organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1,3-di-2-propynyl-1H-imidazo[4,5-b]pyridin-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bUnité de Catalyse et de Chimie du Solide, Ecole Nationale Supérieure de Chimie de Lille, Lille, France, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 February 2010; accepted 1 March 2010; online 6 March 2010)

The room-temperature reaction of propargyl bromide and 6-bromo-1,3-dihydro­imidazo[4,5-b]pyridin-2-one in dimethyl­formamide yields the title compound, C12H8BrN3O, which features nitro­gen-bound propynyl substituents. The imidazopyridine fused ring is almost planar (r.m.s. deviation = 0.011 Å); the propynyl chains point in opposite directions relative to the fused ring. One acetyl­enic H atom is hydrogen bonded to the carbonyl O atom of an inversion-related mol­ecule, forming a dimer; adjacent dimers are linked by a second acetyl­ene–pyridine C—H⋯N inter­action, forming a layer motif.

Related literature

For the crystal structures of other imidazo[4,5-b]pyridin-2-ones, see: Kourafalos et al. (2002[Kourafalos, V. N., Marakos, P., Pouli, N., Terzis, A. & Townsend, L. B. (2002). Heterocycles, 57, 2335-2343.]); Meanwell et al. (1995[Meanwell, N. A., Sit, S. Y., Gao, J. N., Wong, H. S., Gao, Q., St Laurent, D. R. & Balasubramanian, N. (1995). J. Org. Chem. 50, 1565-1582.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8BrN3O

  • Mr = 290.12

  • Monoclinic, P 21 /c

  • a = 9.0725 (3) Å

  • b = 18.6212 (5) Å

  • c = 7.0684 (2) Å

  • β = 102.995 (1)°

  • V = 1163.56 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.372, Tmax = 0.620

  • 27315 measured reflections

  • 3383 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.085

  • S = 1.03

  • 3383 reflections

  • 162 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 (1) 2.53 (2) 3.392 (3) 151 (3)
C12—H12⋯N1ii 0.94 (1) 2.51 (2) 3.346 (2) 149 (2)
Symmetry codes: (i) -x, -y+1, -z; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structures of other imidazo[4,5-b]pyridin-2-ones, see: Kourafalos et al. (2002); Meanwell et al. (1995).

Experimental top

To a solution of 6-bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one (1 mmol), potassium carbonate (4 mmol) and tetra-n-butylammonium bromide (0.1 mmol) in DMF (20 ml) was added propargyl bromide (2.5 mmol). The solution was stirred for 48 hours. After completion of the reaction (as monitored byTLC), the salt was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel by using an ethyl acetate/hexane (1/1) mixture as eluent. Slow evaporation of the solvent furnished yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The terminal acetylenic H-atoms were located in a difference Fourier map, and were refined with a distance restraint of C–H 0.95±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H8BrN3O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
6-Bromo-1,3-di-2-propynyl-1H-imidazo[4,5-b]pyridin- 2(3H)-one top
Crystal data top
C12H8BrN3OF(000) = 576
Mr = 290.12Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9924 reflections
a = 9.0725 (3) Åθ = 2.3–31.8°
b = 18.6212 (5) ŵ = 3.52 mm1
c = 7.0684 (2) ÅT = 293 K
β = 102.995 (1)°Prism, yellow
V = 1163.56 (6) Å30.35 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
3383 independent reflections
Radiation source: fine-focus sealed tube2810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.372, Tmax = 0.620k = 2626
27315 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.4099P]
where P = (Fo2 + 2Fc2)/3
3383 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.87 e Å3
2 restraintsΔρmin = 0.80 e Å3
Crystal data top
C12H8BrN3OV = 1163.56 (6) Å3
Mr = 290.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0725 (3) ŵ = 3.52 mm1
b = 18.6212 (5) ÅT = 293 K
c = 7.0684 (2) Å0.35 × 0.30 × 0.15 mm
β = 102.995 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
3383 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2810 reflections with I > 2σ(I)
Tmin = 0.372, Tmax = 0.620Rint = 0.032
27315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.87 e Å3
3383 reflectionsΔρmin = 0.80 e Å3
162 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40313 (3)0.071904 (9)0.35455 (3)0.05174 (9)
O10.32318 (15)0.47483 (7)0.3528 (2)0.0435 (3)
N10.12161 (15)0.24467 (8)0.3731 (2)0.0354 (3)
N20.18505 (15)0.37028 (8)0.3651 (2)0.0326 (3)
N30.42693 (14)0.35966 (7)0.35770 (18)0.0289 (3)
C10.1822 (2)0.17839 (9)0.3720 (2)0.0368 (4)
H10.12130.13870.37860.044*
C20.3302 (2)0.16693 (8)0.3614 (2)0.0322 (3)
C30.43018 (17)0.22350 (8)0.3550 (2)0.0289 (3)
H30.53020.21610.34810.035*
C40.21635 (17)0.29782 (8)0.3662 (2)0.0279 (3)
C50.36927 (16)0.29091 (8)0.3596 (2)0.0251 (3)
C60.0418 (2)0.40256 (12)0.3799 (3)0.0457 (4)
H6A0.06210.44710.45220.055*
H6B0.00930.37050.45240.055*
C70.0586 (2)0.41743 (12)0.1911 (3)0.0484 (5)
C80.1389 (3)0.43130 (16)0.0410 (4)0.0699 (8)
H80.212 (3)0.442 (2)0.073 (3)0.108 (13)*
C90.31325 (18)0.40998 (9)0.3577 (2)0.0307 (3)
C100.58352 (18)0.38016 (10)0.3664 (3)0.0380 (4)
H10A0.59570.43110.39460.046*
H10B0.60680.37180.24080.046*
C110.68988 (18)0.33965 (10)0.5150 (3)0.0397 (4)
C120.7772 (2)0.30575 (14)0.6294 (4)0.0559 (6)
H120.849 (2)0.2804 (13)0.721 (3)0.070 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.07831 (18)0.02651 (10)0.04492 (13)0.00475 (8)0.00231 (10)0.00343 (6)
O10.0484 (7)0.0281 (6)0.0488 (7)0.0041 (5)0.0001 (6)0.0039 (5)
N10.0277 (6)0.0436 (8)0.0344 (7)0.0079 (6)0.0059 (5)0.0006 (6)
N20.0261 (6)0.0344 (7)0.0357 (7)0.0063 (5)0.0039 (5)0.0004 (5)
N30.0234 (6)0.0261 (6)0.0353 (6)0.0012 (4)0.0023 (5)0.0030 (5)
C10.0402 (9)0.0356 (8)0.0330 (8)0.0124 (7)0.0050 (7)0.0002 (6)
C20.0437 (9)0.0262 (7)0.0246 (7)0.0018 (6)0.0036 (6)0.0010 (5)
C30.0291 (7)0.0294 (7)0.0276 (7)0.0028 (5)0.0051 (6)0.0003 (5)
C40.0248 (7)0.0332 (7)0.0240 (6)0.0005 (5)0.0022 (5)0.0001 (5)
C50.0237 (6)0.0269 (7)0.0236 (6)0.0015 (5)0.0034 (5)0.0005 (5)
C60.0346 (9)0.0554 (11)0.0481 (10)0.0163 (8)0.0114 (8)0.0029 (9)
C70.0306 (9)0.0535 (11)0.0610 (12)0.0143 (8)0.0101 (8)0.0079 (9)
C80.0452 (13)0.093 (2)0.0672 (16)0.0256 (12)0.0040 (11)0.0159 (13)
C90.0304 (7)0.0294 (7)0.0286 (7)0.0028 (6)0.0014 (6)0.0018 (6)
C100.0274 (7)0.0392 (9)0.0457 (9)0.0064 (6)0.0047 (7)0.0103 (7)
C110.0236 (7)0.0455 (9)0.0482 (10)0.0043 (6)0.0042 (7)0.0049 (8)
C120.0307 (9)0.0659 (14)0.0661 (14)0.0016 (9)0.0002 (9)0.0171 (11)
Geometric parameters (Å, º) top
Br1—C21.8935 (16)C3—C51.375 (2)
O1—C91.212 (2)C3—H30.9300
N1—C41.319 (2)C4—C51.405 (2)
N1—C11.352 (2)C6—C71.463 (3)
N2—C41.378 (2)C6—H6A0.9700
N2—C91.389 (2)C6—H6B0.9700
N2—C61.457 (2)C7—C81.173 (3)
N3—C51.3842 (19)C8—H80.948 (10)
N3—C91.394 (2)C10—C111.466 (2)
N3—C101.459 (2)C10—H10A0.9700
C1—C21.379 (3)C10—H10B0.9700
C1—H10.9300C11—C121.179 (3)
C2—C31.397 (2)C12—H120.939 (10)
C4—N1—C1114.56 (14)N3—C5—C4107.09 (13)
C4—N2—C9110.37 (13)N2—C6—C7113.27 (16)
C4—N2—C6126.11 (16)N2—C6—H6A108.9
C9—N2—C6123.44 (15)C7—C6—H6A108.9
C5—N3—C9109.91 (13)N2—C6—H6B108.9
C5—N3—C10127.46 (14)C7—C6—H6B108.9
C9—N3—C10122.53 (14)H6A—C6—H6B107.7
N1—C1—C2122.96 (15)C8—C7—C6178.2 (3)
N1—C1—H1118.5C7—C8—H8174 (2)
C2—C1—H1118.5O1—C9—N2126.84 (15)
C1—C2—C3122.16 (15)O1—C9—N3127.61 (16)
C1—C2—Br1119.74 (12)N2—C9—N3105.55 (13)
C3—C2—Br1118.10 (13)N3—C10—C11111.93 (14)
C5—C3—C2114.86 (14)N3—C10—H10A109.2
C5—C3—H3122.6C11—C10—H10A109.2
C2—C3—H3122.6N3—C10—H10B109.2
N1—C4—N2126.85 (15)C11—C10—H10B109.2
N1—C4—C5126.10 (15)H10A—C10—H10B107.9
N2—C4—C5107.05 (13)C12—C11—C10177.6 (2)
C3—C5—N3133.58 (14)C11—C12—H12177.7 (17)
C3—C5—C4119.33 (14)
C4—N1—C1—C21.0 (2)N1—C4—C5—C31.7 (2)
N1—C1—C2—C31.4 (3)N2—C4—C5—C3178.61 (13)
N1—C1—C2—Br1178.53 (12)N1—C4—C5—N3178.81 (14)
C1—C2—C3—C50.2 (2)N2—C4—C5—N30.92 (16)
Br1—C2—C3—C5179.73 (10)C4—N2—C6—C793.3 (2)
C1—N1—C4—N2179.82 (15)C9—N2—C6—C790.2 (2)
C1—N1—C4—C50.5 (2)C4—N2—C9—O1179.15 (16)
C9—N2—C4—N1179.78 (15)C6—N2—C9—O13.9 (3)
C6—N2—C4—N12.9 (3)C4—N2—C9—N30.99 (17)
C9—N2—C4—C50.05 (17)C6—N2—C9—N3175.99 (15)
C6—N2—C4—C5176.84 (15)C5—N3—C9—O1178.56 (16)
C2—C3—C5—N3179.41 (15)C10—N3—C9—O14.8 (3)
C2—C3—C5—C41.2 (2)C5—N3—C9—N21.58 (17)
C9—N3—C5—C3177.86 (16)C10—N3—C9—N2175.03 (14)
C10—N3—C5—C35.7 (3)C5—N3—C10—C1145.0 (2)
C9—N3—C5—C41.58 (16)C9—N3—C10—C11131.00 (17)
C10—N3—C5—C4174.83 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.95 (1)2.53 (2)3.392 (3)151 (3)
C12—H12···N1ii0.94 (1)2.51 (2)3.346 (2)149 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H8BrN3O
Mr290.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0725 (3), 18.6212 (5), 7.0684 (2)
β (°) 102.995 (1)
V3)1163.56 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.52
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.372, 0.620
No. of measured, independent and
observed [I > 2σ(I)] reflections
27315, 3383, 2810
Rint0.032
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.085, 1.03
No. of reflections3383
No. of parameters162
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.80

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.95 (1)2.53 (2)3.392 (3)151 (3)
C12—H12···N1ii0.94 (1)2.51 (2)3.346 (2)149 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKourafalos, V. N., Marakos, P., Pouli, N., Terzis, A. & Townsend, L. B. (2002). Heterocycles, 57, 2335–2343.  CAS Google Scholar
First citationMeanwell, N. A., Sit, S. Y., Gao, J. N., Wong, H. S., Gao, Q., St Laurent, D. R. & Balasubramanian, N. (1995). J. Org. Chem. 50, 1565–1582.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds