organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o696-o697

7-Chloro-4-[(E)-2-(4-meth­oxy­benzyl­­idene)hydrazin-1-yl]quinoline monohydrate

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 February 2010; accepted 19 February 2010; online 27 February 2010)

The organic mol­ecule in the title hydrate, C17H14ClN3O·H2O, has a small but significant twist from planarity, as seen in the dihedral angle of 12.10 (17)° between the quinoline and benzene rings. The conformation about the C=N bond is E. Chains along the b axis are formed in the crystal structure aided by water–quinoline O—H⋯N (× 2) and hydrazone–water N—H⋯O hydrogen bonds. Layers of these chains stack along the a axis via C—H⋯π and ππ inter­actions [ring centroid–ring centroid distance = 3.674 (2) Å]. C—H⋯O inter­actions are also present.

Related literature

For background to the pharmacological activity of quinoline derivatives, see: Warshakoon et al. (2006[Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207-5211.]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007[Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194-198.]); de Souza et al. (2005[Souza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009-1017.]). For related structures, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]); de Souza et al. (2009[Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120-o3121.], 2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152-o153.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14ClN3O·H2O

  • Mr = 329.78

  • Triclinic, [P \overline 1]

  • a = 7.0086 (6) Å

  • b = 9.2384 (8) Å

  • c = 13.3701 (12) Å

  • α = 100.026 (4)°

  • β = 103.903 (5)°

  • γ = 107.000 (5)°

  • V = 775.27 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.12 × 0.04 × 0.02 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.686, Tmax = 1.000

  • 10514 measured reflections

  • 2702 independent reflections

  • 2037 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.150

  • S = 1.02

  • 2702 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯N1i 0.85 (5) 2.02 (5) 2.867 (4) 172 (5)
O1w—H2w⋯N1 0.85 (5) 2.20 (5) 3.047 (5) 175 (5)
N2—H2n⋯O1wii 0.88 2.18 3.007 (4) 157
C5—H5⋯O1wii 0.95 2.45 3.380 (5) 165
C17—H17a⋯Cgiii 0.98 2.65 3.508 (5) 147
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Quinoline derivatives display biological activity (Warshakoon et al., 2006) and in this context attract interest as potential anti-malarial agents (Andrade et al. 2007; de Souza et al., 2005). Complementing biological studies are structural investigations (Kaiser et al., 2009; de Souza et al., 2009; de Souza et al., 2010), and the crystal structure of the title hydrate, (I), was investigated as a part of these on-going studies.

The molecular structure of the organic component of (I), Fig. 1, shows a small twist from planarity with the dihedral angle formed between the quinoline (maximum deviation = 0.039 (4) Å for the C6 atom) and benzene rings being 12.10 (17) °. The major deviation of a torsion angle from 0 or 180 ° is found in the C3–N2–N3–C10 torsion angle of 172.4 (3) °. The conformation about the C10N3 bond [1.274 (5) Å] is E. The crystal packing is stabilised by a variety of hydrogen bonding interactions, Table 1. The water molecule accepts a hydrogen bond from the hydrazone-N2 atom and forms donor interactions with symmetry related quinoline-N1 atoms, the latter leading to eight-membered {···OHO···N}2 synthons. The resulting supramolecular chain along the b axis, Fig. 2, is reinforced by a C–H···O contact, Table 1. The chains are arranged in layers in the bc plane with the most significant interactions between the layers being of the type ππ with the closest of these occurring between centrosymmetrically related N1,C1—C4,C9 rings [ring centroid(N1,C1—C4,C9)···ring centroid(N1,C1—C4,C9)i distance = 3.674 (2) Å for i: -x, 1-y, 1-z], Fig. 3. In addition to these interactions, C–H···π contacts also occur between layers, Table 1.

Related literature top

For background to the pharmacological activity of quinoline derivatives, see: Warshakoon et al. (2006). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007); de Souza et al. (2005). For related structures, see: Kaiser et al. (2009); de Souza et al. (2009, 2010).

Experimental top

A solution of 7-chloro-4-quinolinylhydrazine (0.2 g, 1.03 mmol) and 4-methoxybenzaldehyde (1.24 mmol) in ethanol (5 ml) was stirred at room temperature until TLC indicated complete consumption of the hydrazine. The reaction mixture was rotary evaporated, the residue washed well with cold Et2O (3 x 10 ml), and recrystallised from moist ethanol, yield 85%, m.pt. 417–418 K. IR [KBr, cm-1] ν: 3120 (NH), 1565(NC). MS/ESI: m/z [M—H]+: 310.8.

Refinement top

The N- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,N). The water-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the components comprising the asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of the supramolecular chain in (I) showing the O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. The C–H···O contacts are represented as green dashed lines. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view of the stacking of layers in (I); O–H···N hydrogen bonding is shown as orange dashed lines. The layers are linked by ππ (purple dashed lines) and C–H···π contacts (pink dashed lines). Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
7-Chloro-4-[(E)-2-(4-methoxybenzylidene)hydrazin-1-yl]quinoline monohydrate top
Crystal data top
C17H14ClN3O·H2OZ = 2
Mr = 329.78F(000) = 344
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0086 (6) ÅCell parameters from 27436 reflections
b = 9.2384 (8) Åθ = 2.9–27.5°
c = 13.3701 (12) ŵ = 0.26 mm1
α = 100.026 (4)°T = 120 K
β = 103.903 (5)°Needle, colourless
γ = 107.000 (5)°0.12 × 0.04 × 0.02 mm
V = 775.27 (12) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
2702 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2037 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.064
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.1°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1010
Tmin = 0.686, Tmax = 1.000l = 1515
10514 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0109P)2 + 2.93P]
where P = (Fo2 + 2Fc2)/3
2702 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H14ClN3O·H2Oγ = 107.000 (5)°
Mr = 329.78V = 775.27 (12) Å3
Triclinic, P1Z = 2
a = 7.0086 (6) ÅMo Kα radiation
b = 9.2384 (8) ŵ = 0.26 mm1
c = 13.3701 (12) ÅT = 120 K
α = 100.026 (4)°0.12 × 0.04 × 0.02 mm
β = 103.903 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2702 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2037 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 1.000Rint = 0.064
10514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
2702 reflectionsΔρmin = 0.36 e Å3
215 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12492 (19)0.53097 (12)0.13214 (8)0.0337 (3)
O10.3226 (4)0.0839 (3)1.1296 (2)0.0268 (7)
N10.2963 (5)0.7665 (4)0.5289 (2)0.0233 (7)
N20.2484 (5)0.3358 (4)0.6035 (2)0.0226 (7)
H2N0.21930.25060.55270.027*
N30.2774 (5)0.3291 (4)0.7081 (2)0.0220 (7)
C10.3251 (6)0.7500 (4)0.6279 (3)0.0247 (9)
H10.36110.84180.68350.030*
C20.3074 (6)0.6112 (4)0.6569 (3)0.0217 (9)
H20.32390.60920.72920.026*
C30.2653 (6)0.4750 (4)0.5796 (3)0.0178 (8)
C40.2376 (6)0.4842 (4)0.4712 (3)0.0188 (8)
C50.2011 (6)0.3562 (4)0.3853 (3)0.0203 (8)
H50.19590.25760.39850.024*
C60.1728 (6)0.3715 (4)0.2828 (3)0.0215 (8)
H60.15180.28520.22590.026*
C70.1753 (6)0.5170 (4)0.2634 (3)0.0211 (8)
C80.2147 (6)0.6443 (4)0.3441 (3)0.0225 (9)
H80.21800.74170.32920.027*
C90.2507 (6)0.6313 (4)0.4502 (3)0.0201 (8)
C100.2358 (6)0.1919 (5)0.7224 (3)0.0235 (9)
H100.18790.10440.66200.028*
C110.2591 (6)0.1642 (4)0.8281 (3)0.0199 (8)
C120.2046 (6)0.0122 (4)0.8385 (3)0.0222 (9)
H120.15240.07240.77590.027*
C130.2235 (6)0.0212 (4)0.9368 (3)0.0214 (8)
H130.18540.12670.94150.026*
C140.2985 (6)0.1016 (4)1.0276 (3)0.0217 (8)
C150.3569 (6)0.2567 (4)1.0201 (3)0.0229 (9)
H150.40990.34081.08300.027*
C160.3379 (6)0.2878 (4)0.9220 (3)0.0227 (9)
H160.37810.39340.91760.027*
C170.2580 (7)0.0735 (4)1.1403 (3)0.0268 (9)
H17A0.10930.12801.09970.040*
H17B0.27870.07091.21580.040*
H17C0.34180.12911.11270.040*
O1W0.7337 (5)0.9550 (3)0.5298 (2)0.0309 (7)
H1W0.736 (8)1.039 (6)0.511 (4)0.046*
H2W0.610 (8)0.908 (6)0.530 (4)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0524 (7)0.0299 (6)0.0200 (5)0.0158 (5)0.0098 (5)0.0088 (4)
O10.0346 (17)0.0247 (15)0.0202 (14)0.0082 (13)0.0077 (12)0.0084 (11)
N10.0272 (19)0.0234 (17)0.0200 (17)0.0102 (15)0.0088 (14)0.0031 (13)
N20.0285 (19)0.0215 (17)0.0191 (17)0.0116 (15)0.0062 (14)0.0047 (13)
N30.0258 (19)0.0246 (18)0.0207 (17)0.0122 (15)0.0103 (14)0.0084 (14)
C10.025 (2)0.021 (2)0.026 (2)0.0067 (17)0.0097 (18)0.0019 (16)
C20.025 (2)0.024 (2)0.0171 (19)0.0085 (17)0.0100 (17)0.0035 (16)
C30.0147 (19)0.0195 (19)0.0205 (19)0.0066 (15)0.0067 (16)0.0058 (15)
C40.0126 (19)0.0185 (19)0.024 (2)0.0037 (15)0.0070 (16)0.0050 (15)
C50.020 (2)0.0164 (19)0.024 (2)0.0070 (16)0.0057 (16)0.0047 (15)
C60.018 (2)0.020 (2)0.025 (2)0.0038 (16)0.0088 (16)0.0041 (16)
C70.021 (2)0.023 (2)0.021 (2)0.0075 (17)0.0077 (16)0.0073 (16)
C80.024 (2)0.0175 (19)0.027 (2)0.0078 (16)0.0077 (17)0.0071 (16)
C90.016 (2)0.0194 (19)0.024 (2)0.0046 (16)0.0096 (16)0.0033 (16)
C100.024 (2)0.028 (2)0.020 (2)0.0108 (17)0.0086 (17)0.0053 (16)
C110.018 (2)0.0199 (19)0.023 (2)0.0068 (16)0.0085 (16)0.0071 (16)
C120.024 (2)0.022 (2)0.023 (2)0.0102 (17)0.0098 (17)0.0062 (16)
C130.023 (2)0.0154 (19)0.028 (2)0.0066 (16)0.0109 (17)0.0061 (16)
C140.022 (2)0.023 (2)0.022 (2)0.0076 (17)0.0093 (17)0.0085 (16)
C150.022 (2)0.019 (2)0.024 (2)0.0066 (17)0.0041 (17)0.0036 (16)
C160.024 (2)0.0168 (19)0.026 (2)0.0044 (16)0.0073 (17)0.0093 (16)
C170.032 (2)0.025 (2)0.028 (2)0.0113 (18)0.0109 (18)0.0114 (17)
O1W0.0347 (18)0.0205 (15)0.0434 (18)0.0117 (14)0.0171 (15)0.0123 (13)
Geometric parameters (Å, º) top
Cl1—C71.740 (4)C7—C81.360 (5)
O1—C141.377 (4)C8—C91.413 (5)
O1—C171.435 (5)C8—H80.9500
N1—C11.332 (5)C10—C111.458 (5)
N1—C91.385 (5)C10—H100.9500
N2—C31.357 (5)C11—C121.385 (5)
N2—N31.380 (4)C11—C161.409 (5)
N2—H2N0.8800C12—C131.386 (5)
N3—C101.274 (5)C12—H120.9500
C1—C21.383 (5)C13—C141.379 (5)
C1—H10.9500C13—H130.9500
C2—C31.386 (5)C14—C151.400 (5)
C2—H20.9500C15—C161.374 (5)
C3—C41.435 (5)C15—H150.9500
C4—C91.417 (5)C16—H160.9500
C4—C51.411 (5)C17—H17A0.9800
C5—C61.374 (5)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—C71.409 (5)O1W—H1W0.85 (5)
C6—H60.9500O1W—H2W0.85 (5)
C14—O1—C17117.0 (3)N1—C9—C8116.8 (3)
C1—N1—C9115.5 (3)C4—C9—C8119.7 (3)
C3—N2—N3119.4 (3)N3—C10—C11122.5 (3)
C3—N2—H2N120.3N3—C10—H10118.8
N3—N2—H2N120.3C11—C10—H10118.8
C10—N3—N2115.5 (3)C12—C11—C16117.8 (3)
N1—C1—C2125.9 (4)C12—C11—C10119.9 (3)
N1—C1—H1117.0C16—C11—C10122.3 (3)
C2—C1—H1117.0C11—C12—C13122.5 (4)
C1—C2—C3119.5 (3)C11—C12—H12118.8
C1—C2—H2120.3C13—C12—H12118.8
C3—C2—H2120.3C14—C13—C12118.8 (3)
N2—C3—C2122.1 (3)C14—C13—H13120.6
N2—C3—C4120.0 (3)C12—C13—H13120.6
C2—C3—C4117.9 (3)O1—C14—C13124.4 (3)
C9—C4—C5118.4 (3)O1—C14—C15115.4 (3)
C9—C4—C3117.7 (3)C13—C14—C15120.2 (3)
C5—C4—C3123.9 (3)C16—C15—C14120.2 (4)
C6—C5—C4121.3 (3)C16—C15—H15119.9
C6—C5—H5119.3C14—C15—H15119.9
C4—C5—H5119.3C15—C16—C11120.5 (3)
C5—C6—C7119.0 (3)C15—C16—H16119.8
C5—C6—H6120.5C11—C16—H16119.8
C7—C6—H6120.5O1—C17—H17A109.5
C8—C7—C6121.6 (3)O1—C17—H17B109.5
C8—C7—Cl1120.0 (3)H17A—C17—H17B109.5
C6—C7—Cl1118.3 (3)O1—C17—H17C109.5
C7—C8—C9119.8 (3)H17A—C17—H17C109.5
C7—C8—H8120.1H17B—C17—H17C109.5
C9—C8—H8120.1H1W—O1W—H2W108 (5)
N1—C9—C4123.5 (3)
C3—N2—N3—C10172.4 (3)C3—C4—C9—N12.5 (5)
C9—N1—C1—C22.0 (6)C5—C4—C9—C83.8 (5)
N1—C1—C2—C33.1 (6)C3—C4—C9—C8177.0 (3)
N3—N2—C3—C21.1 (5)C7—C8—C9—N1178.1 (3)
N3—N2—C3—C4179.4 (3)C7—C8—C9—C42.4 (6)
C1—C2—C3—N2179.3 (3)N2—N3—C10—C11179.7 (3)
C1—C2—C3—C41.2 (5)N3—C10—C11—C12177.7 (4)
N2—C3—C4—C9178.2 (3)N3—C10—C11—C162.8 (6)
C2—C3—C4—C91.3 (5)C16—C11—C12—C130.5 (6)
N2—C3—C4—C52.7 (5)C10—C11—C12—C13180.0 (4)
C2—C3—C4—C5177.8 (3)C11—C12—C13—C140.3 (6)
C9—C4—C5—C61.8 (5)C17—O1—C14—C132.2 (5)
C3—C4—C5—C6179.1 (4)C17—O1—C14—C15178.0 (3)
C4—C5—C6—C71.6 (6)C12—C13—C14—O1179.4 (4)
C5—C6—C7—C83.1 (6)C12—C13—C14—C150.9 (6)
C5—C6—C7—Cl1176.5 (3)O1—C14—C15—C16179.5 (3)
C6—C7—C8—C91.1 (6)C13—C14—C15—C160.7 (6)
Cl1—C7—C8—C9178.5 (3)C14—C15—C16—C110.1 (6)
C1—N1—C9—C40.9 (5)C12—C11—C16—C150.7 (6)
C1—N1—C9—C8178.6 (3)C10—C11—C16—C15179.8 (4)
C5—C4—C9—N1176.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N1i0.85 (5)2.02 (5)2.867 (4)172 (5)
N2—H2n···O1wii0.882.183.007 (4)157
O1w—H2w···N10.85 (5)2.20 (5)3.047 (5)175 (5)
C5—H5···O1wii0.952.453.380 (5)165
C17—H17a···Cgiii0.982.653.508 (5)147
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC17H14ClN3O·H2O
Mr329.78
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.0086 (6), 9.2384 (8), 13.3701 (12)
α, β, γ (°)100.026 (4), 103.903 (5), 107.000 (5)
V3)775.27 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.12 × 0.04 × 0.02
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.686, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10514, 2702, 2037
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.150, 1.02
No. of reflections2702
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N1i0.85 (5)2.02 (5)2.867 (4)172 (5)
N2—H2n···O1wii0.882.183.007 (4)157
O1w—H2w···N10.85 (5)2.20 (5)3.047 (5)175 (5)
C5—H5···O1wii0.952.453.380 (5)165
C17—H17a···Cgiii0.982.653.508 (5)147
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAndrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009–1017.  Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152–o153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120–o3121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWarshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o696-o697
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds