organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-5-iodo-7-methyl-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 28 May 2010; accepted 11 June 2010; online 16 June 2010)

In the title compound, C16H12FIO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane through the benzofuran fragment. The 4-fluoro­phenyl ring is rotated slightly out of the benzofuran plane, as indicated by the dihedral angle of 7.43 (6)°. In the crystal structure, pairs of short I⋯O [3.074 (2) Å] contacts link the mol­ecules into centrosymmetric dimers. These dimers are further linked via aromatic ππ inter­actions between the benzene and the 4-fluoro­phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.617 (3) Å].

Related literature

For the crystal structures of similar 3-ethyl­sulfinyl-2-(4-fluoro­phen­yl)-5-halo-7-methyl-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o629.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886.]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12FIO2S

  • Mr = 414.22

  • Triclinic, [P \overline 1]

  • a = 7.3828 (2) Å

  • b = 9.8680 (3) Å

  • c = 11.0670 (4) Å

  • α = 74.979 (1)°

  • β = 83.511 (1)°

  • γ = 70.011 (1)°

  • V = 731.54 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 174 K

  • 0.35 × 0.23 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.494, Tmax = 0.706

  • 12823 measured reflections

  • 3364 independent reflections

  • 3283 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.16

  • 3364 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compounds involving a benzofuran moiety show interesting pharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al.., 2009), antimicrobial (Khan et al.., 2005) activities. These compounds occur in nature (Akgul & Anil, 2003; Soekamto et al.., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-ethylsulfinyl-2-(4-fluorophenyl)-5-halo-7-methyl-1-benzofuran analogues (Choi et al.., 2010a, b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 7.43 (6)°. The crystal packing (Fig. 2) is stabilized by I···O halogen bondings between the iodine and the oxygen of the SO unit [I···O2i = 3.074 (2) Å; C4—I···O2i = 167.82 (6)°] (Politzer et al., 2007). The molecular packing is further stabilized by aromatic ππ interactions between the benzene and the 4-fluorophenyl rings of adjacent molecules, with a Cg1···Cg2ii distance of 3.617 (3) Å (Cg1 and Cg2 are the centroids of the the C2–C7 benzene ring and the C9–C14 4-fluorophenyl ring, respectively).

Related literature top

For the crystal structures of similar 3-ethylsulfinyl-2-(4-fluorophenyl)-5-halo-7-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-chloroperoxybenzoic acid (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 2-(4-fluorophenyl)-5-iodo-7-methyl-3-methylsulfanyl-1-benzofuran (438 mg, 1.1 mmol) in dichloromethane (35 mL) at 273 K. After being stirred at room temperature for 4hr, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 77%, m.p. 502–503 K; Rf = 0.57 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. I···O and ππ interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) - x + 2, - y + 1, - z + 2; (ii) - x + 2, - y + 1, - z + 1.]
2-(4-Fluorophenyl)-5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran top
Crystal data top
C16H12FIO2SZ = 2
Mr = 414.22F(000) = 404
Triclinic, P1Dx = 1.880 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3828 (2) ÅCell parameters from 9921 reflections
b = 9.8680 (3) Åθ = 2.3–27.5°
c = 11.0670 (4) ŵ = 2.34 mm1
α = 74.979 (1)°T = 174 K
β = 83.511 (1)°Block, colourless
γ = 70.011 (1)°0.35 × 0.23 × 0.16 mm
V = 731.54 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3364 independent reflections
Radiation source: rotating anode3283 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.494, Tmax = 0.706l = 1414
12823 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: difference Fourier map
wR(F2) = 0.056H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.3131P]
where P = (Fo2 + 2Fc2)/3
3364 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
C16H12FIO2Sγ = 70.011 (1)°
Mr = 414.22V = 731.54 (4) Å3
Triclinic, P1Z = 2
a = 7.3828 (2) ÅMo Kα radiation
b = 9.8680 (3) ŵ = 2.34 mm1
c = 11.0670 (4) ÅT = 174 K
α = 74.979 (1)°0.35 × 0.23 × 0.16 mm
β = 83.511 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3364 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3283 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.706Rint = 0.026
12823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.16Δρmax = 0.38 e Å3
3364 reflectionsΔρmin = 0.90 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I1.016803 (18)0.251259 (13)1.060638 (11)0.02458 (6)
S0.64528 (8)0.79666 (5)0.61575 (5)0.02839 (12)
F0.4311 (2)0.84290 (18)0.00720 (13)0.0412 (3)
O10.7930 (2)0.41864 (14)0.50775 (13)0.0214 (3)
O20.7975 (3)0.80561 (19)0.68819 (16)0.0387 (4)
C10.7172 (3)0.6143 (2)0.59489 (18)0.0211 (4)
C20.8070 (3)0.4821 (2)0.68908 (18)0.0196 (3)
C30.8529 (3)0.4514 (2)0.81468 (18)0.0214 (4)
H30.82510.52800.85800.026*
C40.9409 (3)0.3037 (2)0.87281 (18)0.0211 (4)
C50.9866 (3)0.1884 (2)0.81050 (19)0.0229 (4)
H51.04910.08920.85420.027*
C60.9414 (3)0.2179 (2)0.68520 (19)0.0223 (4)
C70.8514 (3)0.3659 (2)0.62985 (17)0.0195 (3)
C80.7117 (3)0.5708 (2)0.48766 (18)0.0200 (4)
C90.6396 (3)0.6448 (2)0.36167 (18)0.0208 (4)
C100.6785 (3)0.5633 (2)0.27040 (19)0.0258 (4)
H100.75460.46140.29030.031*
C110.6073 (3)0.6292 (3)0.1511 (2)0.0304 (4)
H110.63110.57320.08960.036*
C120.5010 (3)0.7781 (3)0.12384 (19)0.0283 (4)
C130.4618 (3)0.8629 (2)0.2103 (2)0.0312 (4)
H130.38940.96560.18850.037*
C140.5304 (3)0.7952 (2)0.3300 (2)0.0280 (4)
H140.50270.85180.39140.034*
C150.9850 (4)0.0985 (2)0.6148 (2)0.0320 (5)
H15A0.89960.13370.54360.048*
H15B0.96440.00980.67060.048*
H15C1.11950.07410.58440.048*
C160.4459 (4)0.7855 (3)0.7220 (3)0.0430 (6)
H16A0.49010.70120.79380.065*
H16B0.34660.77190.67910.065*
H16C0.39190.87740.75110.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.03263 (9)0.02220 (8)0.01678 (8)0.00764 (6)0.00759 (5)0.00021 (5)
S0.0458 (3)0.0165 (2)0.0221 (2)0.0078 (2)0.0102 (2)0.00249 (18)
F0.0468 (8)0.0532 (9)0.0180 (6)0.0127 (7)0.0132 (6)0.0018 (6)
O10.0266 (7)0.0186 (6)0.0172 (7)0.0047 (5)0.0041 (5)0.0036 (5)
O20.0602 (11)0.0337 (8)0.0308 (9)0.0224 (8)0.0143 (8)0.0073 (7)
C10.0265 (9)0.0177 (8)0.0190 (9)0.0068 (7)0.0054 (7)0.0025 (7)
C20.0219 (9)0.0174 (8)0.0195 (9)0.0068 (7)0.0036 (7)0.0023 (7)
C30.0263 (9)0.0197 (8)0.0194 (9)0.0080 (7)0.0054 (7)0.0040 (7)
C40.0245 (9)0.0230 (9)0.0161 (9)0.0091 (7)0.0052 (7)0.0015 (7)
C50.0260 (9)0.0166 (8)0.0235 (10)0.0049 (7)0.0039 (7)0.0016 (7)
C60.0253 (9)0.0188 (8)0.0219 (9)0.0061 (7)0.0022 (7)0.0041 (7)
C70.0208 (8)0.0219 (9)0.0163 (9)0.0068 (7)0.0031 (7)0.0043 (7)
C80.0207 (8)0.0185 (8)0.0200 (9)0.0062 (7)0.0026 (7)0.0028 (7)
C90.0211 (9)0.0242 (9)0.0175 (9)0.0090 (7)0.0034 (7)0.0023 (7)
C100.0303 (10)0.0258 (9)0.0209 (10)0.0086 (8)0.0026 (8)0.0048 (8)
C110.0360 (11)0.0380 (12)0.0188 (10)0.0132 (9)0.0017 (8)0.0077 (9)
C120.0282 (10)0.0394 (12)0.0154 (9)0.0127 (9)0.0067 (8)0.0016 (8)
C130.0327 (11)0.0285 (10)0.0261 (11)0.0045 (8)0.0101 (8)0.0008 (8)
C140.0328 (11)0.0273 (10)0.0211 (10)0.0050 (8)0.0081 (8)0.0046 (8)
C150.0447 (13)0.0198 (9)0.0267 (11)0.0024 (8)0.0047 (9)0.0070 (8)
C160.0432 (14)0.0335 (12)0.0469 (16)0.0009 (10)0.0028 (11)0.0175 (11)
Geometric parameters (Å, º) top
I—O2i3.074 (2)C6—C151.503 (3)
I—C42.100 (2)C8—C91.461 (3)
S—O21.490 (2)C9—C101.396 (3)
S—C11.763 (2)C9—C141.396 (3)
S—C161.793 (3)C10—C111.386 (3)
F—C121.356 (2)C10—H100.9500
O1—C71.377 (2)C11—C121.379 (3)
O1—C81.380 (2)C11—H110.9500
C1—C81.371 (3)C12—C131.373 (3)
C1—C21.445 (3)C13—C141.386 (3)
C2—C71.391 (2)C13—H130.9500
C2—C31.399 (3)C14—H140.9500
C3—C41.386 (3)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.405 (3)C15—H15C0.9800
C5—C61.396 (3)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.384 (3)C16—H16C0.9800
C4—I—O2i167.82 (6)C10—C9—C8119.38 (18)
O2—S—C1107.34 (10)C14—C9—C8121.85 (18)
O2—S—C16107.16 (12)C11—C10—C9120.8 (2)
C1—S—C1697.31 (11)C11—C10—H10119.6
C7—O1—C8107.11 (14)C9—C10—H10119.6
C8—C1—C2107.37 (16)C12—C11—C10118.5 (2)
C8—C1—S127.77 (15)C12—C11—H11120.8
C2—C1—S124.74 (14)C10—C11—H11120.8
C7—C2—C3119.39 (17)F—C12—C13118.8 (2)
C7—C2—C1105.13 (16)F—C12—C11118.55 (19)
C3—C2—C1135.48 (17)C13—C12—C11122.6 (2)
C4—C3—C2116.70 (17)C12—C13—C14118.4 (2)
C4—C3—H3121.7C12—C13—H13120.8
C2—C3—H3121.7C14—C13—H13120.8
C3—C4—C5122.87 (18)C13—C14—C9120.9 (2)
C3—C4—I118.39 (14)C13—C14—H14119.5
C5—C4—I118.71 (14)C9—C14—H14119.5
C6—C5—C4120.84 (17)C6—C15—H15A109.5
C6—C5—H5119.6C6—C15—H15B109.5
C4—C5—H5119.6H15A—C15—H15B109.5
C7—C6—C5115.12 (17)C6—C15—H15C109.5
C7—C6—C15121.98 (18)H15A—C15—H15C109.5
C5—C6—C15122.90 (18)H15B—C15—H15C109.5
O1—C7—C6124.45 (16)S—C16—H16A109.5
O1—C7—C2110.49 (16)S—C16—H16B109.5
C6—C7—C2125.07 (18)H16A—C16—H16B109.5
C1—C8—O1109.90 (16)S—C16—H16C109.5
C1—C8—C9135.88 (17)H16A—C16—H16C109.5
O1—C8—C9114.21 (16)H16B—C16—H16C109.5
C10—C9—C14118.77 (18)
O2—S—C1—C8135.42 (18)C1—C2—C7—O10.6 (2)
C16—S—C1—C8114.0 (2)C3—C2—C7—C60.6 (3)
O2—S—C1—C239.9 (2)C1—C2—C7—C6179.44 (18)
C16—S—C1—C270.7 (2)C2—C1—C8—O10.1 (2)
C8—C1—C2—C70.5 (2)S—C1—C8—O1175.88 (14)
S—C1—C2—C7175.69 (14)C2—C1—C8—C9178.7 (2)
C8—C1—C2—C3179.5 (2)S—C1—C8—C95.3 (3)
S—C1—C2—C34.4 (3)C7—O1—C8—C10.3 (2)
C7—C2—C3—C40.2 (3)C7—O1—C8—C9179.40 (15)
C1—C2—C3—C4179.7 (2)C1—C8—C9—C10173.3 (2)
C2—C3—C4—C51.1 (3)O1—C8—C9—C107.9 (2)
C2—C3—C4—I179.11 (13)C1—C8—C9—C147.5 (3)
C3—C4—C5—C61.2 (3)O1—C8—C9—C14171.28 (17)
I—C4—C5—C6179.17 (15)C14—C9—C10—C111.2 (3)
C4—C5—C6—C70.3 (3)C8—C9—C10—C11178.05 (19)
C4—C5—C6—C15179.2 (2)C9—C10—C11—C121.5 (3)
C8—O1—C7—C6179.50 (18)C10—C11—C12—F180.0 (2)
C8—O1—C7—C20.6 (2)C10—C11—C12—C130.6 (3)
C5—C6—C7—O1179.32 (17)F—C12—C13—C14178.7 (2)
C15—C6—C7—O10.2 (3)C11—C12—C13—C140.7 (3)
C5—C6—C7—C20.6 (3)C12—C13—C14—C91.1 (3)
C15—C6—C7—C2179.88 (19)C10—C9—C14—C130.2 (3)
C3—C2—C7—O1179.29 (16)C8—C9—C14—C13179.36 (19)
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H12FIO2S
Mr414.22
Crystal system, space groupTriclinic, P1
Temperature (K)174
a, b, c (Å)7.3828 (2), 9.8680 (3), 11.0670 (4)
α, β, γ (°)74.979 (1), 83.511 (1), 70.011 (1)
V3)731.54 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.35 × 0.23 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.494, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
12823, 3364, 3283
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.16
No. of reflections3364
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.90

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds