organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

endo-3,3-Di­methyl-4-oxobi­cyclo­[3.1.0]hexan-2-yl methane­sulfonate

aDepartment of Chemistry, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
*Correspondence e-mail: johan.wouters@fundp.ac.be

(Received 19 March 2010; accepted 23 March 2010; online 27 March 2010)

The relative configuration of the endo isomer of the title compound, C9H14O4S, has been established and the conformation of the diastereoisomer is discussed. The five-membered ring adopts an envelope conformation. The conformation of the methane­sulfonate substituent is stabilized by inter­molecular C—H⋯O hydrogen bonds. The crystal packing results in alternating layers of polar methane­sulfonates and stacked bicyclo­hexa­nyl rings parallel to ab.

Related literature

For related enanti­oselective syntheses, see: Krief (1994[Krief, A. (1994). Stereocontrolled Organic Synthesis: A Chemistry for the 21th Century Monograph, edited by B. M. Trost, pp. 337-397. London: Blackwell Scientific.]); Krief et al. (2000[Krief, A., Lorvelec, G. & Jeanmart, S. (2000). Tetrahedron Lett. 41, 3871-3874.]). For puckering parameters and theoretical torsion angles, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Dunitz (1979[Dunitz, J. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 429, Ithaca: Cornell University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14O4S

  • Mr = 218.27

  • Triclinic, [P \overline 1]

  • a = 5.8558 (3) Å

  • b = 7.7497 (4) Å

  • c = 12.2527 (6) Å

  • α = 84.290 (4)°

  • β = 79.531 (4)°

  • γ = 72.070 (5)°

  • V = 519.66 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.35 × 0.14 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini ultra Mo) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.904, Tmax = 0.966

  • 6128 measured reflections

  • 3432 independent reflections

  • 2283 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 0.99

  • 3432 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.98 2.48 3.302 (4) 141
C9—H9B⋯O2ii 0.96 2.54 3.485 (2) 169
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

In the course of a work involving the enantioselective synthesis of didesmethyl-deltametrinic acid (Krief et al., 2000; Krief, 1994) both the exo and endo isomers of 3,3-dimethyl-4-oxobicyclo[3.1.0]hexan-2-yl methanesulfonate were synthesized and characterized.

The X-ray crystallography study reported here determined the relative stereochemistry of the endo diasteroisomer : C(1) S, C(4) R, and C(5) R. The compound crystallizing in a centrosymetric space group, one obtains the racemic mixture S,R,R/R,S,S.

The five-membered ring C1—C5 adopts an envelope conformation. Puckering parameter Phi is 260.1 (8)° and close to the expected value of k x 36° (Cremer & Pople, 1975), suggesting that the presence of a sp2 carbon (C2) in the five-membered ring does not significantly distort its conformation. The observed values of torsion angles defining the C1—C5 ring (Table 1) fairly well follow the theoretical sequence of torsion angles -ω1, ω2, -ω2, ω1 and 0 (Dunitz, 1979) characteristic of an envelope conformation.

Atom C6 of the fused three-membered ring deviates by +1.250 (2) Å from the mean plane defined by the five atoms of the C1—C5 ring (Figure 1).

Steric effects resulting from C6 being in cis of the mesylate substituent on O2, constrain the conformation of the methanesulfonate group. Positions of the oxygen atoms O3 and O4 of the sulfonate group are further explained by intra and intermolecular CH···O hydrogen bondings. Indeed O3 forms an intramolecular H bond [O3···H4 = 2.81 Å] with H4 of C4 that carries the mesylate. An intermolecular H bond with H4 further involves O4 [C(4)—H4 ··· O4i: D···A = 3.302 (4) Å; H···A = 2.48 Å; D - H···A = 141°, i = x-1,y,z].

Packing is also reinforced by van der Waals interactions resulting in alterning layers of polar methanesulfonates and stacked bicyclohexanyl rings parallel to the ab cell planes.

Related literature top

For related enantioselective syntheses, see : Krief (1994); Krief et al. (2000). For puckering parameters and theoretical torsion angles, see: Cremer & Pople (1975); Dunitz (1979).

Experimental top

Synthesis of the compound will be detailed elsewhere.

Crystals were obtained by evaporation at 5°C of solutions in diethylether.

Refinement top

All H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene groups and Uiso(H) = 1.5Ueq(C) for the methyl group.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Conformation (ORTEP view) of the title compound. Only H atoms on chiral carbons have been retained for clarity. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
endo-3,3-Dimethyl-4-oxobicyclo[3.1.0]hexan-2-yl methanesulfonate top
Crystal data top
C9H14O4SZ = 2
Mr = 218.27F(000) = 232
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8558 (3) ÅCell parameters from 2686 reflections
b = 7.7497 (4) Åθ = 3.2–32.6°
c = 12.2527 (6) ŵ = 0.30 mm1
α = 84.290 (4)°T = 293 K
β = 79.531 (4)°Prism, colorless
γ = 72.070 (5)°0.35 × 0.14 × 0.12 mm
V = 519.66 (5) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini ultra Mo) detector
3432 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.3712 pixels mm-1θmax = 32.6°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 811
Tmin = 0.904, Tmax = 0.966l = 1818
6128 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0721P)2]
where P = (Fo2 + 2Fc2)/3
3432 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H14O4Sγ = 72.070 (5)°
Mr = 218.27V = 519.66 (5) Å3
Triclinic, P1Z = 2
a = 5.8558 (3) ÅMo Kα radiation
b = 7.7497 (4) ŵ = 0.30 mm1
c = 12.2527 (6) ÅT = 293 K
α = 84.290 (4)°0.35 × 0.14 × 0.12 mm
β = 79.531 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini ultra Mo) detector
3432 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2283 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.966Rint = 0.019
6128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.99Δρmax = 0.36 e Å3
3432 reflectionsΔρmin = 0.31 e Å3
130 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1819 (3)0.4668 (2)0.66360 (15)0.0492 (4)
H10.06680.40500.65080.059*
C20.1965 (3)0.6346 (2)0.59887 (13)0.0422 (3)
C30.2668 (3)0.75983 (19)0.66753 (13)0.0377 (3)
C40.2405 (3)0.6746 (2)0.78727 (12)0.0383 (3)
H40.09500.75020.83230.046*
C50.2143 (3)0.4885 (2)0.78131 (14)0.0474 (4)
H50.11870.44000.84390.057*
C60.4088 (4)0.3618 (2)0.70955 (15)0.0534 (4)
H6A0.43450.23300.72650.064*
H6B0.55580.39560.68140.064*
C70.5212 (3)0.7725 (3)0.61787 (15)0.0556 (5)
H7A0.63660.65390.61940.083*
H7B0.56460.85150.66060.083*
H7C0.52160.82020.54250.083*
C80.0812 (4)0.9504 (2)0.66350 (19)0.0642 (5)
H8A0.12261.03000.70660.096*
H8B0.07870.94250.69350.096*
H8C0.08430.99720.58790.096*
C90.2608 (3)0.7738 (2)1.04091 (14)0.0503 (4)
H9A0.25480.86191.09200.075*
H9B0.31730.65401.07400.075*
H9C0.10120.79301.02350.075*
O10.1502 (3)0.67456 (18)0.50596 (10)0.0606 (4)
O20.4535 (2)0.64888 (14)0.84223 (9)0.0421 (3)
O30.3691 (3)0.97232 (17)0.87030 (11)0.0717 (4)
O40.7018 (2)0.7375 (2)0.94357 (12)0.0761 (5)
S10.45905 (8)0.79673 (6)0.91953 (3)0.04398 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0598 (11)0.0458 (9)0.0546 (10)0.0288 (8)0.0180 (8)0.0019 (7)
C20.0405 (8)0.0438 (8)0.0452 (8)0.0140 (7)0.0116 (6)0.0025 (7)
C30.0408 (8)0.0344 (7)0.0426 (8)0.0156 (6)0.0133 (6)0.0027 (6)
C40.0353 (7)0.0398 (8)0.0421 (8)0.0143 (6)0.0058 (6)0.0031 (6)
C50.0589 (10)0.0487 (9)0.0438 (9)0.0314 (8)0.0089 (7)0.0059 (7)
C60.0680 (12)0.0369 (8)0.0601 (11)0.0172 (8)0.0211 (9)0.0017 (7)
C70.0600 (11)0.0673 (12)0.0508 (10)0.0390 (10)0.0052 (8)0.0036 (9)
C80.0767 (14)0.0400 (9)0.0783 (13)0.0074 (9)0.0359 (11)0.0025 (9)
C90.0526 (10)0.0515 (10)0.0414 (8)0.0116 (8)0.0001 (7)0.0030 (7)
O10.0771 (9)0.0638 (8)0.0499 (7)0.0244 (7)0.0290 (6)0.0015 (6)
O20.0476 (6)0.0399 (6)0.0409 (6)0.0116 (5)0.0131 (5)0.0061 (4)
O30.1261 (14)0.0447 (7)0.0544 (8)0.0425 (8)0.0113 (8)0.0004 (6)
O40.0484 (8)0.1248 (13)0.0661 (9)0.0348 (8)0.0039 (6)0.0363 (9)
S10.0507 (3)0.0491 (2)0.0385 (2)0.02405 (19)0.00324 (16)0.00920 (16)
Geometric parameters (Å, º) top
C1—C21.472 (2)C6—H6B0.9700
C1—C61.503 (2)C7—H7A0.9600
C1—C51.521 (2)C7—H7B0.9600
C1—H10.9800C7—H7C0.9600
C2—O11.2066 (19)C8—H8A0.9600
C2—C31.534 (2)C8—H8B0.9600
C3—C71.532 (2)C8—H8C0.9600
C3—C81.543 (2)C9—S11.7429 (17)
C3—C41.549 (2)C9—H9A0.9600
C4—O21.4747 (17)C9—H9B0.9600
C4—C51.506 (2)C9—H9C0.9600
C4—H40.9800O2—S11.5687 (11)
C5—C61.467 (3)O3—S11.4156 (14)
C5—H50.9800O4—S11.4287 (14)
C6—H6A0.9700
C2—C1—C6114.72 (14)C1—C6—H6A117.6
C2—C1—C5107.13 (13)C5—C6—H6B117.6
C6—C1—C558.06 (11)C1—C6—H6B117.6
C2—C1—H1120.3H6A—C6—H6B114.7
C6—C1—H1120.3C3—C7—H7A109.5
C5—C1—H1120.3C3—C7—H7B109.5
O1—C2—C1125.52 (15)H7A—C7—H7B109.5
O1—C2—C3123.47 (14)C3—C7—H7C109.5
C1—C2—C3110.94 (13)H7A—C7—H7C109.5
C7—C3—C2109.53 (13)H7B—C7—H7C109.5
C7—C3—C8109.33 (15)C3—C8—H8A109.5
C2—C3—C8108.62 (13)C3—C8—H8B109.5
C7—C3—C4115.62 (13)H8A—C8—H8B109.5
C2—C3—C4103.93 (11)C3—C8—H8C109.5
C8—C3—C4109.53 (14)H8A—C8—H8C109.5
O2—C4—C5106.44 (12)H8B—C8—H8C109.5
O2—C4—C3113.84 (11)S1—C9—H9A109.5
C5—C4—C3108.08 (12)S1—C9—H9B109.5
O2—C4—H4109.5H9A—C9—H9B109.5
C5—C4—H4109.5S1—C9—H9C109.5
C3—C4—H4109.5H9A—C9—H9C109.5
C6—C5—C4116.56 (15)H9B—C9—H9C109.5
C6—C5—C160.38 (11)C4—O2—S1120.23 (9)
C4—C5—C1108.34 (13)O3—S1—O4119.56 (10)
C6—C5—H5119.1O3—S1—O2110.12 (7)
C4—C5—H5119.1O4—S1—O2103.74 (8)
C1—C5—H5119.1O3—S1—C9108.61 (9)
C5—C6—C161.56 (12)O4—S1—C9108.62 (9)
C5—C6—H6A117.6O2—S1—C9105.24 (8)
C6—C1—C2—O1127.22 (19)C8—C3—C4—C5128.36 (15)
C5—C1—C2—O1170.65 (18)O2—C4—C5—C666.42 (17)
C6—C1—C2—C355.74 (19)C3—C4—C5—C656.24 (18)
C5—C1—C2—C36.39 (18)O2—C4—C5—C1131.81 (14)
O1—C2—C3—C770.5 (2)C3—C4—C5—C19.15 (18)
C1—C2—C3—C7112.43 (15)C2—C1—C5—C6108.87 (16)
O1—C2—C3—C848.9 (2)C2—C1—C5—C41.83 (19)
C1—C2—C3—C8128.22 (16)C6—C1—C5—C4110.70 (16)
O1—C2—C3—C4165.44 (17)C4—C5—C6—C196.92 (16)
C1—C2—C3—C411.67 (17)C2—C1—C6—C595.46 (16)
C7—C3—C4—O210.41 (18)C5—C4—O2—S1146.30 (11)
C2—C3—C4—O2130.47 (12)C3—C4—O2—S194.74 (13)
C8—C3—C4—O2113.62 (15)C4—O2—S1—O342.98 (13)
C7—C3—C4—C5107.61 (15)C4—O2—S1—O4172.07 (11)
C2—C3—C4—C512.45 (16)C4—O2—S1—C973.90 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.982.483.302 (4)141
C9—H9B···O2ii0.962.543.485 (2)169
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC9H14O4S
Mr218.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.8558 (3), 7.7497 (4), 12.2527 (6)
α, β, γ (°)84.290 (4), 79.531 (4), 72.070 (5)
V3)519.66 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.35 × 0.14 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini ultra Mo) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.904, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6128, 3432, 2283
Rint0.019
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 0.99
No. of reflections3432
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C5—C1—C2—C36.39 (18)C2—C1—C5—C41.83 (19)
C1—C2—C3—C411.67 (17)C3—C4—O2—S194.74 (13)
C2—C3—C4—C512.45 (16)C4—O2—S1—C973.90 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.982.483.302 (4)141
C9—H9B···O2ii0.962.543.485 (2)169
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported in part by the Fonds National de la Recherche Scientifique (FNRS, Belgium).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDunitz, J. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 429, Ithaca: Cornell University Press.  Google Scholar
First citationKrief, A. (1994). Stereocontrolled Organic Synthesis: A Chemistry for the 21th Century Monograph, edited by B. M. Trost, pp. 337–397. London: Blackwell Scientific.  Google Scholar
First citationKrief, A., Lorvelec, G. & Jeanmart, S. (2000). Tetrahedron Lett. 41, 3871–3874.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds