organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diazo­niabi­cyclo­[2.2.2]octane bis­­(2,4,6-tri­nitro­phenolate)

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: nysima@126.com

(Received 23 April 2010; accepted 2 June 2010; online 5 June 2010)

In the title compound, C6H14N22+·2C6H2N3O7, the cation possesses crystallographically imposed twofold rotation symmetry. In the crystal structure, the cation and anions are linked into a trimeric aggregate by inter­molecular N—H⋯O hydrogen bonds. The trimeric units are further connected by ππ inter­actions [centroid–centroid distances = 3.507 (2)–3.660 (3) Å], forming layers parallel to the bc plane.

Related literature

For a discussion on hydrogen bonding in in the title crystal, see: Kumai et al. (2007[Kumai, R., Horiuchi, S., Sagayama, H., Arima, T.-H., Watanabe, M., Noda, Y. & Tokura, Y. (2007). J. Am. Chem. Soc. 129, 12920-12921.]); Horiuchi et al. (2005[Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005). Nat. Mater. 4, 163-166.]). For related structures, see: Dabros et al. (2007[Dabros, M., Emery, P.-R. & Thalladi, V.-R. (2007). Angew. Chem. Int. Ed. 46, 4132-4135.]); Jin et al. (2004[Jin, Z.-M., Lin, C.-S., Wang, H.-B., Hu, M.-L., Shen, L. & Huang, L.-R. (2004). Acta Cryst. C60, o765-o767.]); Glidewell et al. (1999[Glidewell, C., Ferguson, G., Gregson, R. M. & Lough, A. J. (1999). Acta Cryst. C55, 2133-2136.]); Chen et al. (2009[Chen, L.-Z., Zhao, H., Ge, J.-Z., Xiong, R.-G. & Hu, H.-W. (2009). Cryst. Growth Des. 9, 3828-3831.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N22+·2C6H2N3O7

  • Mr = 570.40

  • Monoclinic, C 2/c

  • a = 15.3808 (11) Å

  • b = 7.1520 (5) Å

  • c = 25.3527 (14) Å

  • β = 125.496 (2)°

  • V = 2270.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 93 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo,Japan.]) Tmin = 0.857, Tmax = 1.000

  • 10700 measured reflections

  • 2590 independent reflections

  • 2218 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.07

  • 2590 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1 0.93 1.69 2.589 (2) 161
N4—H4A⋯O2 0.93 2.42 2.954 (2) 117

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo,Japan.]); cell refinement: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo,Japan.]); data reduction: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo,Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The co-crystals of 1,4-diazabicyclo[2.2.2]octane (DABCO) and phenols are typically characterized by the presence of N—H···O or O—H···N hydrogen-bonded adducts (Kumai et al. (2007); Horiuchi et al., 2005). Many of this type of co-crystals have been designed by employing crystal-engineering strategies, and their structures have been studied extensively (Dabros et al., 2007; Jin et al., 2004; Glidewell et al., 1999). As a continuation of a study of phase transitions in hydrogen-bonded co-crystalline compounds between phenols and tertiary amines as N–H···O-type systems (Chen et al., 2009), the crystal structure of the 1:2 co-crystal of DABCO and 2,4,6-trinitrophenol obtained by a single-crystal X-ray analysis is reported herein. The compound shows no dielectric irregularity in the temperature range of 93–373K.

The title compound (Fig. 1) was obtained from the reaction of 1,4-diazabicyclo[2.2.2]octane and 2,4,6-trinitrophenol. The cation has crystallographically imposed twofold rotation symmetry. The two protonated N atoms in the cation are almost equivalent with very close C–N bond lengths [1.4930 (19) to 1.4952 (18) Å] and C–N–C angles [109.79 (11)° to 110.72 (11)°]. Within the benzene ring of the 2,4,6-trinitrophenol anion, the C–C–C bond angles of the three nitro-connected C atoms are in the range 121.92 (13)–126.76 (13)°, and are a little larger than the remaining three C–C–C bond angles. In the crystal structure (Fig. 2), cation and anions are linked into a trimeric aggregate by intermolecular N—H···O hydrogen bonds (Table 1). The trimeric units are further connected by ππ interactions (centroid-to-centroid distance = 3.507 (2)–3.660 (3) Å) to form layers parallel to the bc plane.

Related literature top

For a discussion on hydrogen bonding in co-crystals, see: Kumai et al. (2007); Horiuchi et al. (2005). For related structures, see: Dabros et al. (2007); Jin et al. (2004); Glidewell et al. (1999); Chen et al. (2009).

Experimental top

1,4-Diazabicyclo[2.2.2]octane (DABCO) (2.5 mmol) was dissolved in ethanol (10 ml).The clear solution obtained was added to a solution of 2,4,6-trinitrophenol(5 mmol) in ethanol (20 ml). The formed precipitate was then filtered and the obtained yellow solid was redissolved in DMF (15 ml). Yellow co-crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of the mixture at room temperature after 7 days.

Refinement top

All the H atoms were calculated geometrically and were allowed to ride, with C—H = 0.95-0.99 Å, N—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with suffix A are generated by the symmetry operation (-x, y, 0.5-z).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis. Dashed lines indicate hydrogen bonds.
1,4-Diazoniabicyclo[2.2.2]octane bis(2,4,6-trinitrophenolate) top
Crystal data top
C6H14N22+·2C6H2N3O7F(000) = 1176
Mr = 570.40Dx = 1.669 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 4042 reflections
a = 15.3808 (11) Åθ = 3.5–27.6°
b = 7.1520 (5) ŵ = 0.15 mm1
c = 25.3527 (14) ÅT = 93 K
β = 125.496 (2)°Prism, yellow
V = 2270.6 (3) Å30.1 × 0.1 × 0.1 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2590 independent reflections
Radiation source: fine-focus sealed tube2218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1918
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.857, Tmax = 1.000l = 3232
10700 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0406P)2 + 3.4753P]
where P = (Fo2 + 2Fc2)/3
2590 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C6H14N22+·2C6H2N3O7V = 2270.6 (3) Å3
Mr = 570.40Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.3808 (11) ŵ = 0.15 mm1
b = 7.1520 (5) ÅT = 93 K
c = 25.3527 (14) Å0.1 × 0.1 × 0.1 mm
β = 125.496 (2)°
Data collection top
Rigaku SCXmini
diffractometer
2590 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2218 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 1.000Rint = 0.028
10700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.54 e Å3
2590 reflectionsΔρmin = 0.59 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06908 (8)0.27695 (17)0.12769 (5)0.0196 (2)
O20.12313 (9)0.44433 (16)0.07242 (5)0.0189 (2)
O30.23908 (8)0.41893 (16)0.03110 (5)0.0192 (2)
O40.13536 (9)0.27577 (18)0.16941 (5)0.0248 (3)
O50.01746 (9)0.14572 (17)0.13108 (5)0.0241 (3)
O60.28037 (11)0.2978 (2)0.13599 (8)0.0563 (5)
O70.23717 (10)0.01540 (18)0.13396 (7)0.0404 (4)
N10.14821 (10)0.39809 (17)0.01833 (6)0.0135 (3)
N20.04785 (10)0.21799 (18)0.12408 (6)0.0167 (3)
N30.21729 (10)0.17069 (18)0.11151 (6)0.0156 (3)
N40.00848 (9)0.28214 (18)0.20398 (6)0.0136 (3)
H4A0.01470.28250.16960.016*
C10.03700 (11)0.2720 (2)0.06954 (7)0.0135 (3)
C20.06664 (11)0.3209 (2)0.01256 (7)0.0129 (3)
C30.09268 (11)0.30461 (19)0.04961 (7)0.0133 (3)
H3A0.16160.34030.08590.016*
C40.01856 (12)0.2367 (2)0.05864 (7)0.0143 (3)
C50.08530 (12)0.1875 (2)0.00629 (7)0.0141 (3)
H5A0.13640.14090.01260.017*
C60.10876 (11)0.2103 (2)0.05401 (7)0.0137 (3)
C70.01049 (12)0.4793 (2)0.22402 (7)0.0163 (3)
H7A0.04500.55360.18620.020*
H7B0.08090.53630.24140.020*
C80.10044 (12)0.1762 (2)0.25921 (7)0.0182 (3)
H8A0.16870.23020.27070.022*
H8B0.09730.04380.24680.022*
C90.09404 (11)0.1889 (2)0.18263 (7)0.0149 (3)
H9A0.09700.06210.16600.018*
H9B0.15520.26200.14740.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0162 (5)0.0311 (6)0.0120 (5)0.0027 (5)0.0085 (4)0.0029 (4)
O20.0207 (5)0.0237 (6)0.0143 (5)0.0014 (4)0.0113 (5)0.0021 (4)
O30.0138 (5)0.0258 (6)0.0153 (5)0.0029 (4)0.0069 (4)0.0023 (4)
O40.0198 (6)0.0389 (7)0.0128 (5)0.0009 (5)0.0078 (5)0.0008 (5)
O50.0306 (6)0.0267 (6)0.0222 (6)0.0043 (5)0.0194 (5)0.0029 (5)
O60.0256 (7)0.0389 (9)0.0517 (9)0.0181 (6)0.0076 (7)0.0214 (7)
O70.0271 (7)0.0164 (6)0.0401 (8)0.0023 (5)0.0020 (6)0.0064 (5)
N10.0144 (6)0.0126 (6)0.0138 (6)0.0010 (5)0.0083 (5)0.0008 (4)
N20.0201 (6)0.0165 (6)0.0153 (6)0.0040 (5)0.0114 (5)0.0029 (5)
N30.0138 (6)0.0181 (6)0.0164 (6)0.0000 (5)0.0096 (5)0.0013 (5)
N40.0142 (6)0.0167 (6)0.0113 (5)0.0000 (5)0.0082 (5)0.0000 (4)
C10.0150 (7)0.0125 (7)0.0137 (6)0.0023 (5)0.0087 (6)0.0003 (5)
C20.0138 (7)0.0118 (6)0.0147 (6)0.0013 (5)0.0092 (6)0.0003 (5)
C30.0140 (6)0.0108 (6)0.0137 (6)0.0028 (5)0.0073 (6)0.0002 (5)
C40.0192 (7)0.0118 (7)0.0133 (6)0.0034 (5)0.0103 (6)0.0018 (5)
C50.0168 (7)0.0105 (7)0.0182 (7)0.0008 (5)0.0120 (6)0.0006 (5)
C60.0129 (6)0.0118 (6)0.0156 (7)0.0006 (5)0.0078 (6)0.0024 (5)
C70.0199 (7)0.0155 (7)0.0142 (7)0.0031 (6)0.0102 (6)0.0015 (5)
C80.0142 (7)0.0256 (8)0.0141 (7)0.0063 (6)0.0077 (6)0.0023 (6)
C90.0137 (6)0.0167 (7)0.0127 (6)0.0030 (5)0.0067 (6)0.0027 (5)
Geometric parameters (Å, º) top
O1—C11.2543 (17)C2—C31.3876 (19)
O2—N11.2348 (16)C3—C41.375 (2)
O3—N11.2297 (16)C3—H3A0.9500
O4—N21.2274 (17)C4—C51.405 (2)
O5—N21.2307 (17)C5—C61.361 (2)
O6—N31.2054 (19)C5—H5A0.9500
O7—N31.2037 (18)C7—C7i1.528 (3)
N1—C21.4535 (18)C7—H7A0.9900
N2—C41.4510 (18)C7—H7B0.9900
N3—C61.4718 (18)C8—C9i1.536 (2)
N4—C71.4930 (19)C8—H8A0.9900
N4—C91.4942 (18)C8—H8B0.9900
N4—C81.4952 (18)C9—C8i1.536 (2)
N4—H4A0.9300C9—H9A0.9900
C1—C61.440 (2)C9—H9B0.9900
C1—C21.4409 (19)
O3—N1—O2122.45 (12)C5—C4—N2119.00 (13)
O3—N1—C2118.70 (12)C6—C5—C4116.45 (13)
O2—N1—C2118.83 (12)C6—C5—H5A121.8
O4—N2—O5123.34 (12)C4—C5—H5A121.8
O4—N2—C4118.88 (12)C5—C6—C1126.76 (13)
O5—N2—C4117.78 (12)C5—C6—N3119.86 (13)
O7—N3—O6123.01 (14)C1—C6—N3113.38 (12)
O7—N3—C6118.46 (12)N4—C7—C7i108.68 (7)
O6—N3—C6118.41 (13)N4—C7—H7A110.0
C7—N4—C9110.72 (11)C7i—C7—H7A110.0
C7—N4—C8109.79 (11)N4—C7—H7B110.0
C9—N4—C8109.80 (12)C7i—C7—H7B110.0
C7—N4—H4A108.8H7A—C7—H7B108.3
C9—N4—H4A108.8N4—C8—C9i108.41 (11)
C8—N4—H4A108.8N4—C8—H8A110.0
O1—C1—C6119.29 (13)C9i—C8—H8A110.0
O1—C1—C2128.51 (14)N4—C8—H8B110.0
C6—C1—C2112.20 (12)C9i—C8—H8B110.0
C3—C2—C1122.68 (13)H8A—C8—H8B108.4
C3—C2—N1116.72 (12)N4—C9—C8i108.72 (11)
C1—C2—N1120.56 (12)N4—C9—H9A109.9
C4—C3—C2119.91 (13)C8i—C9—H9A109.9
C4—C3—H3A120.0N4—C9—H9B109.9
C2—C3—H3A120.0C8i—C9—H9B109.9
C3—C4—C5121.92 (13)H9A—C9—H9B108.3
C3—C4—N2119.08 (13)
O1—C1—C2—C3178.37 (14)N2—C4—C5—C6179.14 (13)
C6—C1—C2—C31.4 (2)C4—C5—C6—C12.8 (2)
O1—C1—C2—N14.2 (2)C4—C5—C6—N3177.06 (12)
C6—C1—C2—N1175.98 (12)O1—C1—C6—C5176.35 (14)
O3—N1—C2—C310.33 (19)C2—C1—C6—C53.5 (2)
O2—N1—C2—C3167.99 (13)O1—C1—C6—N33.80 (19)
O3—N1—C2—C1172.10 (13)C2—C1—C6—N3176.37 (12)
O2—N1—C2—C19.59 (19)O7—N3—C6—C590.91 (18)
C1—C2—C3—C41.0 (2)O6—N3—C6—C593.1 (2)
N1—C2—C3—C4178.54 (12)O7—N3—C6—C189.23 (18)
C2—C3—C4—C51.9 (2)O6—N3—C6—C186.80 (19)
C2—C3—C4—N2179.07 (13)C9—N4—C7—C7i55.03 (18)
O4—N2—C4—C35.2 (2)C8—N4—C7—C7i66.36 (18)
O5—N2—C4—C3175.42 (13)C7—N4—C8—C9i56.78 (15)
O4—N2—C4—C5173.87 (13)C9—N4—C8—C9i65.17 (13)
O5—N2—C4—C55.5 (2)C7—N4—C9—C8i64.33 (15)
C3—C4—C5—C60.1 (2)C8—N4—C9—C8i57.06 (14)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.931.692.589 (2)161
N4—H4A···O20.932.422.954 (2)117

Experimental details

Crystal data
Chemical formulaC6H14N22+·2C6H2N3O7
Mr570.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)15.3808 (11), 7.1520 (5), 25.3527 (14)
β (°) 125.496 (2)
V3)2270.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.857, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10700, 2590, 2218
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.07
No. of reflections2590
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.59

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.931.692.589 (2)161
N4—H4A···O20.932.422.954 (2)117
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationChen, L.-Z., Zhao, H., Ge, J.-Z., Xiong, R.-G. & Hu, H.-W. (2009). Cryst. Growth Des. 9, 3828–3831.  Web of Science CSD CrossRef CAS Google Scholar
First citationDabros, M., Emery, P.-R. & Thalladi, V.-R. (2007). Angew. Chem. Int. Ed. 46, 4132–4135.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C., Ferguson, G., Gregson, R. M. & Lough, A. J. (1999). Acta Cryst. C55, 2133–2136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHoriuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005). Nat. Mater. 4, 163–166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJin, Z.-M., Lin, C.-S., Wang, H.-B., Hu, M.-L., Shen, L. & Huang, L.-R. (2004). Acta Cryst. C60, o765–o767.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumai, R., Horiuchi, S., Sagayama, H., Arima, T.-H., Watanabe, M., Noda, Y. & Tokura, Y. (2007). J. Am. Chem. Soc. 129, 12920–12921.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo,Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds