxazole, the cycloadduct of nitrile oxide, is regarded as a versatile synthetic precursor for γ-amino alcohols and β-hydroxy ketones. Isoxazoles are found in some natural products, such as ibotenic acid. Ibotenic acid is naturally occurring in mushrooms Amanita muscaria and Amanita pantherina. Ibotenic acid is a powerful neurotoxin that is used as a brain-lesioning agent and has shown to be highly neurotoxic when injected directly into the brains of mice and rats. Isoxazoles also form the basis for a number of drugs, including the COX-2 inhibitor valdecoxib. Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, painful menstruation and menstrual symptoms (Stormer et al., 2004; Erdelyi et al., 2008).

In the title (Fig. 1), the indole ring system is planar within ±0.021 (2) Å. The oxepane ring adopts a twisted boat conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.654 (3) Å, φ2 = 179.9 (3)°, q3 = 0.380 (3) Å, φ3 = 222.4 (3)° and Δs(C7) = 34.3 (3)°. The position of atom O2 which lies between bromobenzene and isooxazone rings is defined by torsion angles O2—C8—C7—C5 of -34.0 (4)° and O2—C9—C10—C11 of 176.4 (3)°.

The ester group [-C(O)-O-C-] is coplanar with the indole ring system [dihedral angle 3.0 (2)°]. The planarity is facilitated by intramolecular C14—H14A···O3 C24—H24B···O3 hydrogen bonds (Table 1). A free rotation about the O4—C22 single bond [1.492 (3) Å] is restricted by the C24—H24B···O3 hydrogen bond. The angles around atom C4 [C12—C4—C3 = 113.6 (2)° and C5—C4—C3 = 115.6 (2)°] deviates significantly from ideal tetrahedral values which may be as a result of steric interactions between isooxazole, bromophenol and indole groups.

Atom C11 in the molecule at (x,y,z) acts as donar to atom N1 at (x, 1+y, z), forming a chain running along the b axis (Fig. 2).

For general background to and biological applications of nitrogen- and oxygen-containing heterocyclic compounds, see: Furstner (2003); Liddell (2002); Caramella & Grunanger (1984); Stormer et al. (2004); Erdelyi et al. (2008). Hou et al. (2003). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
tert-Butyl 3-(8-bromo-4H,10H-1,2- oxazolo[4,3-c][1]benzoxepin-10-yl)-2-methyl-1H-indole-1- carboxylate top
Crystal data top
C25H23BrN2O4F(000) = 1016
Mr = 495.36Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1964 reflections
a = 16.0494 (6) Åθ = 1.4–28.4°
b = 9.6497 (4) ŵ = 1.86 mm1
c = 16.2202 (7) ÅT = 293 K
β = 116.267 (2)°Block, colourless
V = 2252.66 (16) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5584 independent reflections
Radiation source: fine-focus sealed tube2780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω and φ scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2121
Tmin = 0.982, Tmax = 0.982k = 1212
20668 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0504P)2 + 1.2404P]
where P = (Fo2 + 2Fc2)/3
5584 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
C25H23BrN2O4V = 2252.66 (16) Å3
Mr = 495.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0494 (6) ŵ = 1.86 mm1
b = 9.6497 (4) ÅT = 293 K
c = 16.2202 (7) Å0.20 × 0.20 × 0.20 mm
β = 116.267 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5584 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2780 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.982Rint = 0.049
20668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
5584 reflectionsΔρmin = 0.48 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.21016 (4)0.94661 (4)0.20807 (3)0.0911 (2)
O10.48628 (16)0.2154 (2)0.14770 (17)0.0662 (7)
O20.43563 (16)0.6581 (2)0.04692 (15)0.0590 (6)
O30.01565 (17)0.2636 (3)0.02194 (17)0.0791 (8)
O40.02421 (14)0.2088 (2)0.16886 (14)0.0513 (5)
N10.40074 (18)0.2682 (3)0.1374 (2)0.0543 (7)
N20.12827 (16)0.3153 (2)0.13481 (16)0.0389 (6)
C10.2807 (2)0.8543 (3)0.1577 (2)0.0550 (8)
C20.2779 (2)0.7113 (3)0.1518 (2)0.0476 (8)
H20.24060.66200.17190.057*
C30.3299 (2)0.6404 (3)0.1163 (2)0.0424 (7)
C40.3153 (2)0.4858 (3)0.0952 (2)0.0429 (7)
H40.28280.47930.02800.051*
C50.4033 (2)0.4004 (3)0.1233 (2)0.0425 (7)
C60.5349 (2)0.3220 (4)0.1381 (2)0.0584 (9)
H60.59400.31390.14110.070*
C70.4885 (2)0.4401 (3)0.1237 (2)0.0462 (8)
C80.5156 (2)0.5831 (4)0.1103 (3)0.0598 (9)
H8A0.54320.63120.16890.072*
H8B0.56150.57840.08680.072*
C90.3850 (2)0.7190 (3)0.0876 (2)0.0468 (7)
C100.3868 (2)0.8620 (4)0.0935 (2)0.0605 (9)
H100.42410.91220.07360.073*
C110.3343 (3)0.9314 (3)0.1283 (3)0.0635 (10)
H110.33511.02760.13180.076*
C140.1088 (2)0.3832 (4)0.0252 (2)0.0559 (9)
H14A0.04880.34220.04300.084*
H14B0.14070.33430.05430.084*
H14C0.10140.47860.04390.084*
C120.2510 (2)0.4182 (3)0.1294 (2)0.0404 (7)
C130.1637 (2)0.3746 (3)0.0763 (2)0.0404 (7)
C150.19718 (19)0.3240 (3)0.2260 (2)0.0376 (7)
C160.1986 (2)0.2815 (3)0.3088 (2)0.0451 (7)
H160.14810.23600.31030.054*
C170.2775 (2)0.3094 (4)0.3884 (2)0.0537 (8)
H170.28010.28200.44440.064*
C180.3536 (2)0.3776 (4)0.3872 (2)0.0534 (8)
H180.40570.39610.44220.064*
C190.3518 (2)0.4174 (3)0.3050 (2)0.0507 (8)
H190.40270.46230.30420.061*
C200.27401 (19)0.3904 (3)0.2236 (2)0.0393 (7)
C210.0393 (2)0.2605 (3)0.1012 (2)0.0476 (8)
C220.0658 (2)0.1391 (4)0.1484 (2)0.0542 (9)
C230.0521 (3)0.0973 (5)0.2429 (3)0.0806 (13)
H23A0.00230.03140.26820.121*
H23B0.10820.05620.23890.121*
H23C0.03710.17770.28170.121*
C240.0771 (3)0.0154 (4)0.0874 (3)0.0829 (12)
H24A0.02550.04640.11730.124*
H24B0.07930.04590.03020.124*
H24C0.13380.03200.07590.124*
C250.1444 (2)0.2408 (5)0.1069 (3)0.0769 (12)
H25A0.15270.26620.04660.115*
H25B0.13040.32200.14490.115*
H25C0.20050.19910.10280.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1213 (4)0.0499 (3)0.1235 (4)0.0187 (2)0.0738 (3)0.0069 (2)
O10.0673 (15)0.0465 (15)0.0968 (19)0.0139 (12)0.0474 (14)0.0101 (13)
O20.0687 (15)0.0561 (15)0.0683 (15)0.0004 (12)0.0448 (13)0.0146 (12)
O30.0632 (16)0.114 (2)0.0528 (16)0.0311 (15)0.0189 (13)0.0067 (15)
O40.0489 (12)0.0553 (14)0.0505 (12)0.0162 (11)0.0227 (10)0.0038 (10)
N10.0567 (16)0.0364 (16)0.082 (2)0.0024 (13)0.0422 (15)0.0006 (14)
N20.0426 (13)0.0335 (14)0.0452 (14)0.0037 (11)0.0237 (12)0.0003 (11)
C10.062 (2)0.0330 (19)0.066 (2)0.0045 (16)0.0249 (18)0.0017 (16)
C20.0547 (18)0.0345 (18)0.0562 (19)0.0033 (15)0.0268 (16)0.0012 (14)
C30.0484 (17)0.0322 (17)0.0484 (18)0.0027 (14)0.0231 (15)0.0042 (13)
C40.0460 (17)0.0392 (18)0.0475 (17)0.0070 (14)0.0244 (15)0.0019 (14)
C50.0497 (18)0.0348 (17)0.0489 (18)0.0037 (14)0.0272 (15)0.0040 (14)
C60.0510 (19)0.060 (2)0.071 (2)0.0018 (18)0.0331 (18)0.0040 (18)
C70.0451 (17)0.050 (2)0.0492 (18)0.0044 (16)0.0255 (15)0.0002 (15)
C80.052 (2)0.056 (2)0.083 (2)0.0058 (17)0.0392 (19)0.0059 (19)
C90.0470 (17)0.0425 (19)0.0505 (18)0.0052 (15)0.0212 (15)0.0082 (15)
C100.062 (2)0.043 (2)0.077 (2)0.0082 (18)0.0308 (19)0.0171 (18)
C110.067 (2)0.0293 (19)0.084 (3)0.0055 (18)0.024 (2)0.0081 (17)
C140.063 (2)0.059 (2)0.051 (2)0.0106 (18)0.0301 (17)0.0022 (17)
C120.0488 (18)0.0288 (16)0.0482 (18)0.0001 (13)0.0257 (15)0.0000 (13)
C130.0494 (17)0.0288 (16)0.0494 (18)0.0029 (14)0.0279 (15)0.0000 (13)
C150.0414 (16)0.0247 (15)0.0534 (19)0.0016 (13)0.0271 (15)0.0002 (13)
C160.0476 (18)0.0396 (18)0.0522 (19)0.0040 (14)0.0259 (16)0.0007 (15)
C170.061 (2)0.053 (2)0.052 (2)0.0126 (18)0.0289 (18)0.0041 (16)
C180.0466 (18)0.053 (2)0.0486 (19)0.0052 (16)0.0106 (15)0.0094 (16)
C190.0513 (19)0.048 (2)0.052 (2)0.0023 (16)0.0223 (17)0.0009 (15)
C200.0404 (16)0.0293 (15)0.0478 (18)0.0009 (13)0.0191 (14)0.0047 (13)
C210.0484 (19)0.045 (2)0.049 (2)0.0041 (15)0.0211 (17)0.0001 (15)
C220.0475 (19)0.054 (2)0.060 (2)0.0169 (17)0.0229 (16)0.0019 (17)
C230.072 (2)0.095 (3)0.072 (2)0.031 (2)0.030 (2)0.018 (2)
C240.090 (3)0.061 (3)0.105 (3)0.032 (2)0.050 (3)0.020 (2)
C250.053 (2)0.090 (3)0.087 (3)0.004 (2)0.031 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1—C11.887 (3)C11—H110.93
O1—C61.342 (4)C14—C131.487 (4)
O1—N11.403 (3)C14—H14A0.96
O2—C91.384 (4)C14—H14B0.96
O2—C81.436 (4)C14—H14C0.96
O3—C211.195 (4)C12—C131.347 (4)
O4—C211.321 (4)C12—C201.429 (4)
O4—C221.492 (3)C15—C161.396 (4)
N1—C51.300 (4)C15—C201.405 (4)
N2—C211.388 (4)C16—C171.376 (4)
N2—C151.403 (4)C16—H160.93
N2—C131.425 (3)C17—C181.396 (5)
C1—C111.372 (5)C17—H170.93
C1—C21.382 (4)C18—C191.376 (4)
C2—C31.386 (4)C18—H180.93
C2—H20.93C19—C201.383 (4)
C3—C91.392 (4)C19—H190.93
C3—C41.525 (4)C22—C251.502 (5)
C4—C121.518 (4)C22—C231.503 (5)
C4—C51.520 (4)C22—C241.509 (5)
C4—H40.98C23—H23A0.96
C5—C71.417 (4)C23—H23B0.96
C6—C71.325 (5)C23—H23C0.96
C6—H60.93C24—H24A0.96
C7—C81.491 (4)C24—H24B0.96
C8—H8A0.97C24—H24C0.96
C8—H8B0.97C25—H25A0.96
C9—C101.383 (5)C25—H25B0.96
C10—C111.378 (5)C25—H25C0.96
C10—H100.93
C6—O1—N1107.3 (2)C13—C12—C20109.2 (2)
C9—O2—C8113.6 (2)C13—C12—C4125.7 (3)
C21—O4—C22120.0 (2)C20—C12—C4125.1 (3)
C5—N1—O1105.8 (2)C12—C13—N2108.0 (2)
C21—N2—C15129.1 (2)C12—C13—C14129.0 (3)
C21—N2—C13122.4 (2)N2—C13—C14123.0 (3)
C15—N2—C13108.5 (2)C16—C15—N2131.8 (3)
C11—C1—C2121.5 (3)C16—C15—C20121.4 (3)
C11—C1—Br1118.9 (3)N2—C15—C20106.9 (2)
C2—C1—Br1119.6 (3)C17—C16—C15117.4 (3)
C1—C2—C3121.0 (3)C17—C16—H16121.3
C1—C2—H2119.5C15—C16—H16121.3
C3—C2—H2119.5C16—C17—C18121.9 (3)
C2—C3—C9117.2 (3)C16—C17—H17119.1
C2—C3—C4121.0 (3)C18—C17—H17119.1
C9—C3—C4121.0 (3)C19—C18—C17120.1 (3)
C12—C4—C5110.4 (2)C19—C18—H18119.9
C12—C4—C3113.6 (2)C17—C18—H18119.9
C5—C4—C3115.6 (2)C18—C19—C20119.7 (3)
C12—C4—H4105.4C18—C19—H19120.1
C5—C4—H4105.4C20—C19—H19120.1
C3—C4—H4105.4C19—C20—C15119.5 (3)
N1—C5—C7111.7 (3)C19—C20—C12133.0 (3)
N1—C5—C4119.2 (3)C15—C20—C12107.5 (2)
C7—C5—C4128.4 (3)O3—C21—O4125.7 (3)
C7—C6—O1111.7 (3)O3—C21—N2123.6 (3)
C7—C6—H6124.2O4—C21—N2110.6 (3)
O1—C6—H6124.2O4—C22—C25110.1 (3)
C6—C7—C5103.6 (3)O4—C22—C23101.8 (3)
C6—C7—C8130.1 (3)C25—C22—C23110.3 (3)
C5—C7—C8126.3 (3)O4—C22—C24109.1 (3)
O2—C8—C7110.2 (3)C25—C22—C24112.9 (3)
O2—C8—H8A109.6C23—C22—C24112.1 (3)
C7—C8—H8A109.6C22—C23—H23A109.5
O2—C8—H8B109.6C22—C23—H23B109.5
C7—C8—H8B109.6H23A—C23—H23B109.5
H8A—C8—H8B108.1C22—C23—H23C109.5
C10—C9—O2117.2 (3)H23A—C23—H23C109.5
C10—C9—C3121.2 (3)H23B—C23—H23C109.5
O2—C9—C3121.5 (3)C22—C24—H24A109.5
C11—C10—C9121.0 (3)C22—C24—H24B109.5
C11—C10—H10119.5H24A—C24—H24B109.5
C9—C10—H10119.5C22—C24—H24C109.5
C1—C11—C10118.1 (3)H24A—C24—H24C109.5
C1—C11—H11121.0H24B—C24—H24C109.5
C10—C11—H11121.0C22—C25—H25A109.5
C13—C14—H14A109.5C22—C25—H25B109.5
C13—C14—H14B109.5H25A—C25—H25B109.5
H14A—C14—H14B109.5C22—C25—H25C109.5
C13—C14—H14C109.5H25A—C25—H25C109.5
H14A—C14—H14C109.5H25B—C25—H25C109.5
H14B—C14—H14C109.5
C6—O1—N1—C50.5 (3)C5—C4—C12—C2059.5 (4)
C11—C1—C2—C30.4 (5)C3—C4—C12—C2072.3 (4)
Br1—C1—C2—C3179.1 (2)C20—C12—C13—N20.9 (3)
C1—C2—C3—C90.4 (5)C4—C12—C13—N2179.0 (3)
C1—C2—C3—C4169.9 (3)C20—C12—C13—C14178.9 (3)
C2—C3—C4—C128.4 (4)C4—C12—C13—C141.3 (5)
C9—C3—C4—C12178.3 (3)C21—N2—C13—C12179.9 (3)
C2—C3—C4—C5137.6 (3)C15—N2—C13—C120.0 (3)
C9—C3—C4—C552.5 (4)C21—N2—C13—C140.1 (4)
O1—N1—C5—C70.0 (3)C15—N2—C13—C14179.8 (3)
O1—N1—C5—C4171.0 (2)C21—N2—C15—C160.4 (5)
C12—C4—C5—N126.0 (4)C13—N2—C15—C16179.7 (3)
C3—C4—C5—N1156.7 (3)C21—N2—C15—C20179.0 (3)
C12—C4—C5—C7164.6 (3)C13—N2—C15—C200.9 (3)
C3—C4—C5—C733.9 (4)N2—C15—C16—C17178.1 (3)
N1—O1—C6—C71.0 (4)C20—C15—C16—C171.2 (4)
O1—C6—C7—C50.9 (4)C15—C16—C17—C180.0 (5)
O1—C6—C7—C8179.3 (3)C16—C17—C18—C190.9 (5)
N1—C5—C7—C60.6 (4)C17—C18—C19—C200.4 (5)
C4—C5—C7—C6169.4 (3)C18—C19—C20—C150.8 (4)
N1—C5—C7—C8179.7 (3)C18—C19—C20—C12179.8 (3)
C4—C5—C7—C810.3 (5)C16—C15—C20—C191.7 (4)
C9—O2—C8—C784.3 (3)N2—C15—C20—C19177.8 (3)
C6—C7—C8—O2145.6 (3)C16—C15—C20—C12179.1 (3)
C5—C7—C8—O234.0 (4)N2—C15—C20—C121.4 (3)
C8—O2—C9—C10110.5 (3)C13—C12—C20—C19177.6 (3)
C8—O2—C9—C373.3 (4)C4—C12—C20—C192.6 (5)
C2—C3—C9—C100.7 (5)C13—C12—C20—C151.4 (3)
C4—C3—C9—C10169.6 (3)C4—C12—C20—C15178.4 (3)
C2—C3—C9—O2176.7 (3)C22—O4—C21—O34.0 (5)
C4—C3—C9—O26.3 (4)C22—O4—C21—N2177.5 (2)
O2—C9—C10—C11176.4 (3)C15—N2—C21—O3176.7 (3)
C3—C9—C10—C110.2 (5)C13—N2—C21—O33.2 (5)
C2—C1—C11—C100.8 (5)C15—N2—C21—O41.8 (4)
Br1—C1—C11—C10178.7 (3)C13—N2—C21—O4178.3 (2)
C9—C10—C11—C10.5 (5)C21—O4—C22—C2563.4 (4)
C5—C4—C12—C13120.3 (3)C21—O4—C22—C23179.7 (3)
C3—C4—C12—C13107.9 (3)C21—O4—C22—C2461.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O30.961.932.694 (4)135
C24—H24B···O30.962.372.961 (5)120
C11—H11···N1i0.932.533.404 (4)156
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H23BrN2O4
Mr495.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.0494 (6), 9.6497 (4), 16.2202 (7)
β (°) 116.267 (2)
V3)2252.66 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.982, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
20668, 5584, 2780
Rint0.049
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.00
No. of reflections5584
No. of parameters289
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.48

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O30.961.932.694 (4)135
C24—H24B···O30.962.372.961 (5)120
C11—H11···N1i0.932.533.404 (4)156
Symmetry code: (i) x, y+1, z.
 

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–392. New York: Wiley.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationErdelyi, P., Fodor, T., Varga, A. K., Czugler, M. & Gere, A. (2008). Bioorg. Med. Chem. 16, 5322–5330.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFurstner, A. (2003). Angew. Chem. 115, 3706–3728.  CrossRef Google Scholar
First citationHou, X. L., Yang, Z. & Wong, H. N. C. (2003). Progress in Heterocyclic Chemistry, Vol. 15, edited by G. W. Gribble & T. L. Gilchrist, pp. 167–205. Oxford: Pergamon.  Google Scholar
First citationLiddell, J. R. (2002). Nat. Prod. Rep. 19, 773–781.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStormer, F. C., Koller, G. E. & Janak, K. (2004). Mycologist, 18, 114–117  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds