organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-(5-Nitro-2-fur­yl)-1-phenyl-1H-pyrazol-4-yl](phen­yl)methanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 March 2010; accepted 26 April 2010; online 30 April 2010)

In the title pyrazole compound, C20H13N3O4, an intra­molecular C—H⋯O hydrogen bond generates a seven-membered ring, producing an S(7) ring motif. The essentially planar furan and pyrazole rings [maximum deviations of 0.002 (1) and 0.007 (1) Å, respectively] are coplanar with each other, forming a dihedral angle of 3.06 (10)°. The pyrazole ring forms dihedral angles of 8.51 (9) and 56.81 (9)° with the two benzene rings. The nitro group is coplanar with the attached furan ring, as indicated by the dihedral angle of 2.5 (3)°. In the crystal packing, inter­molecular C—H⋯O hydrogen bonds link adjacent mol­ecules into two-mol­ecule-wide chains along the a axis. The crystal packing is further stabilized by weak inter­molecular C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.4441 (10) Å].

Related literature

For general background to and applications of the title compound, see: Kalluraya et al. (1994[Kalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017-1022.]); Rai & Kalluraya (2006[Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375-378.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For closely related structures, see: Goh et al. (2009a[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088-o3089.],b[Goh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099-o3100.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13N3O4

  • Mr = 359.33

  • Monoclinic, P 21 /c

  • a = 11.2946 (12) Å

  • b = 6.9755 (8) Å

  • c = 22.7064 (18) Å

  • β = 115.015 (4)°

  • V = 1621.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.24 × 0.15 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.992

  • 17931 measured reflections

  • 4725 independent reflections

  • 2991 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.129

  • S = 1.02

  • 4725 reflections

  • 296 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 0.98 (2) 2.45 (2) 3.190 (3) 131.8 (17)
C11—H11A⋯O2 0.98 (3) 2.23 (3) 2.950 (3) 130 (2)
C14—H14A⋯O3ii 0.96 (2) 2.43 (2) 3.379 (3) 169.3 (17)
C18—H18ACg1iii 0.96 (2) 2.96 (2) 3.671 (2) 132.0 (16)
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x-1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole derivatives are in general well-known nitrogen-containing heterocyclic compounds and various procedures have been developed for their synthesis (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications, and their widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl- substituted pyrazoles have sharply pronounced sedative action on the central nervous system. Certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal, fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003). In continuation of our studies on 1,3-dipolar cyclo-addition reactions of sydnones with dipolarophiles carrying a nitrofuran or a nitrothiophene moiety (Kalluraya et al., 1994), we herein report the crystal structure of the title pyrazole compound.

In the title compound, Fig. 1, an intramolecular C11—H11A···O2 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of 0.002 (1) and -0.007 (1) Å, respectively, at atoms C12 and N2. These two rings are coplanar to one another, as indicated by the dihedral angle formed between them of 3.06 (10)°. The pyrazole ring is inclined at dihedral angles of 56.81 (9) and 8.51 (9)°, respectively, with the C1-C6 and C15-C20 benzene rings. The nitro group is coplanar with the attached furan ring, making a dihedral angle of 2.5 (3)°. The bond lengths and angles agree well with those closely related pyrazole structures (Goh et al., 2009a,b).

In the crystal packing, intermolecular C2—H2A···O4 and C14—H14A···O3 hydrogen bonds (Table 1) link adjacent molecules into two-molecule-wide chains along the a axis (Fig. 2). The crystal packing is further stabilized by weak intermolecular C18—H18A···Cg1 (Table 1) and Cg2···Cg2 interactions [Cg2···Cg2i = 3.4441 (10) Å where Cg1 and Cg2 are the centroids of the C15-C20 benzene and pyrazole rings, respectively].

Related literature top

For general background to and applications of the title compound, see: Kalluraya et al. (1994); Rai & Kalluraya (2006); Rai et al. (2008); Sridhar & Perumal (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Goh et al. (2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

3-Phenylsydnone (0.01 mol) and 1-phenyl-3-(5-nitro-2-furyl)-2-propyn-1-one (0.01 mol) were dissolved in dry xylene (10 ml) and refluxed for 4 h. After completion of the reaction, the solvent was removed by distillation under reduced pressure. The crude product obtained was purified by recrystallization from a mixture of ethanol and DMF. The solid obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of ethanol and DMF by slow evaporation.

Refinement top

All the H atoms were located from difference Fourier map [range of C—H = 0.933 (18)–1.00 (3) Å] and allowed to refine freely.

Structure description top

Pyrazole derivatives are in general well-known nitrogen-containing heterocyclic compounds and various procedures have been developed for their synthesis (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications, and their widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl- substituted pyrazoles have sharply pronounced sedative action on the central nervous system. Certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal, fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003). In continuation of our studies on 1,3-dipolar cyclo-addition reactions of sydnones with dipolarophiles carrying a nitrofuran or a nitrothiophene moiety (Kalluraya et al., 1994), we herein report the crystal structure of the title pyrazole compound.

In the title compound, Fig. 1, an intramolecular C11—H11A···O2 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of 0.002 (1) and -0.007 (1) Å, respectively, at atoms C12 and N2. These two rings are coplanar to one another, as indicated by the dihedral angle formed between them of 3.06 (10)°. The pyrazole ring is inclined at dihedral angles of 56.81 (9) and 8.51 (9)°, respectively, with the C1-C6 and C15-C20 benzene rings. The nitro group is coplanar with the attached furan ring, making a dihedral angle of 2.5 (3)°. The bond lengths and angles agree well with those closely related pyrazole structures (Goh et al., 2009a,b).

In the crystal packing, intermolecular C2—H2A···O4 and C14—H14A···O3 hydrogen bonds (Table 1) link adjacent molecules into two-molecule-wide chains along the a axis (Fig. 2). The crystal packing is further stabilized by weak intermolecular C18—H18A···Cg1 (Table 1) and Cg2···Cg2 interactions [Cg2···Cg2i = 3.4441 (10) Å where Cg1 and Cg2 are the centroids of the C15-C20 benzene and pyrazole rings, respectively].

For general background to and applications of the title compound, see: Kalluraya et al. (1994); Rai & Kalluraya (2006); Rai et al. (2008); Sridhar & Perumal (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Goh et al. (2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing two-molecule-wide chains along the a axis. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
[3-(5-Nitro-2-furyl)-1-phenyl-1H-pyrazol-4-yl](phenyl)methanone top
Crystal data top
C20H13N3O4F(000) = 744
Mr = 359.33Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2349 reflections
a = 11.2946 (12) Åθ = 3.5–26.3°
b = 6.9755 (8) ŵ = 0.11 mm1
c = 22.7064 (18) ÅT = 100 K
β = 115.015 (4)°Block, brown
V = 1621.1 (3) Å30.24 × 0.15 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4725 independent reflections
Radiation source: fine-focus sealed tube2991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.976, Tmax = 0.992k = 99
17931 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.6127P]
where P = (Fo2 + 2Fc2)/3
4725 reflections(Δ/σ)max = 0.001
296 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H13N3O4V = 1621.1 (3) Å3
Mr = 359.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2946 (12) ŵ = 0.11 mm1
b = 6.9755 (8) ÅT = 100 K
c = 22.7064 (18) Å0.24 × 0.15 × 0.07 mm
β = 115.015 (4)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4725 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2991 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.992Rint = 0.056
17931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.129All H-atom parameters refined
S = 1.02Δρmax = 0.37 e Å3
4725 reflectionsΔρmin = 0.24 e Å3
296 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.26743 (11)0.74226 (19)1.00753 (6)0.0293 (3)
O20.86733 (12)0.95863 (19)0.85528 (6)0.0297 (3)
O31.55123 (13)0.7939 (2)0.98584 (7)0.0411 (4)
O41.52027 (15)0.6888 (3)1.06817 (9)0.0764 (7)
N10.96246 (13)0.6915 (2)1.05307 (6)0.0206 (3)
N21.07625 (13)0.6992 (2)1.04603 (7)0.0215 (3)
N31.48065 (16)0.7520 (3)1.01308 (9)0.0382 (4)
C10.62475 (17)0.6603 (3)0.86532 (8)0.0286 (4)
C20.49042 (19)0.6327 (4)0.83427 (9)0.0359 (5)
C30.40950 (19)0.7816 (4)0.80076 (9)0.0410 (5)
C40.4611 (2)0.9603 (4)0.79806 (10)0.0434 (6)
C50.5954 (2)0.9876 (3)0.82757 (10)0.0362 (5)
C60.67801 (17)0.8374 (3)0.86116 (8)0.0271 (4)
C70.82209 (16)0.8692 (3)0.88763 (8)0.0238 (4)
C80.90414 (16)0.7934 (2)0.95280 (8)0.0213 (3)
C91.04207 (16)0.7631 (2)0.98559 (8)0.0208 (3)
C101.14371 (16)0.7910 (2)0.96325 (8)0.0226 (4)
C111.14713 (18)0.8593 (3)0.90780 (9)0.0278 (4)
C121.27856 (18)0.8549 (3)0.91693 (9)0.0294 (4)
C131.34517 (17)0.7833 (3)0.97709 (9)0.0282 (4)
C140.85851 (16)0.7448 (2)0.99826 (8)0.0216 (3)
C150.96295 (16)0.6275 (2)1.11294 (8)0.0209 (3)
C161.07647 (16)0.5522 (3)1.16079 (8)0.0233 (4)
C171.07388 (18)0.4800 (3)1.21724 (9)0.0281 (4)
C180.96039 (18)0.4857 (3)1.22655 (9)0.0282 (4)
C190.84901 (18)0.5655 (3)1.17896 (9)0.0273 (4)
C200.84850 (17)0.6368 (3)1.12181 (8)0.0238 (4)
H1A0.6830 (18)0.558 (3)0.8899 (9)0.024 (5)*
H2A0.458 (2)0.505 (3)0.8376 (11)0.047 (7)*
H3A0.315 (2)0.757 (3)0.7776 (11)0.047 (6)*
H4A0.406 (2)1.071 (4)0.7748 (12)0.057 (7)*
H5A0.635 (2)1.110 (4)0.8263 (11)0.048 (7)*
H11A1.071 (2)0.900 (4)0.8687 (12)0.061 (7)*
H12A1.319 (2)0.895 (3)0.8890 (10)0.041 (6)*
H14A0.7722 (19)0.741 (3)0.9963 (9)0.028 (5)*
H16A1.1530 (18)0.549 (3)1.1519 (9)0.025 (5)*
H17A1.150 (2)0.425 (3)1.2493 (10)0.039 (6)*
H18A0.9566 (19)0.433 (3)1.2648 (10)0.034 (5)*
H19A0.7709 (17)0.575 (3)1.1840 (8)0.022 (5)*
H20A0.7707 (18)0.686 (3)1.0903 (9)0.022 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (6)0.0361 (7)0.0344 (7)0.0003 (5)0.0140 (5)0.0054 (6)
O20.0304 (7)0.0320 (7)0.0293 (6)0.0019 (6)0.0152 (5)0.0027 (6)
O30.0260 (7)0.0555 (10)0.0492 (8)0.0051 (7)0.0230 (6)0.0074 (7)
O40.0283 (8)0.1271 (18)0.0727 (12)0.0171 (10)0.0201 (8)0.0604 (13)
N10.0185 (7)0.0227 (7)0.0226 (7)0.0021 (6)0.0106 (5)0.0021 (6)
N20.0184 (6)0.0232 (7)0.0252 (7)0.0015 (6)0.0115 (5)0.0030 (6)
N30.0244 (8)0.0450 (11)0.0475 (10)0.0010 (7)0.0176 (7)0.0061 (9)
C10.0235 (9)0.0393 (11)0.0230 (8)0.0008 (8)0.0098 (7)0.0008 (8)
C20.0274 (10)0.0548 (14)0.0264 (9)0.0065 (10)0.0125 (8)0.0022 (10)
C30.0222 (9)0.0738 (17)0.0254 (9)0.0009 (10)0.0086 (8)0.0023 (10)
C40.0268 (10)0.0670 (16)0.0350 (10)0.0134 (11)0.0116 (8)0.0175 (11)
C50.0324 (10)0.0443 (13)0.0337 (10)0.0069 (10)0.0157 (8)0.0113 (9)
C60.0240 (8)0.0385 (11)0.0205 (8)0.0027 (8)0.0110 (7)0.0013 (8)
C70.0255 (8)0.0242 (9)0.0232 (8)0.0008 (7)0.0117 (7)0.0024 (7)
C80.0214 (8)0.0199 (8)0.0242 (8)0.0021 (7)0.0112 (6)0.0029 (7)
C90.0216 (8)0.0172 (8)0.0246 (8)0.0027 (7)0.0108 (6)0.0050 (7)
C100.0189 (8)0.0216 (8)0.0271 (8)0.0021 (7)0.0095 (7)0.0040 (7)
C110.0258 (9)0.0337 (10)0.0276 (9)0.0023 (8)0.0148 (7)0.0026 (8)
C120.0276 (9)0.0352 (11)0.0303 (9)0.0065 (8)0.0171 (7)0.0070 (8)
C130.0193 (8)0.0301 (10)0.0387 (10)0.0020 (7)0.0157 (7)0.0026 (8)
C140.0197 (8)0.0214 (8)0.0239 (8)0.0003 (7)0.0095 (6)0.0030 (7)
C150.0225 (8)0.0196 (8)0.0221 (7)0.0030 (7)0.0108 (6)0.0027 (7)
C160.0207 (8)0.0245 (9)0.0257 (8)0.0017 (7)0.0106 (7)0.0032 (7)
C170.0270 (9)0.0287 (10)0.0251 (8)0.0012 (8)0.0077 (7)0.0007 (8)
C180.0327 (10)0.0291 (10)0.0240 (8)0.0073 (8)0.0131 (7)0.0024 (8)
C190.0254 (9)0.0305 (10)0.0315 (9)0.0041 (8)0.0173 (7)0.0042 (8)
C200.0204 (8)0.0248 (9)0.0262 (8)0.0013 (7)0.0099 (7)0.0020 (7)
Geometric parameters (Å, º) top
O1—C131.358 (2)C7—C81.472 (2)
O1—C101.375 (2)C8—C141.377 (2)
O2—C71.228 (2)C8—C91.430 (2)
O3—N31.233 (2)C9—C101.451 (2)
O4—N31.219 (2)C10—C111.362 (2)
N1—C141.353 (2)C11—C121.410 (3)
N1—N21.3616 (18)C11—H11A0.98 (2)
N1—C151.429 (2)C12—C131.346 (3)
N2—C91.335 (2)C12—H12A0.96 (2)
N3—C131.414 (2)C14—H14A0.96 (2)
C1—C21.390 (3)C15—C161.387 (2)
C1—C61.395 (3)C15—C201.391 (2)
C1—H1A0.97 (2)C16—C171.389 (2)
C2—C31.380 (3)C16—H16A0.968 (18)
C2—H2A0.98 (2)C17—C181.385 (3)
C3—C41.388 (3)C17—H17A0.94 (2)
C3—H3A0.99 (2)C18—C191.382 (3)
C4—C51.389 (3)C18—H18A0.96 (2)
C4—H4A1.00 (3)C19—C201.387 (2)
C5—C61.396 (3)C19—H19A0.939 (18)
C5—H5A0.97 (2)C20—H20A0.933 (18)
C6—C71.494 (2)
C13—O1—C10104.57 (13)C8—C9—C10130.30 (15)
C14—N1—N2112.10 (13)C11—C10—O1110.18 (14)
C14—N1—C15127.88 (14)C11—C10—C9134.91 (16)
N2—N1—C15120.00 (13)O1—C10—C9114.89 (14)
C9—N2—N1104.88 (13)C10—C11—C12107.23 (16)
O4—N3—O3124.47 (17)C10—C11—H11A125.5 (14)
O4—N3—C13119.14 (17)C12—C11—H11A127.2 (14)
O3—N3—C13116.38 (17)C13—C12—C11105.03 (16)
C2—C1—C6119.85 (19)C13—C12—H12A124.0 (13)
C2—C1—H1A121.2 (11)C11—C12—H12A131.0 (13)
C6—C1—H1A118.9 (11)C12—C13—O1112.99 (15)
C3—C2—C1120.1 (2)C12—C13—N3130.37 (17)
C3—C2—H2A123.0 (14)O1—C13—N3116.60 (16)
C1—C2—H2A116.9 (13)N1—C14—C8107.64 (15)
C2—C3—C4120.51 (19)N1—C14—H14A120.4 (11)
C2—C3—H3A118.6 (14)C8—C14—H14A132.0 (11)
C4—C3—H3A120.8 (14)C16—C15—C20120.80 (16)
C3—C4—C5119.7 (2)C16—C15—N1119.63 (14)
C3—C4—H4A122.8 (14)C20—C15—N1119.55 (15)
C5—C4—H4A117.5 (14)C15—C16—C17119.16 (16)
C4—C5—C6120.2 (2)C15—C16—H16A117.3 (11)
C4—C5—H5A122.1 (13)C17—C16—H16A123.6 (11)
C6—C5—H5A117.7 (14)C18—C17—C16120.84 (17)
C1—C6—C5119.62 (17)C18—C17—H17A119.5 (13)
C1—C6—C7122.14 (17)C16—C17—H17A119.6 (13)
C5—C6—C7118.10 (18)C19—C18—C17119.16 (17)
O2—C7—C8122.64 (16)C19—C18—H18A119.1 (12)
O2—C7—C6119.53 (15)C17—C18—H18A121.7 (12)
C8—C7—C6117.83 (15)C18—C19—C20121.20 (17)
C14—C8—C9104.11 (14)C18—C19—H19A121.7 (11)
C14—C8—C7124.45 (15)C20—C19—H19A117.1 (11)
C9—C8—C7131.35 (15)C19—C20—C15118.82 (16)
N2—C9—C8111.25 (14)C19—C20—H20A118.7 (11)
N2—C9—C10118.45 (15)C15—C20—H20A122.5 (11)
C14—N1—N2—C91.32 (18)C8—C9—C10—O1178.34 (16)
C15—N1—N2—C9179.83 (15)O1—C10—C11—C120.2 (2)
C6—C1—C2—C31.6 (3)C9—C10—C11—C12178.25 (19)
C1—C2—C3—C40.4 (3)C10—C11—C12—C130.3 (2)
C2—C3—C4—C52.1 (3)C11—C12—C13—O10.3 (2)
C3—C4—C5—C61.6 (3)C11—C12—C13—N3177.8 (2)
C2—C1—C6—C52.1 (3)C10—O1—C13—C120.2 (2)
C2—C1—C6—C7173.56 (16)C10—O1—C13—N3178.07 (16)
C4—C5—C6—C10.5 (3)O4—N3—C13—C12178.3 (2)
C4—C5—C6—C7175.34 (18)O3—N3—C13—C120.8 (3)
C1—C6—C7—O2135.87 (18)O4—N3—C13—O10.9 (3)
C5—C6—C7—O239.8 (2)O3—N3—C13—O1178.27 (17)
C1—C6—C7—C845.1 (2)N2—N1—C14—C81.0 (2)
C5—C6—C7—C8139.15 (17)C15—N1—C14—C8179.35 (16)
O2—C7—C8—C14159.65 (17)C9—C8—C14—N10.24 (19)
C6—C7—C8—C1419.3 (3)C7—C8—C14—N1176.58 (16)
O2—C7—C8—C916.2 (3)C14—N1—C15—C16170.60 (17)
C6—C7—C8—C9164.80 (17)N2—N1—C15—C167.6 (2)
N1—N2—C9—C81.14 (18)C14—N1—C15—C207.7 (3)
N1—N2—C9—C10178.84 (14)N2—N1—C15—C20174.08 (15)
C14—C8—C9—N20.58 (19)C20—C15—C16—C172.0 (3)
C7—C8—C9—N2177.09 (17)N1—C15—C16—C17176.24 (16)
C14—C8—C9—C10179.40 (17)C15—C16—C17—C181.1 (3)
C7—C8—C9—C102.9 (3)C16—C17—C18—C190.4 (3)
C13—O1—C10—C110.0 (2)C17—C18—C19—C201.1 (3)
C13—O1—C10—C9178.77 (15)C18—C19—C20—C150.2 (3)
N2—C9—C10—C11176.7 (2)C16—C15—C20—C191.3 (3)
C8—C9—C10—C113.2 (3)N1—C15—C20—C19176.91 (16)
N2—C9—C10—O11.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.98 (2)2.45 (2)3.190 (3)131.8 (17)
C11—H11A···O20.98 (3)2.23 (3)2.950 (3)130 (2)
C14—H14A···O3ii0.96 (2)2.43 (2)3.379 (3)169.3 (17)
C18—H18A···Cg1iii0.96 (2)2.96 (2)3.671 (2)132.0 (16)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x1, y, z; (iii) x+2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC20H13N3O4
Mr359.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.2946 (12), 6.9755 (8), 22.7064 (18)
β (°) 115.015 (4)
V3)1621.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.15 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
17931, 4725, 2991
Rint0.056
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.129, 1.02
No. of reflections4725
No. of parameters296
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.98 (2)2.45 (2)3.190 (3)131.8 (17)
C11—H11A···O20.98 (3)2.23 (3)2.950 (3)130 (2)
C14—H14A···O3ii0.96 (2)2.43 (2)3.379 (3)169.3 (17)
C18—H18A···Cg1iii0.96 (2)2.96 (2)3.671 (2)132.0 (16)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x1, y, z; (iii) x+2, y1/2, z+5/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088–o3089.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099–o3100.  Google Scholar
First citationKalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.  Google Scholar
First citationRai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.[D_p^{(l)}({\bf r}_{\rm e})]  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds