metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­zinc(II) bis­­(2,4,5-tri­carboxybenzoate) 4,5-di­aza­fluoren-9-one disolvate dihydrate

aComputer School, Northeast Normal University, Changchun 130024, People's Republic of China, and bCollege Urban and Environmental Sciences, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: zhaoyh246@nenu.edu.cn

(Received 2 December 2009; accepted 7 June 2010; online 16 June 2010)

The asymmetric unit of the title complex, [Zn(H2O)6](C10H5O8)2·2C11H6N2O·2H2O, contains one half of the complex cation with the ZnII ion located on an inversion center, a monovalent 2,4,5-tricarboxybenzoate (1,2,4,5-BTC) counter-anion, a 4,5-diaza­fluoren-9-one (DAFO) mol­ecule and an uncoordinated water mol­ecule. In the crystal structure, O—H⋯O and O—H⋯N hydrogen bonds link the cations, anions and water mol­ecules into a three-dimensional network.

Related literature

For ZnII complexes, see: Rochon & Massarweh (2000[Rochon, F.-D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190-198.]); Si et al. (2003[Si, S.-F., Wang, R.-J. & Li, Y.-D. (2003). Inorg. Chem. Commun. 6, 1152-1155.]). For a related structure, see: Zhu et al. (2009[Zhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, m1345.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(H2O)6](C10H5O8)2·2C11H6N2O·2H2O

  • Mr = 1080.13

  • Triclinic, [P \overline 1]

  • a = 8.380 (5) Å

  • b = 9.757 (5) Å

  • c = 14.107 (5) Å

  • α = 77.964 (5)°

  • β = 77.709 (5)°

  • γ = 89.948 (5)°

  • V = 1101.1 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 293 K

  • 0.28 × 0.23 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.836, Tmax = 0.885

  • 6855 measured reflections

  • 5060 independent reflections

  • 4670 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.06

  • 5060 reflections

  • 343 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O9 2.0550 (15)
Zn1—O10 2.0712 (13)
Zn1—O11 2.0755 (12)
O9i—Zn1—O10 89.81 (6)
O9—Zn1—O10 90.19 (6)
O9i—Zn1—O11 86.65 (5)
O9—Zn1—O11 93.35 (5)
O10i—Zn1—O11 89.23 (6)
O10—Zn1—O11 90.77 (6)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O12ii 0.86 2.12 2.8342 (19) 141
O1W—H1B⋯O5iii 0.89 1.94 2.815 (2) 168
O9—H9A⋯O1Wii 0.75 2.13 2.8526 (19) 161
O9—H9B⋯O5iii 0.83 1.87 2.6929 (18) 177
O10—H10A⋯O1iv 0.82 1.96 2.7860 (18) 174
O11—H11B⋯N1v 0.80 2.10 2.880 (2) 166
O11—H11A⋯O6iii 0.76 2.05 2.7725 (17) 160
O10—H10B⋯N2vi 0.88 1.88 2.747 (2) 171
O3—H3O⋯O6vii 0.94 (3) 1.55 (3) 2.4883 (18) 173 (3)
O2—H2O⋯O1W 0.86 (3) 1.83 (3) 2.6747 (19) 167 (2)
O8—H8O⋯O4viii 0.85 (3) 1.83 (3) 2.670 (2) 171 (3)
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) x-1, y, z; (v) x-1, y-1, z; (vi) -x+1, -y+2, -z+1; (vii) -x+2, -y+1, -z+2; (viii) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Single-crystal X-ray diffraction analyses revealed ZnII is hexa-coordinated and exhibits octahedral coordintion environment supplied by six water molecules (Fig. 1). The O atoms from four coordinated water molecules in the equatorial plane around the ZnII ion form a slightly distorted square-planar arrangement with an average Zn—O bond length of 2.073 (1) Å; the slightly distorted octahedral coordination is completed by the other O atoms at a slightly shorter distance [2.055 (2) Å] in the axial positions. benzene-1,2,4,5-tetracarboxylate (1,2,4,5-BTC) counter-anion, and DAFO molecule are both uncoordinated. Intermolecular hydrogen bonds, O—H···O and O—H···N, extend the ion complex into a three-dimensional supramolecular network structure (Fig. 2, Table 1).

Related literature top

For related literature [on what subject?], see: Rochon & Massarweh (2000); Si et al. (2003). For a related structure, see: Zhu et al. (2009).

Experimental top

Zinc(II) acetate dihydrate (0.066 g, 0.3 mol), benzene-1,2,4,5-tetracarboxylate (0.055 g, 0.2 mmol), 4, 5-diazafluoren-9-one (0.036 g, 0.2 mmol), sodium hydroxide (0.016 g, 0.4 mmol) and water (14 ml) were placed in a 23 ml Teflon-lined autoclave, and the autoclave was heated at 423 K for 3 d. After cooling slowly to room temperature at a rate of 10 K h-1, colorless crystals were obtained.

Refinement top

C-bound H atoms were treated as riding, with C—H = 0.93Å and Uiso(H) = 1.2 times Ueq(C). O-bound H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions; Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the local coordination of ZnII with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for the three-dimensional supramolecular framework via O—H···O interactions. The view direction is parallel to the a axis. Hydrogen bonds are indicated by dashed lines.
Hexaaquazinc(II) bis(2,4,5-tricarboxybenzoate) 4,5-diazafluoren-9-one disolvate dihydrate top
Crystal data top
[Zn(H2O)6](C10H5O8)2·2C11H6N2O·2H2OZ = 1
Mr = 1080.13F(000) = 556
Triclinic, P1Dx = 1.629 Mg m3
a = 8.380 (5) ÅMo Kα radiation, λ = 0.71069 Å
b = 9.757 (5) ÅCell parameters from 6265 reflections
c = 14.107 (5) Åθ = 2.1–28.2°
α = 77.964 (5)°µ = 0.66 mm1
β = 77.709 (5)°T = 293 K
γ = 89.948 (5)°Block, colorless
V = 1101.1 (9) Å30.28 × 0.23 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5060 independent reflections
Radiation source: fine-focus sealed tube4670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10 pixels mm-1θmax = 28.3°, θmin = 1.5°
ω scanh = 114
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.836, Tmax = 0.885l = 1816
6855 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.2811P]
where P = (Fo2 + 2Fc2)/3
5060 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(H2O)6](C10H5O8)2·2C11H6N2O·2H2Oγ = 89.948 (5)°
Mr = 1080.13V = 1101.1 (9) Å3
Triclinic, P1Z = 1
a = 8.380 (5) ÅMo Kα radiation
b = 9.757 (5) ŵ = 0.66 mm1
c = 14.107 (5) ÅT = 293 K
α = 77.964 (5)°0.28 × 0.23 × 0.19 mm
β = 77.709 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5060 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4670 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.885Rint = 0.014
6855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
5060 reflectionsΔρmin = 0.34 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.50000.50000.02688 (8)
O10.70290 (17)0.59156 (12)0.76405 (8)0.0414 (3)
O20.64715 (15)0.36226 (11)0.82062 (9)0.0356 (2)
O30.89652 (15)0.20199 (11)0.90798 (9)0.0374 (3)
O40.68585 (18)0.13427 (11)1.03103 (9)0.0510 (4)
O50.72889 (14)0.45006 (13)1.28469 (8)0.0394 (3)
O60.93948 (14)0.60062 (13)1.21458 (8)0.0371 (3)
O70.68773 (16)0.79402 (12)1.15402 (8)0.0408 (3)
O80.7470 (2)0.88143 (12)0.99083 (9)0.0521 (4)
O120.55282 (18)0.75220 (15)0.47805 (12)0.0579 (4)
N10.76786 (17)1.09551 (14)0.61753 (10)0.0354 (3)
N20.93283 (18)1.14163 (15)0.39355 (10)0.0372 (3)
C10.72961 (16)0.49108 (14)0.92716 (10)0.0235 (3)
C20.76421 (17)0.37449 (13)0.99478 (10)0.0241 (3)
C30.78982 (18)0.39158 (14)1.08567 (10)0.0269 (3)
H30.81150.31361.13090.032*
C40.78401 (16)0.52197 (14)1.11107 (10)0.0239 (3)
C50.74847 (17)0.63815 (13)1.04361 (10)0.0240 (3)
C60.72178 (17)0.62128 (14)0.95285 (10)0.0254 (3)
H60.69810.69900.90820.030*
C70.69319 (17)0.48682 (14)0.82862 (10)0.0267 (3)
C80.77793 (19)0.22755 (14)0.97678 (10)0.0293 (3)
C90.81864 (17)0.52666 (14)1.21153 (10)0.0260 (3)
C100.72500 (18)0.77881 (14)1.07017 (11)0.0280 (3)
C110.6757 (2)1.05207 (18)0.71039 (13)0.0422 (4)
H110.68901.10190.75790.051*
C120.5640 (2)0.9399 (2)0.74011 (14)0.0462 (4)
H120.50470.91660.80540.055*
C130.5404 (2)0.86182 (18)0.67221 (14)0.0432 (4)
H130.46650.78500.69000.052*
C140.63219 (19)0.90423 (16)0.57714 (13)0.0349 (3)
C150.6374 (2)0.84773 (18)0.48618 (14)0.0401 (4)
C160.7622 (2)0.93733 (17)0.40690 (13)0.0371 (3)
C170.8169 (2)0.9358 (2)0.30764 (14)0.0477 (4)
H170.77870.86770.27960.057*
C180.9305 (3)1.0392 (2)0.25193 (14)0.0503 (5)
H180.97101.04210.18480.060*
C190.9840 (2)1.1388 (2)0.29631 (13)0.0456 (4)
H191.06001.20810.25690.055*
C200.82315 (18)1.04143 (15)0.44622 (12)0.0315 (3)
C210.74262 (18)1.01997 (15)0.55338 (11)0.0304 (3)
O1W0.54813 (14)0.40373 (14)0.64908 (9)0.0427 (3)
H1A0.50310.33050.63880.064*
H1B0.46920.46120.66580.064*
O90.21520 (14)0.55344 (16)0.53380 (9)0.0485 (3)
H9A0.29060.55610.49350.073*
H9B0.23080.55490.58950.073*
O100.11749 (14)0.65168 (12)0.56875 (8)0.0378 (3)
H10A0.17230.62860.62590.057*
H11B0.09870.27350.62400.057*
O110.06978 (15)0.34898 (12)0.63034 (8)0.0389 (3)
H11A0.02260.34590.67090.058*
H10B0.05020.71560.57570.058*
H3O0.957 (3)0.281 (3)0.865 (2)0.083 (9)*
H2O0.629 (3)0.369 (3)0.7620 (19)0.063 (7)*
H8O0.732 (3)0.959 (3)1.0088 (19)0.071 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03260 (13)0.02768 (13)0.02240 (12)0.00010 (9)0.00775 (9)0.00810 (9)
O10.0733 (8)0.0291 (6)0.0246 (5)0.0058 (5)0.0168 (5)0.0054 (4)
O20.0530 (7)0.0292 (5)0.0304 (6)0.0027 (5)0.0169 (5)0.0114 (4)
O30.0468 (6)0.0257 (5)0.0383 (6)0.0047 (5)0.0001 (5)0.0130 (5)
O40.0778 (9)0.0201 (5)0.0433 (7)0.0077 (5)0.0147 (6)0.0091 (5)
O50.0452 (6)0.0485 (7)0.0221 (5)0.0104 (5)0.0067 (4)0.0030 (5)
O60.0418 (6)0.0449 (6)0.0264 (5)0.0096 (5)0.0109 (4)0.0080 (5)
O70.0630 (8)0.0324 (6)0.0323 (6)0.0055 (5)0.0105 (5)0.0182 (5)
O80.1023 (11)0.0172 (5)0.0347 (6)0.0055 (6)0.0075 (7)0.0088 (5)
O120.0530 (8)0.0509 (8)0.0825 (11)0.0060 (6)0.0266 (7)0.0304 (7)
N10.0454 (7)0.0281 (6)0.0353 (7)0.0025 (5)0.0097 (6)0.0120 (5)
N20.0451 (7)0.0342 (7)0.0343 (7)0.0042 (6)0.0091 (6)0.0114 (5)
C10.0307 (6)0.0199 (6)0.0202 (6)0.0004 (5)0.0046 (5)0.0060 (5)
C20.0326 (7)0.0175 (6)0.0224 (6)0.0002 (5)0.0041 (5)0.0065 (5)
C30.0387 (7)0.0195 (6)0.0227 (6)0.0041 (5)0.0080 (5)0.0034 (5)
C40.0293 (6)0.0231 (6)0.0200 (6)0.0007 (5)0.0053 (5)0.0066 (5)
C50.0322 (7)0.0189 (6)0.0221 (6)0.0007 (5)0.0053 (5)0.0077 (5)
C60.0370 (7)0.0187 (6)0.0210 (6)0.0027 (5)0.0071 (5)0.0045 (5)
C70.0333 (7)0.0259 (7)0.0227 (7)0.0036 (5)0.0059 (5)0.0098 (5)
C80.0452 (8)0.0177 (6)0.0257 (7)0.0021 (5)0.0066 (6)0.0072 (5)
C90.0330 (7)0.0258 (6)0.0219 (6)0.0045 (5)0.0081 (5)0.0089 (5)
C100.0378 (7)0.0200 (6)0.0281 (7)0.0012 (5)0.0077 (6)0.0091 (5)
C110.0540 (10)0.0377 (9)0.0363 (9)0.0072 (7)0.0071 (7)0.0140 (7)
C120.0472 (10)0.0423 (9)0.0427 (10)0.0068 (7)0.0013 (7)0.0061 (7)
C130.0366 (8)0.0335 (8)0.0564 (11)0.0027 (6)0.0066 (7)0.0062 (7)
C140.0323 (7)0.0285 (7)0.0480 (9)0.0064 (6)0.0134 (6)0.0127 (6)
C150.0373 (8)0.0347 (8)0.0584 (11)0.0077 (6)0.0223 (7)0.0204 (7)
C160.0394 (8)0.0374 (8)0.0447 (9)0.0100 (6)0.0205 (7)0.0199 (7)
C170.0554 (11)0.0535 (11)0.0506 (11)0.0162 (9)0.0277 (9)0.0311 (9)
C180.0615 (12)0.0607 (12)0.0353 (9)0.0172 (9)0.0156 (8)0.0203 (8)
C190.0546 (10)0.0469 (10)0.0351 (9)0.0076 (8)0.0080 (7)0.0099 (7)
C200.0364 (7)0.0280 (7)0.0360 (8)0.0087 (6)0.0145 (6)0.0131 (6)
C210.0337 (7)0.0255 (7)0.0355 (8)0.0073 (5)0.0111 (6)0.0108 (6)
O1W0.0379 (6)0.0548 (7)0.0407 (7)0.0006 (5)0.0088 (5)0.0221 (6)
O90.0346 (6)0.0857 (10)0.0278 (6)0.0111 (6)0.0068 (5)0.0177 (6)
O100.0448 (6)0.0351 (6)0.0336 (6)0.0016 (5)0.0024 (5)0.0140 (5)
O110.0550 (7)0.0349 (6)0.0283 (6)0.0069 (5)0.0156 (5)0.0031 (4)
Geometric parameters (Å, º) top
Zn1—O9i2.0550 (15)C4—C91.5156 (19)
Zn1—O92.0550 (15)C5—C61.3879 (19)
Zn1—O10i2.0712 (13)C5—C101.4983 (19)
Zn1—O102.0712 (13)C6—H60.9300
Zn1—O11i2.0755 (12)C11—C121.376 (3)
Zn1—O112.0755 (12)C11—H110.9300
O1—C71.2088 (18)C12—C131.386 (3)
O2—C71.3097 (18)C12—H120.9300
O2—H2O0.86 (3)C13—C141.375 (3)
O3—C81.2968 (18)C13—H130.9300
O3—H3O0.94 (3)C14—C211.399 (2)
O4—C81.2119 (19)C14—C151.491 (2)
O5—C91.2402 (18)C15—C161.485 (3)
O6—C91.2573 (19)C16—C171.381 (3)
O7—C101.1978 (18)C16—C201.399 (2)
O8—C101.3169 (19)C17—C181.376 (3)
O8—H8O0.85 (3)C17—H170.9300
O12—C151.210 (2)C18—C191.383 (3)
N1—C211.329 (2)C18—H180.9300
N1—C111.353 (2)C19—H190.9300
N2—C201.327 (2)C20—C211.489 (2)
N2—C191.354 (2)O1W—H1A0.8602
C1—C61.3897 (19)O1W—H1B0.8916
C1—C21.3974 (19)O9—H9A0.7509
C1—C71.4939 (19)O9—H9B0.8266
C2—C31.3871 (19)O10—H10A0.8240
C2—C81.5075 (19)O10—H10B0.8756
C3—C41.390 (2)O11—H11B0.8033
C3—H30.9300O11—H11A0.7581
C4—C51.3962 (19)
O9i—Zn1—O9180.00 (6)O7—C10—O8124.78 (13)
O9i—Zn1—O10i90.19 (6)O7—C10—C5123.23 (13)
O9—Zn1—O10i89.81 (6)O8—C10—C5111.97 (12)
O9i—Zn1—O1089.81 (6)N1—C11—C12125.12 (17)
O9—Zn1—O1090.19 (6)N1—C11—H11117.4
O10i—Zn1—O10180.000 (1)C12—C11—H11117.4
O9i—Zn1—O11i93.35 (5)C11—C12—C13119.65 (17)
O9—Zn1—O11i86.65 (5)C11—C12—H12120.2
O10i—Zn1—O11i90.77 (6)C13—C12—H12120.2
O10—Zn1—O11i89.23 (6)C14—C13—C12116.35 (16)
O9i—Zn1—O1186.65 (5)C14—C13—H13121.8
O9—Zn1—O1193.35 (5)C12—C13—H13121.8
O10i—Zn1—O1189.23 (6)C13—C14—C21120.15 (15)
O10—Zn1—O1190.77 (6)C13—C14—C15131.05 (16)
O11i—Zn1—O11180.0C21—C14—C15108.79 (15)
C7—O2—H2O108.3 (17)O12—C15—C16127.32 (18)
C8—O3—H3O116.1 (17)O12—C15—C14126.97 (18)
C10—O8—H8O109.1 (18)C16—C15—C14105.65 (13)
C21—N1—C11114.33 (14)C17—C16—C20119.59 (17)
C20—N2—C19115.56 (15)C17—C16—C15131.56 (16)
C6—C1—C2119.02 (12)C20—C16—C15108.80 (15)
C6—C1—C7116.07 (12)C18—C17—C16117.23 (17)
C2—C1—C7124.86 (12)C18—C17—H17121.4
C3—C2—C1119.25 (12)C16—C17—H17121.4
C3—C2—C8115.88 (12)C17—C18—C19119.64 (17)
C1—C2—C8124.87 (12)C17—C18—H18120.2
C2—C3—C4121.84 (12)C19—C18—H18120.2
C2—C3—H3119.1N2—C19—C18124.07 (18)
C4—C3—H3119.1N2—C19—H19118.0
C3—C4—C5118.79 (12)C18—C19—H19118.0
C3—C4—C9116.48 (12)N2—C20—C16123.90 (15)
C5—C4—C9124.73 (12)N2—C20—C21127.60 (14)
C6—C5—C4119.52 (12)C16—C20—C21108.50 (14)
C6—C5—C10118.91 (12)N1—C21—C14124.40 (15)
C4—C5—C10121.39 (12)N1—C21—C20127.36 (14)
C5—C6—C1121.57 (12)C14—C21—C20108.24 (13)
C5—C6—H6119.2H1A—O1W—H1B107.9
C1—C6—H6119.2Zn1—O9—H9A115.7
O1—C7—O2124.26 (14)Zn1—O9—H9B126.9
O1—C7—C1121.57 (13)H9A—O9—H9B115.9
O2—C7—C1114.14 (12)Zn1—O10—H10A119.5
O4—C8—O3121.35 (13)Zn1—O10—H10B113.2
O4—C8—C2119.60 (13)H10A—O10—H10B100.6
O3—C8—C2118.84 (12)Zn1—O11—H11B115.8
O5—C9—O6124.96 (13)Zn1—O11—H11A119.0
O5—C9—C4116.40 (13)H11B—O11—H11A114.1
O6—C9—C4118.52 (12)
C6—C1—C2—C30.0 (2)N1—C11—C12—C130.3 (3)
C7—C1—C2—C3177.52 (13)C11—C12—C13—C140.5 (3)
C6—C1—C2—C8179.46 (13)C12—C13—C14—C210.3 (2)
C7—C1—C2—C83.0 (2)C12—C13—C14—C15179.10 (16)
C1—C2—C3—C40.8 (2)C13—C14—C15—O123.2 (3)
C8—C2—C3—C4178.71 (13)C21—C14—C15—O12176.28 (17)
C2—C3—C4—C51.2 (2)C13—C14—C15—C16179.47 (17)
C2—C3—C4—C9178.42 (13)C21—C14—C15—C161.10 (17)
C3—C4—C5—C60.7 (2)O12—C15—C16—C171.6 (3)
C9—C4—C5—C6178.82 (13)C14—C15—C16—C17178.92 (17)
C3—C4—C5—C10174.23 (13)O12—C15—C16—C20175.75 (17)
C9—C4—C5—C106.2 (2)C14—C15—C16—C201.62 (17)
C4—C5—C6—C10.0 (2)C20—C16—C17—C180.2 (2)
C10—C5—C6—C1175.12 (13)C15—C16—C17—C18176.91 (18)
C2—C1—C6—C50.4 (2)C16—C17—C18—C190.2 (3)
C7—C1—C6—C5178.14 (12)C20—N2—C19—C180.7 (3)
C6—C1—C7—O120.5 (2)C17—C18—C19—N20.6 (3)
C2—C1—C7—O1161.92 (15)C19—N2—C20—C160.4 (2)
C6—C1—C7—O2157.94 (13)C19—N2—C20—C21178.61 (15)
C2—C1—C7—O219.6 (2)C17—C16—C20—N20.0 (2)
C3—C2—C8—O461.2 (2)C15—C16—C20—N2177.65 (14)
C1—C2—C8—O4119.33 (18)C17—C16—C20—C21179.20 (14)
C3—C2—C8—O3113.59 (16)C15—C16—C20—C211.52 (17)
C1—C2—C8—O365.9 (2)C11—N1—C21—C140.4 (2)
C3—C4—C9—O557.77 (18)C11—N1—C21—C20179.48 (15)
C5—C4—C9—O5122.67 (16)C13—C14—C21—N10.2 (2)
C3—C4—C9—O6118.48 (15)C15—C14—C21—N1179.69 (14)
C5—C4—C9—O661.1 (2)C13—C14—C21—C20179.72 (14)
C6—C5—C10—O7152.54 (15)C15—C14—C21—C200.21 (17)
C4—C5—C10—O722.5 (2)N2—C20—C21—N11.6 (3)
C6—C5—C10—O826.2 (2)C16—C20—C21—N1179.28 (15)
C4—C5—C10—O8158.82 (15)N2—C20—C21—C14178.31 (15)
C21—N1—C11—C120.2 (3)C16—C20—C21—C140.83 (17)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O12ii0.862.122.8342 (19)141
O1W—H1B···O5iii0.891.942.815 (2)168
O9—H9A···O1Wii0.752.132.8526 (19)161
O9—H9B···O5iii0.831.872.6929 (18)177
O10—H10A···O1iv0.821.962.7860 (18)174
O11—H11B···N1v0.802.102.880 (2)166
O11—H11A···O6iii0.762.052.7725 (17)160
O10—H10B···N2vi0.881.882.747 (2)171
O3—H3O···O6vii0.94 (3)1.55 (3)2.4883 (18)173 (3)
O2—H2O···O1W0.86 (3)1.83 (3)2.6747 (19)167 (2)
O8—H8O···O4viii0.85 (3)1.83 (3)2.670 (2)171 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x1, y, z; (v) x1, y1, z; (vi) x+1, y+2, z+1; (vii) x+2, y+1, z+2; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(H2O)6](C10H5O8)2·2C11H6N2O·2H2O
Mr1080.13
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.380 (5), 9.757 (5), 14.107 (5)
α, β, γ (°)77.964 (5), 77.709 (5), 89.948 (5)
V3)1101.1 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.28 × 0.23 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.836, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
6855, 5060, 4670
Rint0.014
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.06
No. of reflections5060
No. of parameters343
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O92.0550 (15)Zn1—O112.0755 (12)
Zn1—O102.0712 (13)
O9i—Zn1—O1089.81 (6)O9—Zn1—O1193.35 (5)
O9—Zn1—O1090.19 (6)O10i—Zn1—O1189.23 (6)
O9i—Zn1—O1186.65 (5)O10—Zn1—O1190.77 (6)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O12ii0.862.122.8342 (19)140.7
O1W—H1B···O5iii0.891.942.815 (2)168.0
O9—H9A···O1Wii0.752.132.8526 (19)161.3
O9—H9B···O5iii0.831.872.6929 (18)177.2
O10—H10A···O1iv0.821.962.7860 (18)174.4
O11—H11B···N1v0.802.102.880 (2)165.7
O11—H11A···O6iii0.762.052.7725 (17)159.9
O10—H10B···N2vi0.881.882.747 (2)171.0
O3—H3O···O6vii0.94 (3)1.55 (3)2.4883 (18)173 (3)
O2—H2O···O1W0.86 (3)1.83 (3)2.6747 (19)167 (2)
O8—H8O···O4viii0.85 (3)1.83 (3)2.670 (2)171 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x1, y, z; (v) x1, y1, z; (vi) x+1, y+2, z+1; (vii) x+2, y+1, z+2; (viii) x, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 50878041) and the Analysis and Testing Foundation of Northeast Normal University for financial support.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRochon, F.-D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSi, S.-F., Wang, R.-J. & Li, Y.-D. (2003). Inorg. Chem. Commun. 6, 1152–1155.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, m1345.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds