metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m66-m67

mer-Bis[3,5-di­fluoro-2-(2-pyrid­yl)phenyl-κ2C1,N]{5-(2-pyridyl-κN)-3-[3-(4-vinyl­benz­yl­oxy)phen­yl]-1,2,4-triazol-1-ido}iridium(III) methanol solvate

aInstitut für Anorganische und Analytische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, bLabor für Elektrooptik am Institut für Hochfrequenztechnik, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and cInstitut für Organische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

(Received 4 December 2009; accepted 8 December 2009; online 16 December 2009)

In the title compound, [Ir(C11H6F2N)2(C22H17N4O)]·CH3OH, the coordination at iridium is essentially octa­hedral, but with distortions associated with the bite angles of the ligands [76.25 (9)–80.71 (12)°] and the differing trans influences of C and N ligands [Ir—N = 2.04 Å (average) trans to N but 2.14 Å trans to C]. All three bidentate ligands have coordinating ring systems that are almost coplanar [inter­planar angles = 1.7 (1)–3.8 (2)°]. The vinyl­benzyl group is disordered over two positions with occupations of 0.653 (4) and 0.347 (4). The methanol solvent mol­ecule is involved in a classical O—H⋯N hydrogen bond to a triazole N atom.

Related literature

For background to organic light-emitting diodes (OLEDs), see: Adachi et al. (2001[Adachi, C., Kwong, R. C., Djurovich, P., Adamovich, V., Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2001). Appl. Phys. Lett. 79, 2082-2084.]); Baldo et al. (1998[Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151-154.]); Burroughes et al. (1990[Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539-541.]); Chang et al. (2007[Chang, C.-J., Yang, C.-H., Chen, K., Chi, Y., Shu, C.-F., Ho, M.-L., Yeh, Y.-S. & Chou, P.-T. (2007). Dalton Trans. pp. 1881-1890.]); Coppo et al. (2004[Coppo, P., Plummer, E. A. & De Cola, L. (2004). Chem. Commun. pp. 1774-1775.]); Dedeian et al. (1991[Dedeian, K., Djurovich, P. I., Garces, F. O., Carlson, G. & Watts, R. J. (1991). Inorg. Chem. 30, 1685-1687.]); Dixon et al. (2000[Dixon, I. M., Collin, J.-P., Sauvage, J.-P., Flamigni, L., Encinas, S. & Barigelletti, F. (2000). Chem. Soc. Rev. 29, 385-391.]); Gong et al. (2002[Gong, X., Robinson, M. R., Ostrowski, J. C., Moses, D., Bazan, G. C. & Heeger, A. J. (2002). Adv. Mater. 14, 581-585.]); Grushin et al. (2001[Grushin, V. V., Herron, N., Le Cloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494-1495.]); Lamansky et al. (2001[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H.-E., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001). J. Am. Chem. Soc. 123, 4304-4312.]); Schütz et al. (2008[Schütz, C., Höfer, B., Jaiser, F., Krueger, H., Thesen, M., Janietz, S. & Köhler, A. (2008). Phys. Status Sol. B, 245, 810-813.]); Suzuki et al. (2005[Suzuki, M., Tokito, S. & Sato, F. (2005). Appl. Phys. Lett. 86, 103507.]); Tang & VanSlyke (1987[Tang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.]); You & Park (2005[You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438-12439.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C11H6F2N)2(C22H17N4O)]·CH4O

  • Mr = 957.97

  • Triclinic, [P \overline 1]

  • a = 9.8934 (1) Å

  • b = 12.3039 (2) Å

  • c = 16.8933 (3) Å

  • α = 81.7429 (14)°

  • β = 83.2858 (11)°

  • γ = 69.9647 (14)°

  • V = 1906.82 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.57 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.848, Tmax = 1.000

  • 53102 measured reflections

  • 10448 independent reflections

  • 8442 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.064

  • S = 0.93

  • 10448 reflections

  • 538 parameters

  • 69 restraints

  • H-atom parameters constrained

  • Δρmax = 2.18 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å)

Ir—C11 2.010 (3)
Ir—C22 2.012 (3)
Ir—N1 2.033 (2)
Ir—N2 2.049 (2)
Ir—N4 2.118 (2)
Ir—N3 2.158 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O99—H99⋯N6 0.84 2.04 2.853 (3) 164
C24—H24⋯O99 0.95 2.49 3.368 (4) 154
C31—H31⋯O99 0.95 2.66 3.587 (4) 164

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since Tang and VanSlyke (1987) reported on the first organic light-emitting diode (OLED) based on the electroluminescence of tris(8-hydroxyquinoline)aluminium, and Burroughes et al. (1990) discovered a device with an electroluminescent organic polymer (PLED), OLEDs have attracted much attention because of their application in flat-panel and large-area displays (Burroughes et al., 1990; Tang & VanSlyke, 1987). By incorporation of phosphorescent organometallic complexes of transition metals with a strong spin-orbit coupling, electroluminescent quantum efficiencies up to 100% can be achieved (Baldo et al., 1998; Gong et al., 2002). Among these heavy metals, iridium(III)-based complexes are especially attractive because of their highly tunable emission colors and relatively short phosphorescence lifetimes (Dixon et al., 2000; Lamansky et al., 2001).

Homo- and heteroleptic iridium(III) complexes are versatile and readily available. The emission colour of heteroleptic complexes can be tuned by varying the two monoanionic cyclometalating ligands (Dedeian et al., 1991; Grushin et al., 2001) and/or the third ligand (Chang et al., 2007; You et al., 2005). For example, the replacement of the picolinate by a triazolylpyridine ligand in the well known "blue" emitting FIrpic leads to a hypsochromically shifted phosphorescence (Adachi et al., 2001; Coppo et al., 2004).

In terms of large scale fabrication, the easiness and inexpensiveness of wet processes such as spin coating, dip coating or ink-jet printing of PLEDs represent important advantages over vacuum techniques. Chemically attaching emitter moieties to the polymer matrix can prevent degradation processes clearly caused by phase separation (Suzuki et al., 2005). Furthermore, the covalent attachment also prevents cascading energy transfer through steric shielding (Schütz et al., 2008).

In this contribution, we report the structure of a styrene-functionalized, cyan-emitting complex that can be incorporated in an ambipolar polymer approach (Suzuki et al., 2005). The structure of the title complex, which crystallizes as a methanol solvate, is shown in Fig. 1. The vinylbenzyl group is disordered over two positions with occupations 0.653 (4), 0.347 (4); this is shown in Fig. 2. The coordination at iridium is essentially octahedral, but with some distortions associated with the restricted bite of the bidentate ligands; C11—Ir—N1 80.20 (11), C22—Ir —N2 80.71 (12), and N4—Ir—N3 76.25 (9)°. All five-membered chelate rings are planar (max. r.m.s.d. 0.019 Å) and mutually perpendicular (max. deviation 3°). Interplanar angles between the coordinating rings of each ligand are small: 3.8 (2)° in the ligand based on N1/C11, 3.4 (2)° for N2/C22, and 1.7 (1)° for N3/N4.

The bond lengths, Table 1, at Ir reflect the different trans influences of C and N ligands, although the significant difference between the two Ir—N bond lengths trans to C has no obvious explanation.

Hydrogen bonds are listed in Table 2. The methanol molecule is linked to an N atom of the triazole ring via a classical H bond. The contacts H24···O99 and H31···O99 may also be interpreted as weak H bonds within the asymmetric unit, but are not drawn explicitly in Fig. 1.

Related literature top

For background to organic light-emitting diodes (OLEDs), see: Adachi et al. (2001); Baldo et al. (1998); Burroughes et al. (1990); Chang et al. (2007); Coppo et al. (2004); Dedeian et al. (1991); Dixon et al. (2000); Gong et al. (2002); Grushin et al. (2001); Lamansky et al. (2001); Schütz et al. (2008); Suzuki et al. (2005); Tang & VanSlyke (1987); You & Park (2005).

Experimental top

A suspension of bis[3,5-difluoro-2-(pyridin-2-yl-κN)phenyl]-[3-(3-hydroxyphenyl)-5-(pyridin-2-yl-κN)-1,2,4-triazol-1-yl]-iridium(III) (400 mg, 494 µmol) in dry DMF (5 ml) was treated with sodium hydride (60% dispersion in mineral oil, 40 mg, 988 µmol) and stirred for 30 min at room temperature. 1-(Chloromethyl)-4-vinylbenzene (151 mg, 988 µmol) was added and stirred for 1 d at room temperature. The solvent was removed under reduced pressure at 373 K. The product was isolated from the residue by flash chromatography on silica gel (dichloromethane/acetone 4:1; Rf = 0.40) as a yellow solid (255 mg, 56%). Single crystals were grown from dichloromethane/methanol solution. Elemental analysis: calculated for C44H29F4IrN6O: C 57.07, H 3.16, N 9.08%; found: C 57.06, H 3.04, N 8.82%.

Refinement top

Methyl- and hydroxyl-H atoms were identified in a difference synthesis and refined as idealized rigid groups allowed to rotate but not tip (C—H 0.98, O—H 0.84 Å, H—C—H and C—O—H angles 109.5°). These U(H) values were fixed at 1.5 × Ueq(C) of the parent C or O atom. Other hydrogen atoms were included at calculated positions using a riding model with C—H distances in Å as follows; aromatic C—H and CCH2 0.95, methylene 0.99. These U(H) values were fixed at 1.2 × Ueq(C) of the parent C atom.

The atoms C36–C44 (the vinylbenzyl group) are disordered over two positions rotated about the O—C32 bond, with refined occupancies 0.653 (4) and 0.347 (4). The less occupied group was refined isotropically. For the disordered group, rigid idealized aromatic rings (C—C 1.395, C—H 0.95 Å and all angles 120°), similarity restraints and and a system of restraints to U values were employed to improve refinement stability, but nevertheless the dimensions of the disordered group should be interpreted with caution.

There are several peaks of 1.5–2.2 e Å-3 ca 0.8 Å from the Ir atom; these may reasonably be attributed to residual absorption errors.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title complex. Displacement ellipsoids represent 50% probability levels. The dashed line represents the classical H bond H99···N6. The minor disorder component is omitted.
[Figure 2] Fig. 2. Detail of the structure, showing both disorder components of the vinylbenzyl group. Atoms C32 and O are ordered. The minor component is shown as dashed bonds/atoms. Only the major component is labelled.
mer-Bis[3,5-difluoro-2-(2-pyridyl)phenyl-κ2C1,N]{5- (2-pyridyl-κN)-3-[3-(4-vinylbenzyloxy)phenyl]-1,2,4-triazol-1- ido}iridium(III) methanol solvate top
Crystal data top
[Ir(C11H6F2N)2(C22H17N4O)]·CH4OZ = 2
Mr = 957.97F(000) = 948
Triclinic, P1Dx = 1.668 Mg m3
Hall symbol: -P 1Melting point: 560 K
a = 9.8934 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3039 (2) ÅCell parameters from 25891 reflections
c = 16.8933 (3) Åθ = 2.0–30.7°
α = 81.7429 (14)°µ = 3.57 mm1
β = 83.2858 (11)°T = 100 K
γ = 69.9647 (14)°Prism, yellow
V = 1906.82 (5) Å30.20 × 0.15 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
10448 independent reflections
Radiation source: Enhance (Mo) X-ray Source8442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1419 pixels mm-1θmax = 29.6°, θmin = 2.0°
ω scanh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1717
Tmin = 0.848, Tmax = 1.000l = 2323
53102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0374P)2]
where P = (Fo2 + 2Fc2)/3
10448 reflections(Δ/σ)max = 0.028
538 parametersΔρmax = 2.18 e Å3
69 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Ir(C11H6F2N)2(C22H17N4O)]·CH4Oγ = 69.9647 (14)°
Mr = 957.97V = 1906.82 (5) Å3
Triclinic, P1Z = 2
a = 9.8934 (1) ÅMo Kα radiation
b = 12.3039 (2) ŵ = 3.57 mm1
c = 16.8933 (3) ÅT = 100 K
α = 81.7429 (14)°0.20 × 0.15 × 0.10 mm
β = 83.2858 (11)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
10448 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
8442 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 1.000Rint = 0.034
53102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02969 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 0.93Δρmax = 2.18 e Å3
10448 reflectionsΔρmin = 0.84 e Å3
538 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.2255 (0.0106) x + 5.5173 (0.0081) y + 15.8973 (0.0047) z = 8.4546 (0.0089)

* -0.0191 (0.0010) Ir * 0.0215 (0.0015) N3 * 0.0244 (0.0015) N4 * -0.0109 (0.0018) C23 * -0.0159 (0.0018) C28

Rms deviation of fitted atoms = 0.0190

- 5.0032 (0.0075) x + 7.5842 (0.0079) y - 2.6742 (0.0193) z = 0.8875 (0.0113)

Angle to previous plane (with approximate e.s.d.) = 88.07 (0.08)

* -0.0017 (0.0011) Ir * -0.0003 (0.0016) N1 * 0.0030 (0.0019) C1 * -0.0050 (0.0018) C6 * 0.0041 (0.0015) C11

Rms deviation of fitted atoms = 0.0033

8.0059 (0.0047) x + 7.0413 (0.0123) y - 6.0961 (0.0152) z = 9.2723 (0.0097)

Angle to previous plane (with approximate e.s.d.) = 87.21 (0.07)

* -0.0001 (0.0011) Ir * 0.0052 (0.0015) N2 * -0.0092 (0.0018) C12 * 0.0091 (0.0019) C17 * -0.0051 (0.0016) C22

Rms deviation of fitted atoms = 0.0066

- 4.9239 (0.0124) x + 7.5102 (0.0143) y - 3.5667 (0.0238) z = 0.6667 (0.0227)

Angle to previous plane (with approximate e.s.d.) = 88.93 (0.09)

* -0.0051 (0.0020) N1 * 0.0097 (0.0022) C1 * -0.0065 (0.0026) C2 * -0.0011 (0.0029) C3 * 0.0057 (0.0026) C4 * -0.0027 (0.0022) C5

Rms deviation of fitted atoms = 0.0058

- 5.0855 (0.0105) x + 7.5155 (0.0121) y - 2.5377 (0.0215) z = 0.7805 (0.0195)

Angle to previous plane (with approximate e.s.d.) = 3.74 (0.23)

* -0.0030 (0.0020) C6 * -0.0032 (0.0024) C7 * 0.0061 (0.0024) C8 * -0.0028 (0.0023) C9 * -0.0034 (0.0021) C10 * 0.0063 (0.0019) C11

Rms deviation of fitted atoms = 0.0044

7.8608 (0.0075) x + 6.9324 (0.0128) y - 6.5592 (0.0188) z = 9.0941 (0.0078)

Angle to previous plane (with approximate e.s.d.) = 87.00 (0.09)

* -0.0057 (0.0019) N2 * 0.0051 (0.0020) C12 * -0.0006 (0.0023) C13 * -0.0035 (0.0023) C14 * 0.0030 (0.0022) C15 * 0.0016 (0.0021) C16

Rms deviation of fitted atoms = 0.0037

8.1881 (0.0069) x + 6.6251 (0.0132) y - 6.0523 (0.0203) z = 9.0428 (0.0130)

Angle to previous plane (with approximate e.s.d.) = 3.41 (0.18)

* 0.0009 (0.0020) C17 * 0.0004 (0.0022) C18 * -0.0039 (0.0023) C19 * 0.0060 (0.0024) C20 * -0.0045 (0.0022) C21 * 0.0010 (0.0021) C22

Rms deviation of fitted atoms = 0.0035

3.1752 (0.0118) x + 5.2258 (0.0137) y + 16.0284 (0.0067) z = 8.3218 (0.0125)

Angle to previous plane (with approximate e.s.d.) = 85.49 (0.09)

* -0.0036 (0.0019) N3 * -0.0039 (0.0020) C23 * 0.0076 (0.0022) C24 * -0.0040 (0.0023) C25 * -0.0033 (0.0022) C26 * 0.0073 (0.0020) C27

Rms deviation of fitted atoms = 0.0053

3.4499 (0.0143) x + 5.2695 (0.0146) y + 15.9354 (0.0080) z = 8.4866 (0.0099)

Angle to previous plane (with approximate e.s.d.) = 1.70 (0.14)

* -0.0012 (0.0016) N4 * -0.0019 (0.0016) N5 * -0.0046 (0.0016) N6 * 0.0036 (0.0016) C28 * 0.0040 (0.0017) C29

Rms deviation of fitted atoms = 0.0033

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir0.714159 (11)0.644989 (9)0.161874 (7)0.02659 (4)
N10.7504 (3)0.7041 (2)0.26105 (15)0.0309 (5)
N20.6692 (2)0.6055 (2)0.05631 (14)0.0297 (5)
N30.8732 (2)0.4767 (2)0.19058 (14)0.0278 (5)
N40.5913 (2)0.5443 (2)0.22449 (14)0.0290 (5)
N50.4497 (3)0.5607 (2)0.24969 (15)0.0313 (5)
N60.5827 (3)0.3722 (2)0.28304 (14)0.0305 (5)
F11.0571 (2)0.8804 (2)0.19271 (14)0.0637 (6)
F21.0605 (2)0.7954 (2)0.06767 (12)0.0556 (5)
F30.3418 (2)0.9040 (2)0.04453 (13)0.0608 (6)
F40.3587 (2)1.08740 (17)0.17490 (17)0.0701 (7)
O0.2211 (3)0.1772 (2)0.41368 (14)0.0503 (6)
C10.8454 (3)0.7639 (3)0.25172 (19)0.0363 (7)
C20.8715 (4)0.8095 (3)0.3164 (2)0.0513 (9)
H20.93970.84940.31010.062*
C30.7979 (5)0.7970 (4)0.3901 (2)0.0625 (11)
H30.81470.82900.43440.075*
C40.7006 (4)0.7383 (3)0.3989 (2)0.0521 (10)
H40.64890.72960.44910.063*
C50.6797 (3)0.6927 (3)0.33407 (19)0.0386 (7)
H50.61300.65140.34030.046*
C60.9075 (3)0.7745 (2)0.16876 (18)0.0319 (6)
C71.0059 (4)0.8317 (3)0.1408 (2)0.0425 (8)
C81.0578 (4)0.8414 (3)0.0622 (2)0.0434 (8)
H81.12400.88190.04450.052*
C91.0087 (3)0.7895 (3)0.0103 (2)0.0400 (8)
C100.9111 (3)0.7311 (3)0.03312 (18)0.0323 (7)
H100.88070.69670.00520.039*
C110.8574 (3)0.7232 (2)0.11339 (18)0.0280 (6)
C120.5624 (3)0.6896 (3)0.01559 (19)0.0351 (7)
C130.5223 (4)0.6677 (3)0.0547 (2)0.0455 (9)
H130.44750.72600.08250.055*
C140.5895 (4)0.5627 (4)0.0848 (2)0.0479 (9)
H140.56140.54800.13300.058*
C150.6979 (4)0.4792 (3)0.04409 (19)0.0416 (8)
H150.74640.40620.06390.050*
C160.7347 (3)0.5033 (3)0.02574 (18)0.0347 (7)
H160.80960.44550.05370.042*
C170.5012 (3)0.7966 (3)0.05579 (19)0.0356 (7)
C180.3976 (3)0.8979 (3)0.0267 (2)0.0442 (9)
C190.3463 (3)0.9952 (3)0.0644 (3)0.0518 (10)
H190.27431.06330.04310.062*
C200.4042 (4)0.9899 (3)0.1353 (3)0.0510 (10)
C210.5066 (3)0.8936 (3)0.1702 (2)0.0406 (8)
H210.54150.89440.22010.049*
C220.5573 (3)0.7946 (2)0.12954 (19)0.0329 (7)
C230.8215 (3)0.3924 (2)0.22827 (16)0.0276 (6)
C240.9108 (3)0.2797 (3)0.24803 (19)0.0346 (7)
H240.87220.22260.27530.042*
C251.0571 (3)0.2515 (3)0.2275 (2)0.0390 (8)
H251.12010.17420.23970.047*
C261.1106 (3)0.3365 (3)0.18928 (19)0.0354 (7)
H261.21090.31850.17480.042*
C271.0169 (3)0.4480 (3)0.17215 (17)0.0314 (6)
H271.05470.50650.14650.038*
C280.6655 (3)0.4329 (2)0.24554 (16)0.0273 (6)
C290.4508 (3)0.4553 (3)0.28467 (17)0.0308 (6)
C300.3195 (3)0.4309 (3)0.32093 (18)0.0336 (7)
C310.3315 (4)0.3168 (3)0.35168 (18)0.0379 (7)
H310.42260.25690.34860.045*
C320.2111 (4)0.2905 (3)0.38664 (19)0.0432 (8)
C330.0807 (4)0.3776 (3)0.3946 (2)0.0469 (9)
H330.00070.36050.42150.056*
C340.0688 (4)0.4897 (3)0.3636 (2)0.0487 (9)
H340.02190.54960.36840.058*
C350.1860 (3)0.5171 (3)0.3254 (2)0.0429 (8)
H350.17510.59450.30230.052*
C360.3592 (7)0.0866 (5)0.4007 (4)0.071 (2)0.653 (4)
H36A0.42990.09180.43570.085*0.653 (4)
H36B0.39730.09540.34420.085*0.653 (4)
C370.3348 (5)0.0286 (3)0.4204 (2)0.0622 (19)0.653 (4)
C380.3438 (5)0.0840 (3)0.49835 (19)0.072 (2)0.653 (4)
H380.36330.04820.53990.086*0.653 (4)
C390.3242 (6)0.1918 (3)0.51547 (16)0.0604 (19)0.653 (4)
H390.33030.22960.56870.072*0.653 (4)
C400.2956 (6)0.2442 (3)0.4547 (2)0.0362 (13)0.653 (4)
C410.2867 (6)0.1888 (3)0.37680 (19)0.0527 (18)0.653 (4)
H410.26720.22460.33530.063*0.653 (4)
C420.3063 (5)0.0810 (3)0.35967 (17)0.0585 (16)0.653 (4)
H420.30020.04320.30640.070*0.653 (4)
C430.2863 (11)0.3593 (5)0.4678 (4)0.0501 (18)0.653 (4)
H430.25940.38600.42400.060*0.653 (4)
C440.311 (2)0.4304 (10)0.5326 (6)0.080 (4)0.653 (4)
H44A0.33780.40820.57820.096*0.653 (4)
H44B0.30110.50510.53460.096*0.653 (4)
C36'0.0909 (11)0.1407 (8)0.4352 (7)0.049 (3)*0.347 (4)
H36C0.04320.16760.48710.059*0.347 (4)
H36D0.02100.17470.39360.059*0.347 (4)
C37'0.1405 (9)0.0112 (6)0.4411 (5)0.049 (3)*0.347 (4)
C38'0.1309 (12)0.0504 (9)0.5161 (5)0.143 (8)*0.347 (4)
H38'0.08590.00990.56110.172*0.347 (4)
C39'0.1870 (14)0.1713 (9)0.5251 (6)0.103 (6)*0.347 (4)
H39'0.18040.21340.57630.124*0.347 (4)
C40'0.2528 (13)0.2305 (6)0.4592 (8)0.073 (5)*0.347 (4)
C41'0.2625 (12)0.1689 (8)0.3843 (6)0.076 (5)*0.347 (4)
H41'0.30740.20940.33930.091*0.347 (4)
C42'0.2063 (10)0.0480 (8)0.3753 (4)0.078 (4)*0.347 (4)
H42'0.21290.00590.32400.093*0.347 (4)
C43'0.325 (3)0.3545 (13)0.4677 (15)0.087 (7)*0.347 (4)
H43'0.38180.38680.42200.105*0.347 (4)
C44'0.321 (5)0.427 (3)0.5311 (19)0.115 (11)*0.347 (4)
H44C0.26570.39910.57850.137*0.347 (4)
H44D0.37290.50740.53020.137*0.347 (4)
O990.6874 (3)0.1238 (2)0.30300 (14)0.0464 (6)
H990.65000.19560.30650.070*
C990.6872 (4)0.1023 (3)0.2235 (2)0.0543 (10)
H99A0.58920.13730.20570.081*
H99B0.72000.01810.22070.081*
H99C0.75210.13630.18870.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir0.02141 (6)0.02302 (6)0.02931 (6)0.00108 (4)0.00057 (4)0.00128 (4)
N10.0286 (13)0.0270 (12)0.0314 (13)0.0031 (10)0.0062 (10)0.0068 (10)
N20.0231 (12)0.0330 (13)0.0301 (13)0.0088 (10)0.0002 (10)0.0029 (10)
N30.0265 (12)0.0274 (12)0.0243 (12)0.0014 (10)0.0016 (10)0.0058 (10)
N40.0239 (12)0.0281 (12)0.0303 (13)0.0033 (10)0.0020 (10)0.0047 (10)
N50.0249 (12)0.0309 (13)0.0327 (13)0.0040 (10)0.0049 (10)0.0045 (11)
N60.0328 (13)0.0285 (13)0.0276 (13)0.0063 (11)0.0008 (10)0.0063 (10)
F10.0689 (15)0.0842 (17)0.0595 (14)0.0496 (13)0.0101 (11)0.0284 (12)
F20.0598 (13)0.0782 (15)0.0380 (11)0.0407 (12)0.0111 (9)0.0034 (10)
F30.0347 (11)0.0685 (15)0.0649 (14)0.0097 (10)0.0156 (10)0.0293 (12)
F40.0377 (12)0.0281 (10)0.130 (2)0.0050 (9)0.0069 (12)0.0134 (12)
O0.0573 (16)0.0502 (15)0.0440 (14)0.0271 (13)0.0128 (12)0.0028 (12)
C10.0388 (17)0.0300 (16)0.0372 (17)0.0073 (14)0.0014 (14)0.0077 (13)
C20.069 (3)0.048 (2)0.044 (2)0.0274 (19)0.0065 (18)0.0164 (17)
C30.096 (3)0.057 (2)0.043 (2)0.033 (2)0.010 (2)0.0255 (19)
C40.071 (3)0.042 (2)0.0359 (19)0.0122 (19)0.0165 (18)0.0122 (16)
C50.0410 (18)0.0311 (16)0.0369 (18)0.0055 (14)0.0063 (14)0.0054 (14)
C60.0295 (15)0.0282 (15)0.0336 (16)0.0035 (12)0.0008 (12)0.0059 (12)
C70.0404 (18)0.0448 (19)0.047 (2)0.0172 (15)0.0001 (15)0.0161 (16)
C80.0368 (18)0.048 (2)0.050 (2)0.0239 (16)0.0080 (15)0.0068 (16)
C90.0335 (17)0.0463 (19)0.0365 (18)0.0123 (15)0.0043 (14)0.0009 (15)
C100.0277 (15)0.0326 (16)0.0318 (16)0.0048 (13)0.0027 (12)0.0010 (13)
C110.0180 (13)0.0250 (14)0.0345 (16)0.0005 (11)0.0019 (11)0.0009 (12)
C120.0235 (14)0.0431 (18)0.0361 (17)0.0141 (13)0.0002 (12)0.0097 (14)
C130.0363 (18)0.066 (2)0.0328 (18)0.0220 (17)0.0084 (14)0.0149 (17)
C140.046 (2)0.078 (3)0.0270 (17)0.032 (2)0.0020 (15)0.0029 (17)
C150.0393 (18)0.057 (2)0.0326 (17)0.0235 (17)0.0059 (14)0.0073 (15)
C160.0341 (16)0.0377 (17)0.0314 (16)0.0122 (14)0.0007 (13)0.0031 (13)
C170.0204 (14)0.0355 (16)0.0441 (18)0.0086 (12)0.0003 (13)0.0146 (14)
C180.0219 (15)0.046 (2)0.056 (2)0.0112 (14)0.0027 (14)0.0210 (17)
C190.0171 (15)0.0383 (19)0.085 (3)0.0022 (14)0.0017 (17)0.0209 (19)
C200.0277 (17)0.0284 (17)0.088 (3)0.0052 (14)0.0141 (18)0.0027 (18)
C210.0200 (14)0.0293 (16)0.065 (2)0.0011 (12)0.0024 (14)0.0042 (15)
C220.0217 (14)0.0242 (14)0.0462 (18)0.0054 (12)0.0058 (13)0.0048 (13)
C230.0273 (14)0.0277 (14)0.0245 (14)0.0049 (12)0.0012 (11)0.0055 (11)
C240.0350 (17)0.0254 (15)0.0373 (17)0.0033 (13)0.0004 (13)0.0032 (13)
C250.0361 (17)0.0276 (15)0.0423 (19)0.0033 (13)0.0005 (14)0.0056 (14)
C260.0261 (15)0.0337 (16)0.0366 (17)0.0019 (13)0.0016 (13)0.0057 (13)
C270.0278 (15)0.0331 (16)0.0302 (16)0.0060 (13)0.0006 (12)0.0056 (12)
C280.0309 (15)0.0255 (14)0.0230 (14)0.0057 (12)0.0013 (11)0.0063 (11)
C290.0295 (15)0.0316 (15)0.0279 (15)0.0062 (13)0.0018 (12)0.0056 (12)
C300.0331 (16)0.0379 (17)0.0293 (16)0.0115 (14)0.0016 (13)0.0059 (13)
C310.0436 (18)0.0378 (17)0.0288 (16)0.0116 (14)0.0020 (13)0.0011 (13)
C320.056 (2)0.046 (2)0.0288 (17)0.0224 (18)0.0034 (15)0.0023 (15)
C330.050 (2)0.058 (2)0.0375 (19)0.0283 (19)0.0085 (16)0.0067 (17)
C340.0362 (19)0.049 (2)0.056 (2)0.0108 (16)0.0059 (16)0.0080 (18)
C350.0360 (18)0.0375 (18)0.052 (2)0.0119 (15)0.0064 (15)0.0042 (16)
C360.102 (5)0.037 (3)0.062 (4)0.024 (3)0.041 (4)0.008 (3)
C370.099 (5)0.034 (3)0.046 (3)0.021 (3)0.027 (3)0.008 (2)
C380.141 (7)0.052 (4)0.034 (3)0.052 (4)0.011 (4)0.011 (3)
C390.122 (6)0.042 (3)0.022 (3)0.035 (3)0.007 (3)0.002 (2)
C400.053 (4)0.033 (3)0.025 (3)0.017 (2)0.000 (2)0.0018 (18)
C410.072 (4)0.045 (3)0.029 (3)0.005 (3)0.000 (3)0.004 (2)
C420.070 (4)0.040 (3)0.046 (3)0.003 (3)0.005 (3)0.001 (2)
C430.077 (6)0.050 (3)0.035 (3)0.031 (3)0.011 (3)0.009 (2)
C440.170 (11)0.059 (5)0.039 (4)0.079 (6)0.002 (4)0.002 (3)
O990.0594 (16)0.0366 (13)0.0406 (13)0.0142 (12)0.0046 (11)0.0005 (10)
C990.073 (3)0.044 (2)0.050 (2)0.0206 (19)0.0161 (19)0.0038 (17)
Geometric parameters (Å, º) top
Ir—C112.010 (3)C24—C251.381 (4)
Ir—C222.012 (3)C24—H240.9500
Ir—N12.033 (2)C25—C261.377 (5)
Ir—N22.049 (2)C25—H250.9500
Ir—N42.118 (2)C26—C271.379 (4)
Ir—N32.158 (2)C26—H260.9500
N1—C51.359 (4)C27—H270.9500
N1—C11.361 (4)C29—C301.476 (4)
N2—C161.348 (4)C30—C351.384 (4)
N2—C121.370 (4)C30—C311.395 (4)
N3—C271.352 (4)C31—C321.385 (5)
N3—C231.356 (4)C31—H310.9500
N4—C281.332 (3)C32—C331.373 (5)
N4—N51.370 (3)C33—C341.373 (5)
N5—C291.342 (4)C33—H330.9500
N6—C281.339 (4)C34—C351.380 (5)
N6—C291.355 (4)C34—H340.9500
F1—C71.359 (4)C35—H350.9500
F2—C91.357 (4)C36—C371.503 (6)
F3—C181.363 (4)C36—H36A0.9900
F4—C201.371 (4)C36—H36B0.9900
O—C321.375 (4)C37—C381.3900
O—C361.454 (6)C37—C421.3900
O—C36'1.495 (11)C38—C391.3900
C1—C21.385 (5)C38—H380.9500
C1—C61.469 (4)C39—C401.3900
C2—C31.383 (5)C39—H390.9500
C2—H20.9500C40—C411.3900
C3—C41.372 (6)C40—C431.435 (6)
C3—H30.9500C41—C421.3900
C4—C51.367 (5)C41—H410.9500
C4—H40.9500C42—H420.9500
C5—H50.9500C43—C441.290 (9)
C6—C71.390 (4)C43—H430.9500
C6—C111.418 (4)C44—H44A0.9500
C7—C81.371 (5)C44—H44B0.9500
C8—C91.373 (5)C36'—C37'1.490 (10)
C8—H80.9500C36'—H36C0.9900
C9—C101.381 (4)C36'—H36D0.9900
C10—C111.400 (4)C37'—C38'1.3900
C10—H100.9500C37'—C42'1.3900
C12—C131.383 (5)C38'—C39'1.3900
C12—C171.475 (5)C38'—H38'0.9500
C13—C141.376 (5)C39'—C40'1.3900
C13—H130.9500C39'—H39'0.9500
C14—C151.376 (5)C40'—C41'1.3900
C14—H140.9500C40'—C43'1.439 (14)
C15—C161.374 (4)C41'—C42'1.3900
C15—H150.9500C41'—H41'0.9500
C16—H160.9500C42'—H42'0.9500
C17—C181.382 (4)C43'—C44'1.296 (16)
C17—C221.416 (5)C43'—H43'0.9500
C18—C191.351 (5)C44'—H44C0.9500
C19—C201.370 (6)C44'—H44D0.9500
C19—H190.9500O99—C991.406 (4)
C20—C211.377 (5)O99—H990.8400
C21—C221.395 (4)C99—H99A0.9800
C21—H210.9500C99—H99B0.9800
C23—C241.382 (4)C99—H99C0.9800
C23—C281.457 (4)
C11—Ir—C2287.62 (11)C25—C24—H24120.5
C11—Ir—N180.20 (11)C23—C24—H24120.5
C22—Ir—N193.29 (12)C26—C25—C24119.3 (3)
C11—Ir—N296.44 (11)C26—C25—H25120.3
C22—Ir—N280.71 (12)C24—C25—H25120.3
N1—Ir—N2173.28 (9)C25—C26—C27119.3 (3)
C11—Ir—N4170.49 (10)C25—C26—H26120.3
C22—Ir—N4101.08 (10)C27—C26—H26120.3
N1—Ir—N495.35 (10)N3—C27—C26122.2 (3)
N2—Ir—N488.81 (9)N3—C27—H27118.9
C11—Ir—N395.37 (10)C26—C27—H27118.9
C22—Ir—N3174.78 (11)N4—C28—N6113.2 (2)
N1—Ir—N391.44 (9)N4—C28—C23118.7 (3)
N2—Ir—N394.68 (9)N6—C28—C23128.1 (3)
N4—Ir—N376.25 (9)N5—C29—N6114.3 (3)
C5—N1—C1118.9 (3)N5—C29—C30123.2 (3)
C5—N1—Ir123.7 (2)N6—C29—C30122.5 (3)
C1—N1—Ir117.3 (2)C35—C30—C31119.2 (3)
C16—N2—C12118.7 (3)C35—C30—C29122.3 (3)
C16—N2—Ir124.8 (2)C31—C30—C29118.5 (3)
C12—N2—Ir116.5 (2)C32—C31—C30120.2 (3)
C27—N3—C23118.1 (2)C32—C31—H31119.9
C27—N3—Ir125.9 (2)C30—C31—H31119.9
C23—N3—Ir115.98 (18)C33—C32—O119.6 (3)
C28—N4—N5107.2 (2)C33—C32—C31120.0 (3)
C28—N4—Ir115.38 (18)O—C32—C31120.4 (3)
N5—N4—Ir137.37 (18)C32—C33—C34119.6 (3)
C29—N5—N4103.8 (2)C32—C33—H33120.2
C28—N6—C29101.5 (2)C34—C33—H33120.2
C32—O—C36118.1 (3)C33—C34—C35121.3 (3)
C32—O—C36'122.2 (4)C33—C34—H34119.3
C36—O—C36'117.7 (5)C35—C34—H34119.3
N1—C1—C2120.2 (3)C30—C35—C34119.5 (3)
N1—C1—C6112.8 (3)C30—C35—H35120.3
C2—C1—C6127.0 (3)C34—C35—H35120.3
C3—C2—C1119.8 (4)O—C36—C37107.5 (4)
C3—C2—H2120.1O—C36—H36A110.2
C1—C2—H2120.1C37—C36—H36A110.2
C4—C3—C2119.8 (4)O—C36—H36B110.2
C4—C3—H3120.1C37—C36—H36B110.2
C2—C3—H3120.1H36A—C36—H36B108.5
C5—C4—C3118.6 (3)C38—C37—C42120.0
C5—C4—H4120.7C38—C37—C36120.6 (4)
C3—C4—H4120.7C42—C37—C36119.4 (4)
N1—C5—C4122.6 (3)C37—C38—C39120.0
N1—C5—H5118.7C37—C38—H38120.0
C4—C5—H5118.7C39—C38—H38120.0
C7—C6—C11118.7 (3)C40—C39—C38120.0
C7—C6—C1126.0 (3)C40—C39—H39120.0
C11—C6—C1115.4 (3)C38—C39—H39120.0
F1—C7—C8116.5 (3)C39—C40—C41120.0
F1—C7—C6120.0 (3)C39—C40—C43122.2 (3)
C8—C7—C6123.5 (3)C41—C40—C43117.6 (3)
C7—C8—C9116.4 (3)C42—C41—C40120.0
C7—C8—H8121.8C42—C41—H41120.0
C9—C8—H8121.8C40—C41—H41120.0
F2—C9—C8117.8 (3)C41—C42—C37120.0
F2—C9—C10118.5 (3)C41—C42—H42120.0
C8—C9—C10123.7 (3)C37—C42—H42120.0
C9—C10—C11119.4 (3)C44—C43—C40127.1 (7)
C9—C10—H10120.3C44—C43—H43116.5
C11—C10—H10120.3C40—C43—H43116.5
C10—C11—C6118.3 (3)C43—C44—H44A120.0
C10—C11—Ir127.3 (2)C43—C44—H44B120.0
C6—C11—Ir114.3 (2)H44A—C44—H44B120.0
N2—C12—C13119.8 (3)C37'—C36'—O107.3 (7)
N2—C12—C17112.7 (3)C37'—C36'—H36C110.2
C13—C12—C17127.5 (3)O—C36'—H36C110.2
C14—C13—C12120.8 (3)C37'—C36'—H36D110.2
C14—C13—H13119.6O—C36'—H36D110.2
C12—C13—H13119.6H36C—C36'—H36D108.5
C15—C14—C13119.0 (3)C38'—C37'—C42'120.0
C15—C14—H14120.5C38'—C37'—C36'118.3 (7)
C13—C14—H14120.5C42'—C37'—C36'121.4 (7)
C16—C15—C14118.8 (3)C37'—C38'—C39'120.0
C16—C15—H15120.6C37'—C38'—H38'120.0
C14—C15—H15120.6C39'—C38'—H38'120.0
N2—C16—C15122.9 (3)C40'—C39'—C38'120.0
N2—C16—H16118.6C40'—C39'—H39'120.0
C15—C16—H16118.6C38'—C39'—H39'120.0
C18—C17—C22118.1 (3)C39'—C40'—C41'120.0
C18—C17—C12125.6 (3)C39'—C40'—C43'121.5 (11)
C22—C17—C12116.2 (3)C41'—C40'—C43'118.2 (11)
C19—C18—F3115.9 (3)C42'—C41'—C40'120.0
C19—C18—C17124.0 (4)C42'—C41'—H41'120.0
F3—C18—C17120.1 (3)C40'—C41'—H41'120.0
C18—C19—C20116.0 (3)C41'—C42'—C37'120.0
C18—C19—H19122.0C41'—C42'—H42'120.0
C20—C19—H19122.0C37'—C42'—H42'120.0
C19—C20—F4118.3 (3)C44'—C43'—C40'127 (3)
C19—C20—C21125.0 (4)C44'—C43'—H43'116.5
F4—C20—C21116.7 (4)C40'—C43'—H43'116.6
C20—C21—C22117.5 (4)C43'—C44'—H44C119.9
C20—C21—H21121.2C43'—C44'—H44D120.1
C22—C21—H21121.2H44C—C44'—H44D120.0
C21—C22—C17119.4 (3)C99—O99—H99109.5
C21—C22—Ir126.6 (3)O99—C99—H99A109.5
C17—C22—Ir113.9 (2)O99—C99—H99B109.5
N3—C23—C24122.1 (3)H99A—C99—H99B109.5
N3—C23—C28113.5 (2)O99—C99—H99C109.5
C24—C23—C28124.4 (3)H99A—C99—H99C109.5
C25—C24—C23119.0 (3)H99B—C99—H99C109.5
C11—Ir—N1—C5176.2 (2)C18—C19—C20—F4178.2 (3)
C22—Ir—N1—C589.2 (2)C18—C19—C20—C211.2 (5)
N4—Ir—N1—C512.3 (2)C19—C20—C21—C221.3 (5)
N3—Ir—N1—C588.6 (2)F4—C20—C21—C22178.2 (3)
C11—Ir—N1—C10.0 (2)C20—C21—C22—C170.7 (4)
C22—Ir—N1—C187.0 (2)C20—C21—C22—Ir176.1 (2)
N4—Ir—N1—C1171.5 (2)C18—C17—C22—C210.2 (4)
N3—Ir—N1—C195.2 (2)C12—C17—C22—C21178.7 (3)
C11—Ir—N2—C1694.2 (2)C18—C17—C22—Ir177.0 (2)
C22—Ir—N2—C16179.3 (2)C12—C17—C22—Ir1.5 (3)
N4—Ir—N2—C1677.9 (2)C11—Ir—C22—C2180.6 (3)
N3—Ir—N2—C161.8 (2)N1—Ir—C22—C210.6 (3)
C11—Ir—N2—C1287.1 (2)N2—Ir—C22—C21177.5 (3)
C22—Ir—N2—C120.6 (2)N4—Ir—C22—C2195.6 (3)
N4—Ir—N2—C12100.8 (2)C11—Ir—C22—C1796.4 (2)
N3—Ir—N2—C12176.9 (2)N1—Ir—C22—C17176.4 (2)
C11—Ir—N3—C273.8 (2)N2—Ir—C22—C170.5 (2)
N1—Ir—N3—C2784.0 (2)N4—Ir—C22—C1787.5 (2)
N2—Ir—N3—C2793.2 (2)C27—N3—C23—C240.1 (4)
N4—Ir—N3—C27179.2 (2)Ir—N3—C23—C24178.0 (2)
C11—Ir—N3—C23178.4 (2)C27—N3—C23—C28179.8 (2)
N1—Ir—N3—C2398.2 (2)Ir—N3—C23—C282.3 (3)
N2—Ir—N3—C2384.6 (2)N3—C23—C24—C251.1 (5)
N4—Ir—N3—C233.00 (19)C28—C23—C24—C25179.2 (3)
C22—Ir—N4—C28172.1 (2)C23—C24—C25—C261.1 (5)
N1—Ir—N4—C2893.5 (2)C24—C25—C26—C270.1 (5)
N2—Ir—N4—C2891.8 (2)C23—N3—C27—C261.0 (4)
N3—Ir—N4—C283.30 (19)Ir—N3—C27—C26176.7 (2)
C22—Ir—N4—N56.3 (3)C25—C26—C27—N31.0 (5)
N1—Ir—N4—N588.2 (3)N5—N4—C28—N60.5 (3)
N2—Ir—N4—N586.5 (3)Ir—N4—C28—N6178.33 (18)
N3—Ir—N4—N5178.3 (3)N5—N4—C28—C23177.9 (2)
C28—N4—N5—C290.1 (3)Ir—N4—C28—C233.3 (3)
Ir—N4—N5—C29178.5 (2)C29—N6—C28—N40.8 (3)
C5—N1—C1—C21.6 (4)C29—N6—C28—C23177.4 (3)
Ir—N1—C1—C2178.0 (2)N3—C23—C28—N40.7 (4)
C5—N1—C1—C6176.8 (2)C24—C23—C28—N4179.0 (3)
Ir—N1—C1—C60.4 (3)N3—C23—C28—N6178.8 (3)
N1—C1—C2—C31.7 (5)C24—C23—C28—N60.9 (5)
C6—C1—C2—C3176.4 (3)N4—N5—C29—N60.6 (3)
C1—C2—C3—C40.7 (6)N4—N5—C29—C30179.8 (3)
C2—C3—C4—C50.5 (6)C28—N6—C29—N50.9 (3)
C1—N1—C5—C40.4 (5)C28—N6—C29—C30180.0 (3)
Ir—N1—C5—C4176.6 (2)N5—C29—C30—C353.6 (5)
C3—C4—C5—N10.6 (5)N6—C29—C30—C35177.3 (3)
N1—C1—C6—C7179.3 (3)N5—C29—C30—C31176.4 (3)
C2—C1—C6—C71.0 (5)N6—C29—C30—C312.7 (4)
N1—C1—C6—C110.8 (4)C35—C30—C31—C320.4 (5)
C2—C1—C6—C11177.5 (3)C29—C30—C31—C32179.6 (3)
C11—C6—C7—F1179.2 (3)C36—O—C32—C33177.1 (4)
C1—C6—C7—F12.5 (5)C36'—O—C32—C3313.7 (7)
C11—C6—C7—C80.1 (5)C36—O—C32—C313.1 (6)
C1—C6—C7—C8178.3 (3)C36'—O—C32—C31166.5 (5)
F1—C7—C8—C9178.4 (3)C30—C31—C32—C333.2 (5)
C6—C7—C8—C90.9 (5)C30—C31—C32—O177.0 (3)
C7—C8—C9—F2178.5 (3)O—C32—C33—C34176.3 (3)
C7—C8—C9—C100.8 (5)C31—C32—C33—C343.9 (5)
F2—C9—C10—C11179.4 (3)C32—C33—C34—C351.0 (6)
C8—C9—C10—C110.0 (5)C31—C30—C35—C343.2 (5)
C9—C10—C11—C60.9 (4)C29—C30—C35—C34176.8 (3)
C9—C10—C11—Ir179.4 (2)C33—C34—C35—C302.5 (6)
C7—C6—C11—C100.8 (4)C32—O—C36—C37169.1 (3)
C1—C6—C11—C10179.4 (3)C36'—O—C36—C375.0 (8)
C7—C6—C11—Ir179.4 (2)O—C36—C37—C3888.2 (5)
C1—C6—C11—Ir0.9 (3)O—C36—C37—C4293.2 (5)
C22—Ir—C11—C1086.0 (3)C42—C37—C38—C390.0
N1—Ir—C11—C10179.8 (3)C36—C37—C38—C39178.6 (4)
N2—Ir—C11—C105.7 (3)C37—C38—C39—C400.0
N3—Ir—C11—C1089.7 (2)C38—C39—C40—C410.0
C22—Ir—C11—C694.2 (2)C38—C39—C40—C43174.8 (7)
N1—Ir—C11—C60.49 (19)C39—C40—C41—C420.0
N2—Ir—C11—C6174.6 (2)C43—C40—C41—C42175.0 (6)
N3—Ir—C11—C690.0 (2)C40—C41—C42—C370.0
C16—N2—C12—C131.1 (4)C38—C37—C42—C410.0
Ir—N2—C12—C13177.7 (2)C36—C37—C42—C41178.6 (4)
C16—N2—C12—C17179.7 (2)C39—C40—C43—C444.5 (17)
Ir—N2—C12—C171.5 (3)C41—C40—C43—C44170.4 (13)
N2—C12—C13—C140.7 (5)C32—O—C36'—C37'165.6 (5)
C17—C12—C13—C14179.7 (3)C36—O—C36'—C37'2.1 (9)
C12—C13—C14—C150.2 (5)O—C36'—C37'—C38'112.4 (7)
C13—C14—C15—C160.5 (5)O—C36'—C37'—C42'62.2 (10)
C12—N2—C16—C150.8 (4)C42'—C37'—C38'—C39'0.0
Ir—N2—C16—C15177.9 (2)C36'—C37'—C38'—C39'174.7 (9)
C14—C15—C16—N20.0 (5)C37'—C38'—C39'—C40'0.0
N2—C12—C17—C18176.4 (3)C38'—C39'—C40'—C41'0.0
C13—C12—C17—C184.5 (5)C38'—C39'—C40'—C43'173.5 (15)
N2—C12—C17—C221.9 (4)C39'—C40'—C41'—C42'0.0
C13—C12—C17—C22177.1 (3)C43'—C40'—C41'—C42'173.8 (14)
C22—C17—C18—C190.2 (5)C40'—C41'—C42'—C37'0.0
C12—C17—C18—C19178.5 (3)C38'—C37'—C42'—C41'0.0
C22—C17—C18—F3179.3 (3)C36'—C37'—C42'—C41'174.5 (9)
C12—C17—C18—F31.0 (5)C39'—C40'—C43'—C44'11 (4)
F3—C18—C19—C20178.9 (3)C41'—C40'—C43'—C44'175 (3)
C17—C18—C19—C200.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O99—H99···N60.842.042.853 (3)164
C24—H24···O990.952.493.368 (4)154
C31—H31···O990.952.663.587 (4)164
C8—H8···F3i0.952.553.412 (4)151
C25—H25···F4ii0.952.433.088 (4)126
C3—H3···Oiii0.952.543.353 (5)143
C14—H14···N5iv0.952.573.475 (5)160
C39—H39···O99v0.952.643.272 (4)124
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ir(C11H6F2N)2(C22H17N4O)]·CH4O
Mr957.97
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.8934 (1), 12.3039 (2), 16.8933 (3)
α, β, γ (°)81.7429 (14), 83.2858 (11), 69.9647 (14)
V3)1906.82 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.57
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.848, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
53102, 10448, 8442
Rint0.034
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.064, 0.93
No. of reflections10448
No. of parameters538
No. of restraints69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.18, 0.84

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Selected bond lengths (Å) top
Ir—C112.010 (3)Ir—N22.049 (2)
Ir—C222.012 (3)Ir—N42.118 (2)
Ir—N12.033 (2)Ir—N32.158 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O99—H99···N60.842.042.853 (3)164
C24—H24···O990.952.493.368 (4)154
C31—H31···O990.952.663.587 (4)164
C8—H8···F3i0.952.553.412 (4)151
C25—H25···F4ii0.952.433.088 (4)126
C3—H3···Oiii0.952.543.353 (5)143.3
C14—H14···N5iv0.952.573.475 (5)160
C39—H39···O99v0.952.643.272 (4)124
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+1, y, z+1.
 

Acknowledgements

The authors thank the Bundesministerium für Bildung und Forschung (BMBF 01 BD 0687) for financial support.

References

First citationAdachi, C., Kwong, R. C., Djurovich, P., Adamovich, V., Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2001). Appl. Phys. Lett. 79, 2082–2084.  Web of Science CrossRef CAS Google Scholar
First citationBaldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151–154.  CAS Google Scholar
First citationBurroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539–541.  CrossRef CAS Web of Science Google Scholar
First citationChang, C.-J., Yang, C.-H., Chen, K., Chi, Y., Shu, C.-F., Ho, M.-L., Yeh, Y.-S. & Chou, P.-T. (2007). Dalton Trans. pp. 1881–1890.  Web of Science CSD CrossRef Google Scholar
First citationCoppo, P., Plummer, E. A. & De Cola, L. (2004). Chem. Commun. pp. 1774–1775.  Web of Science CrossRef Google Scholar
First citationDedeian, K., Djurovich, P. I., Garces, F. O., Carlson, G. & Watts, R. J. (1991). Inorg. Chem. 30, 1685–1687.  CrossRef CAS Web of Science Google Scholar
First citationDixon, I. M., Collin, J.-P., Sauvage, J.-P., Flamigni, L., Encinas, S. & Barigelletti, F. (2000). Chem. Soc. Rev. 29, 385–391.  Web of Science CrossRef CAS Google Scholar
First citationGong, X., Robinson, M. R., Ostrowski, J. C., Moses, D., Bazan, G. C. & Heeger, A. J. (2002). Adv. Mater. 14, 581–585.  Web of Science CrossRef CAS Google Scholar
First citationGrushin, V. V., Herron, N., Le Cloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494–1495.  Web of Science CSD CrossRef Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H.-E., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001). J. Am. Chem. Soc. 123, 4304–4312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSchütz, C., Höfer, B., Jaiser, F., Krueger, H., Thesen, M., Janietz, S. & Köhler, A. (2008). Phys. Status Sol. B, 245, 810–813.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSuzuki, M., Tokito, S. & Sato, F. (2005). Appl. Phys. Lett. 86, 103507.  Web of Science CrossRef Google Scholar
First citationTang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.  CrossRef CAS Web of Science Google Scholar
First citationYou, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438–12439.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m66-m67
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds