organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(4-methyl­benz­yl)pyrimidine-2,4(1H,3H)-dione

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: actaeli@gmail.com

(Received 1 December 2009; accepted 12 December 2009; online 19 December 2009)

In the title mol­ecule, C20H20N2O2, the central pyrimidine ring forms dihedral angles of 71.9 (1) and 69.8 (1)° with the two benzene rings. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into centrosymmetric dimers. The crystal packing exhibits also ππ inter­actions as indicated by short distances of 3.674 (2) Å between the centroids of the pyrimidine rings of neighbouring mol­ecules.

Related literature

For the crystal structure of 1,3-bis­(4-chloro­benz­yl)pyrimidine-2,4(1H,3H)-dione, see: Yang & Li (2006[Yang, F.-L. & Li, G.-C. (2006). Acta Cryst. E62, o3405-o3406.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O2

  • Mr = 320.38

  • Triclinic, [P \overline 1]

  • a = 9.4182 (19) Å

  • b = 10.102 (2) Å

  • c = 10.448 (2) Å

  • α = 66.25 (3)°

  • β = 80.79 (3)°

  • γ = 71.18 (3)°

  • V = 860.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.984, Tmax = 0.984

  • 8622 measured reflections

  • 3001 independent reflections

  • 2529 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.161

  • S = 1.27

  • 3001 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.93 2.50 3.430 (4) 174
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our search for new biologically active pyrimidine derivatives (Yang & Li, 2006), we present here the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related 1,3-bis(4-chlorobenzyl)pyrimidine-2,4(1H,3H)-dione (Yang & Li, 2006). The central pyrimidine ring forms dihedral angles of 71.9 (1)° and 69.8 (1)° with the two benzene rings, respectively. Weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into centrosymmetric dimers. The crystal packing exhibits also π-π interactions proved by short distances of 3.674 (2) Å between the centroids of pyrimidine rings from the neighbouring molecules.

Related literature top

For the crystal structure of 1,3-bis(4-chlorobenzyl)pyrimidine-2,4(1H,3H)-dione, see: Yang & Li (2006).

Experimental top

Uracil (0.56 g, 5 mmol) and anhydrous potassium carbonate (0.84 g, 6 mmol) were mixed in N,N-dimethylformamide (20 ml). A solution of 4-methyl-benzyl chloride (0.70 g, 5 mmol) in acetone (10 ml) was then added dropwise, with stirring, at room temperature, and the mixture was stirred for another 10 h and then refluxed for 4 h. The solvent was evaporated in vacuo and the residue was washed with water. The resulting white precipitate was filtered off and purified by column chromatography on silica gel (petroleum ether:ethyl acetate = 2:1). The title compound was recrystallized from ethanol and single crystals of (I) were obtained by slow evaporation.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 - 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms omitted for clarity.
1,3-Bis(4-methylbenzyl)pyrimidine-2,4(1H,3H)-dione top
Crystal data top
C20H20N2O2Z = 2
Mr = 320.38F(000) = 340
Triclinic, P1Dx = 1.236 Mg m3
a = 9.4182 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.102 (2) ÅCell parameters from 2459 reflections
c = 10.448 (2) Åθ = 2.1–27.9°
α = 66.25 (3)°µ = 0.08 mm1
β = 80.79 (3)°T = 293 K
γ = 71.18 (3)°Prism, colourless
V = 860.7 (3) Å30.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3001 independent reflections
Radiation source: fine-focus sealed tube2529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.1°
phi and ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1112
Tmin = 0.984, Tmax = 0.984l = 1212
8622 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.088H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.3734P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max < 0.001
3001 reflectionsΔρmax = 0.14 e Å3
219 parametersΔρmin = 0.17 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H20N2O2γ = 71.18 (3)°
Mr = 320.38V = 860.7 (3) Å3
Triclinic, P1Z = 2
a = 9.4182 (19) ÅMo Kα radiation
b = 10.102 (2) ŵ = 0.08 mm1
c = 10.448 (2) ÅT = 293 K
α = 66.25 (3)°0.20 × 0.20 × 0.20 mm
β = 80.79 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3001 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
2529 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.984Rint = 0.034
8622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.088219 parameters
wR(F2) = 0.161H-atom parameters constrained
S = 1.27Δρmax = 0.14 e Å3
3001 reflectionsΔρmin = 0.17 e Å3
Special details top

Experimental. Software + citation

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4982 (3)0.1871 (3)0.6026 (3)0.0711 (7)
O20.3392 (2)0.4909 (3)0.8542 (2)0.0661 (7)
N10.4156 (2)0.3369 (3)0.7299 (2)0.0452 (6)
N20.2678 (3)0.5867 (3)0.6284 (3)0.0491 (6)
C10.3407 (3)0.4728 (3)0.7458 (3)0.0483 (7)
C20.6580 (3)0.1972 (3)0.8500 (3)0.0431 (7)
C30.1828 (3)0.7346 (3)0.6372 (4)0.0596 (9)
H3A0.19600.81470.54940.072*
H3B0.22270.74670.71050.072*
C40.3402 (3)0.4340 (4)0.4937 (3)0.0562 (8)
H40.33700.42350.40990.067*
C50.2677 (3)0.5635 (4)0.5079 (3)0.0543 (8)
H50.21430.64220.43300.065*
C60.7652 (3)0.0843 (3)0.8165 (3)0.0529 (8)
H60.73580.01490.79730.064*
C70.4931 (3)0.2105 (3)0.8525 (3)0.0521 (8)
H7A0.48270.11700.85500.063*
H7B0.44510.22490.93720.063*
C80.2911 (3)0.7765 (3)0.7206 (3)0.0492 (8)
C90.4242 (3)0.3092 (4)0.6070 (3)0.0526 (8)
C100.0848 (4)0.8346 (4)0.5629 (3)0.0577 (8)
H100.05100.88440.47300.069*
C110.0171 (3)0.7490 (3)0.6673 (3)0.0473 (7)
C120.9150 (4)0.0739 (4)0.8113 (3)0.0614 (9)
H120.98540.00400.79010.074*
C130.0374 (4)0.6768 (4)0.7999 (3)0.0599 (9)
H130.02860.61890.87260.072*
C140.1891 (4)0.6899 (3)0.8254 (3)0.0582 (9)
H140.22310.63920.91500.070*
C150.9639 (4)0.1749 (4)0.8365 (3)0.0630 (10)
C160.4572 (3)0.7930 (4)0.7502 (4)0.0696 (10)
H16A0.50290.87700.77870.104*
H16B0.47120.70250.82350.104*
H16C0.50300.80990.66710.104*
C170.7049 (4)0.2967 (4)0.8803 (3)0.0601 (9)
H170.63490.37140.90640.072*
C180.2361 (4)0.8480 (4)0.5894 (4)0.0610 (9)
H180.30220.90660.51680.073*
C190.8569 (4)0.2856 (4)0.8720 (4)0.0717 (11)
H190.88690.35480.89090.086*
C201.1291 (4)0.1673 (6)0.8239 (4)0.1041 (16)
H20A1.18840.06360.86010.156*
H20B1.14620.21950.87640.156*
H20C1.15720.21370.72740.156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0713 (16)0.0577 (15)0.0837 (18)0.0011 (12)0.0192 (13)0.0334 (13)
O20.0646 (15)0.0773 (16)0.0552 (14)0.0105 (12)0.0044 (11)0.0303 (13)
N10.0379 (13)0.0480 (15)0.0434 (14)0.0112 (11)0.0041 (11)0.0106 (12)
N20.0424 (14)0.0438 (14)0.0534 (16)0.0082 (11)0.0015 (12)0.0138 (12)
C10.0381 (17)0.0513 (19)0.052 (2)0.0148 (14)0.0023 (14)0.0162 (16)
C20.0462 (17)0.0411 (16)0.0355 (15)0.0103 (14)0.0092 (13)0.0066 (13)
C30.0519 (19)0.0480 (19)0.076 (2)0.0136 (16)0.0004 (16)0.0216 (17)
C40.053 (2)0.057 (2)0.058 (2)0.0112 (17)0.0080 (16)0.0218 (17)
C50.0481 (19)0.058 (2)0.0452 (19)0.0149 (16)0.0077 (14)0.0052 (16)
C60.055 (2)0.0476 (18)0.0524 (19)0.0145 (15)0.0082 (15)0.0126 (15)
C70.0487 (18)0.0488 (18)0.0469 (18)0.0157 (15)0.0059 (14)0.0032 (14)
C80.0509 (19)0.0464 (18)0.0543 (19)0.0124 (15)0.0041 (15)0.0262 (15)
C90.0415 (18)0.054 (2)0.062 (2)0.0143 (16)0.0056 (15)0.0203 (17)
C100.059 (2)0.056 (2)0.0474 (19)0.0160 (16)0.0000 (15)0.0094 (16)
C110.0463 (17)0.0376 (16)0.0568 (19)0.0090 (14)0.0008 (15)0.0192 (14)
C120.052 (2)0.060 (2)0.054 (2)0.0038 (17)0.0051 (16)0.0103 (17)
C130.056 (2)0.060 (2)0.0489 (19)0.0025 (16)0.0081 (16)0.0143 (16)
C140.060 (2)0.054 (2)0.0499 (19)0.0094 (17)0.0092 (16)0.0181 (16)
C150.050 (2)0.073 (2)0.047 (2)0.0214 (19)0.0100 (15)0.0015 (17)
C160.053 (2)0.081 (3)0.083 (3)0.0202 (18)0.0078 (18)0.042 (2)
C170.058 (2)0.056 (2)0.068 (2)0.0105 (17)0.0118 (17)0.0254 (17)
C180.051 (2)0.070 (2)0.057 (2)0.0112 (17)0.0121 (16)0.0191 (18)
C190.075 (3)0.072 (2)0.079 (3)0.034 (2)0.024 (2)0.021 (2)
C200.055 (2)0.149 (4)0.084 (3)0.042 (3)0.010 (2)0.007 (3)
Geometric parameters (Å, º) top
O1—C91.221 (4)C8—C141.382 (4)
O2—C11.215 (3)C8—C161.513 (4)
N1—C11.390 (4)C10—C181.381 (4)
N1—C91.405 (4)C10—C111.378 (4)
N1—C71.478 (3)C10—H100.9300
N2—C51.370 (4)C11—C131.383 (4)
N2—C11.386 (4)C12—C151.371 (5)
N2—C31.482 (4)C12—H120.9300
C2—C171.376 (4)C13—C141.383 (4)
C2—C61.381 (4)C13—H130.9300
C2—C71.512 (4)C14—H140.9300
C3—C111.512 (4)C15—C191.375 (5)
C3—H3A0.9700C15—C201.520 (4)
C3—H3B0.9700C16—H16A0.9600
C4—C51.322 (4)C16—H16B0.9600
C4—C91.439 (4)C16—H16C0.9600
C4—H40.9300C17—C191.391 (4)
C5—H50.9300C17—H170.9300
C6—C121.375 (4)C18—H180.9300
C6—H60.9300C19—H190.9300
C7—H7A0.9700C20—H20A0.9600
C7—H7B0.9700C20—H20B0.9600
C8—C181.374 (4)C20—H20C0.9600
C1—N1—C9125.6 (3)C18—C10—C11121.3 (3)
C1—N1—C7117.3 (3)C18—C10—H10119.4
C9—N1—C7117.1 (3)C11—C10—H10119.4
C5—N2—C1121.7 (3)C10—C11—C13117.7 (3)
C5—N2—C3119.8 (3)C10—C11—C3120.8 (3)
C1—N2—C3118.5 (3)C13—C11—C3121.5 (3)
O2—C1—N2122.4 (3)C6—C12—C15122.0 (3)
O2—C1—N1122.7 (3)C6—C12—H12119.0
N2—C1—N1114.9 (3)C15—C12—H12119.0
C17—C2—C6118.5 (3)C14—C13—C11120.7 (3)
C17—C2—C7121.2 (3)C14—C13—H13119.6
C6—C2—C7120.3 (3)C11—C13—H13119.6
N2—C3—C11111.9 (2)C8—C14—C13121.5 (3)
N2—C3—H3A109.2C8—C14—H14119.3
C11—C3—H3A109.2C13—C14—H14119.3
N2—C3—H3B109.2C12—C15—C19117.3 (3)
C11—C3—H3B109.2C12—C15—C20121.7 (4)
H3A—C3—H3B107.9C19—C15—C20120.9 (4)
C5—C4—C9120.5 (3)C8—C16—H16A109.5
C5—C4—H4119.8C8—C16—H16B109.5
C9—C4—H4119.8H16A—C16—H16B109.5
C4—C5—N2122.8 (3)C8—C16—H16C109.5
C4—C5—H5118.6H16A—C16—H16C109.5
N2—C5—H5118.6H16B—C16—H16C109.5
C12—C6—C2120.5 (3)C2—C17—C19120.1 (3)
C12—C6—H6119.8C2—C17—H17120.0
C2—C6—H6119.8C19—C17—H17120.0
N1—C7—C2112.6 (2)C10—C18—C8121.4 (3)
N1—C7—H7A109.1C10—C18—H18119.3
C2—C7—H7A109.1C8—C18—H18119.3
N1—C7—H7B109.1C15—C19—C17121.6 (3)
C2—C7—H7B109.1C15—C19—H19119.2
H7A—C7—H7B107.8C17—C19—H19119.2
C18—C8—C14117.5 (3)C15—C20—H20A109.5
C18—C8—C16121.4 (3)C15—C20—H20B109.5
C14—C8—C16121.1 (3)H20A—C20—H20B109.5
O1—C9—N1120.2 (3)C15—C20—H20C109.5
O1—C9—C4125.3 (3)H20A—C20—H20C109.5
N1—C9—C4114.4 (3)H20B—C20—H20C109.5
C5—N2—C1—O2178.4 (3)C5—C4—C9—O1177.7 (3)
C3—N2—C1—O21.2 (4)C5—C4—C9—N12.5 (4)
C5—N2—C1—N11.6 (4)C18—C10—C11—C130.1 (5)
C3—N2—C1—N1178.9 (2)C18—C10—C11—C3179.8 (3)
C9—N1—C1—O2178.8 (3)N2—C3—C11—C10103.7 (3)
C7—N1—C1—O21.1 (4)N2—C3—C11—C1376.1 (4)
C9—N1—C1—N21.2 (4)C2—C6—C12—C151.1 (5)
C7—N1—C1—N2178.9 (2)C10—C11—C13—C140.5 (5)
C5—N2—C3—C1180.2 (3)C3—C11—C13—C14179.3 (3)
C1—N2—C3—C1197.2 (3)C18—C8—C14—C130.8 (5)
C9—C4—C5—N20.0 (5)C16—C8—C14—C13178.6 (3)
C1—N2—C5—C42.2 (4)C11—C13—C14—C80.9 (5)
C3—N2—C5—C4179.5 (3)C6—C12—C15—C192.1 (5)
C17—C2—C6—C121.1 (4)C6—C12—C15—C20177.1 (3)
C7—C2—C6—C12178.7 (3)C6—C2—C17—C192.3 (5)
C1—N1—C7—C295.8 (3)C7—C2—C17—C19177.5 (3)
C9—N1—C7—C284.1 (3)C11—C10—C18—C80.0 (5)
C17—C2—C7—N174.8 (4)C14—C8—C18—C100.3 (5)
C6—C2—C7—N1105.0 (3)C16—C8—C18—C10179.0 (3)
C1—N1—C9—O1177.0 (3)C12—C15—C19—C170.9 (5)
C7—N1—C9—O12.8 (4)C20—C15—C19—C17178.3 (3)
C1—N1—C9—C43.2 (4)C2—C17—C19—C151.3 (5)
C7—N1—C9—C4176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.503.430 (4)174
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC20H20N2O2
Mr320.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4182 (19), 10.102 (2), 10.448 (2)
α, β, γ (°)66.25 (3), 80.79 (3), 71.18 (3)
V3)860.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.984, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8622, 3001, 2529
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.161, 1.27
No. of reflections3001
No. of parameters219
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.503.430 (4)174.3
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

References

First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, F.-L. & Li, G.-C. (2006). Acta Cryst. E62, o3405–o3406.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds