organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3261-o3262

5-(4-Cyano-5-di­cyano­methyl­ene-2,2-di­methyl-2,5-di­hydro-3-fur­yl)-3-(1-methyl-1,4-di­hydro­pyridin-4-yl­­idene)pent-4-enyl 3,5-bis­­(benz­yl­oxy)benzoate aceto­nitrile 0.25-solvate: a synchrotron radiation study

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 22 November 2009; accepted 23 November 2009; online 28 November 2009)

The title compound, C42H36N4O5·0.25CH3CN, crystallizes with a partial twofold disordered (1/4) acetonitrile solvent of crystallization. The linking atoms to the 3,5-bis­(benz­yloxy)benzoic acid are disordered between two conformations in the ratio 0.780 (6):0.220 (6). In the crystal, the mol­ecules pack using mainly C—H⋯N(cyano) inter­actions coupled with weak C—H⋯O(ether) inter­actions and C—H⋯π inter­actions. A brief comparison is made between a conventional and this synchrotron data collection.

Related literature

For general background, see Kay et al. (2004[ Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321-1330.]); Marder et al. (1993[ Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524-2526.]). For related structures, see: Kay et al. (2008[ Kay, A. J., Gainsford, G. J. & Bhuiyan, D. (2008). Poster 8, ICONO10 Conference Abstracts, p. 141.]), Gainsford et al. (2007[ Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633-o637.], 2008[ Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-o619.]); Kim et al. (2007[ Kim, T.-D., Kang, J.-W., Luo, J., Jang, S.-H., Ka, J.-W., Tucker, N., Benedict, J. B., Dalton, L. R., Gray, T., Overney, R. M., Park, D. H., Herman, W. N. & Jen, A. K.-Y. (2007). J. Am. Chem. Soc. 129, 488-489.]) For synthetic data, see: Clarke et al. (2009[ Clarke, D. J., Teshome, A., Bhuiyan, M. D. H., Ashraf, M., Middleton, A. P., Gainsford, G. J., Asselberghs, I., Clays, K., Smith, G. J. & Kay, A. J. (2009). Proc AIP Conference Proceedings, AMN-4, Dunedin, New Zealand, pp. 92-93.]). For details of the PX1 beamline, see: McPhillips et al. (2002[ McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401-406.]).

[Scheme 1]

Experimental

Crystal data
  • C42H36N4O5·0.25C2H3N

  • Mr = 687.01

  • Monoclinic, C 2/c

  • a = 29.374 (6) Å

  • b = 15.825 (3) Å

  • c = 16.317 (3) Å

  • β = 108.61 (3)°

  • V = 7188 (3) Å3

  • Z = 8

  • Synchrotron radiation

  • λ = 0.77300 Å

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.26 × 0.08 × 0.04 mm

Data collection
  • ADSC Quantum 210r CCD diffractometer

  • 38733 measured reflections

  • 5381 independent reflections

  • 4076 reflections with I > 2σ(I)

  • Rint = 0.098

  • θmax = 26.0°

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.167

  • S = 1.04

  • 5381 reflections

  • 482 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N1i 0.98 2.59 3.529 (4) 161
C9—H9B⋯N3ii 0.98 2.59 3.497 (5) 153
C16—H16⋯N1iii 0.95 2.51 3.406 (4) 156
C17—H17⋯N2iv 0.95 2.51 3.380 (4) 152
C19—H19C⋯N2iv 0.98 2.50 3.340 (4) 143
C26—H26⋯O5v 0.95 2.51 3.398 (4) 155
C8—H8BCg1vi 0.98 2.54 3.515 (3) 171
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) x, y-1, z; (v) -x, -y+1, -z+1; (vi) [x, -y+1, z-{\script{1\over 2}}]. Cg1 is the centroid of the C30–C35 ring.

Table 2
Inter­planar angles and SIGP values for the planar entities (Å, °)

Plane P1 P2 P3 P4 P5 SIGPa
P1   14.59 (10) 18.77 (7) 31.92 (12) 64.58 (13) 0.025 (3)
P2 14.59 (10)   4.90 (9) 18.33 (13) 75.25 (15) 0.033 (3)
P3 18.77 (7) 4.90 (9)   13.48 (11) 80.11 (12) 0.026 (3)
P4b 31.92 (12) 18.33 (13) 13.48 (11)   86.94 (16) 0.004 (3)
Notes: P1 = C1–C12,N1–N3,O1; P2 = C12–C19,N4; P3 = C22–C30,O3–O4; P4 = C29–C35; P5 = C37–C42. (a) [\sqrt(\sum_{j=1}^{N})[D(j)^2/(N-3)]] (Spek, 2009[ Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); (b) SIGP for plane C37–C42 is 0.014 (3) Å.

Data collection: ADSC Quantum 210r software (ADSC, 2009[ ADSC (2009). ADSC Quantum 210r software. http://www.adsc-xray.com/]); cell refinement: XDS (Kabsch, 1993[ Kabsch, W. (1993). J. Appl. Cryst. 26, 795-800.]); data reduction: XDS, locally modified software and XPREP (Bruker, 2001[ Bruker (2001). XPREP for UNIX. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[ Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[ Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[ Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) was synthesized as part of a continuing research programme involving the development of organic nonlinear optical (NLO) chromophores. Due to the highly polar nature of these compounds they have a strong tendency to aggregate, a phenomenon that often leads to a reduction in the macroscopic nonlinearity. We have previously reported the crystallographic parameters for two chromophores containing a quinolinylidene donor coupled to a cyanodicyanomethylidenedihydrofuran (CDFP) electron acceptor group (Gainsford et al., 2008). In both instances an examination of the unit cell packing showed plane to plane stacking of the chromophores via the interaction of the donor end of one molecule with the acceptor end of another. This is clear evidence for potentially deleterious H-aggregation occurring between the compounds. However, it has been reported that the introduction of bulky substituents near the centre of NLO chromophores leads to a significant reduction in the observed aggregation (Kim et al., 2007). Consequently we were interested to make modifications to the core structure of our compounds to see whether the introduction of a bulky 3,5-bis(benzyloxy) benzoate group would lead to any change in the unit cell packing. We report here on the structural properties of a chromophore containing a pyridinylidene donor, CDFP acceptor and bulky side group. While a direct comparison between the compounds studied earlier (Gainsford et al., 2008) and one also containing a quinolinylidene donor would be preferable, this wasn't feasible from synthetic viewpoint. An initial report based on the earlier conventional data collection has been given (Kay et al., 2008).

The asymmetric unit of crystals of (I) contains one independent copy of the molecule and a partial (1/4) acetonitrile molecule disordered around a twofold symmetry site (Figure 1). The linking atoms to the 3,5-bis-benzyloxy-benzoic acid (C20,C21,O2) are disordered over two conformations with refined occupancies of 0.780:0.220 (6). The CDFP ring (atoms C4/C5/O1/C6/C7) and the cyano groups appended to C2 are coplanar (Table 2). The geometric parameters are consistent with the localized electron configuration shown in the scheme with ony subtle differences to the closely related quinoline molecules (NAJKUT & NOJLAA, Gainsford et al., 2008); the similarity is reflected in the bond length alternation (Marder et al., 1993) BLA values of -0.042 (here) and -0.015 & -0.042 respectively. The interplanar angles (Table 2) show the overall moleculear non-planarity of the adjacent planar entities.

The molecular packing is provided by mainly CH···N(cyano) interactions but also a C–H···O interaction with one benzolyoxy oxygen and C—H ···π crosslinks (Figure 2). Two adjacent molecules are linked through the methyl hydrogen atoms (entries 1 & 2, Table 1) and extended into layers parallel to the (3,0,1) plane via the H16, H17 & H19C (entries 3,4 & 5) and the C–H···O5 (entry 6) interactions. These layers are crosslinked via methyl H8B interaction with phenyl ring C30—C35 (entry 7, Table 1; Figure 2).

An opportunity arose to recollect data on the Australian synchrotron, which is the data presented here. The conventional laboratory results are quite similar but that data did not support refinement of the partial acetonitrile solvent molecule. There were about 2.5 times more observed data in the synchrotron data set (collected in 5% of the conventional time) giving smaller su (by ~70%) values, but overall both datasets gave similar agreement factors. Given the overall agreement data statistics (see exptl_refinement) and the different crystal used, further comparison seems unwarranted.

Related literature top

For general background, see Kay et al. (2004); Marder et al. (1993). For related structures, see: Kay et al. (2008), Gainsford et al. (2007, 2008); Kim et al. (2007) For synthetic data, see: Clarke et al. (2009). For details of the PX1 beamline, see: McPhillips et al. (2002). Cg1 is the centroid of the C30–C35 ring.

Experimental top

The title compound was synthesized by a published procedure (Clarke et al., 2009). Black crystals suitable for X-ray structure determination were grown in acetonitrile by slow evaporation of the solvent at room temperature.

Refinement top

A total of 12 outlier reflections were omitted from the processed set, from which 16 intense reflections with poor internal agreement had been removed. An examination of the data did not establish definitively that these latter data, with Fo >> Fc, represented data from a multiple crystal fragment or were subject to twinning.

The acetonitrile solvent is disordered with the N atom on a 2 fold site; the occupancy was determined with an average isotropic U & then fixed at 0.25 with a common Uiso which refined to 0.082 (2) Å2. Atoms C20, C21 & O2 were found to be in two conformations which refined to occupancies of 0.780:0.220 (6); the minor conformer atoms (C20A,C20B & O2B) were refined isotropically to a common final value of 0.019 (2) Å2. The final difference minimum & maxima (-0.5 & 0.90 e/Å-3) are close to atoms N2S & C1S of the disordered acetonitrile carbon indicating imperfect modelling of the disorder.

All H atoms bound to carbon were constrained to their expected geometries (C–H 0.98, 0.99, 1.00 Å). Methyl H atoms were refined with Uiso = 1.5Ueq(C); all other H atoms were refined with Uiso = 1.2Ueq(C,N).

Computing details top

Data collection: ADSC Quantum 210r software (ADSC, 2009); cell refinement: XDS (Kabsch, 1993); data reduction: XDS (Kabsch, 1993), locally modified software and XPREP (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 50% probability level. Only the major conformation for atoms C20, C21 & O2 are shown; hydrogen atoms on the acetonitrile are omitted.
[Figure 2] Fig. 2. Packing diagram (Mercury, Macrae et al.,(2006)) of the unit cell Only H atoms involved in significant interactions are shown. Contact atoms are shown as balls; a limited set of labels are given (see Table 2). Symmetry codes: (i) x, 1 - y, 1/2 + z (ii) 1/2 - x, y - 1/2, 1/2 - z
5-(4-Cyano-5-dicyanomethylene-2,2-dimethyl-2,5-dihydro-3-furyl)- 3-(1-methyl-1,4-dihydropyridin-4-ylidene)pent-4-enyl 3,5-bis(benzyloxy)benzoate acetonitrile 0.25-solvate top
Crystal data top
C42H36N4O5·0.25C2H3NZ = 8
Mr = 687.01F(000) = 2892
Monoclinic, C2/cDx = 1.270 Mg m3
Hall symbol: -C 2ycSynchrotron radiation, λ = 0.77300 Å
a = 29.374 (6) ŵ = 0.08 mm1
b = 15.825 (3) ÅT = 100 K
c = 16.317 (3) ÅNeedle, black
β = 108.61 (3)°0.26 × 0.08 × 0.04 mm
V = 7188 (3) Å3
Data collection top
ADSC Quantum 210r CCD
diffractometer
4076 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.098
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
ω scansh = 3333
38733 measured reflectionsk = 1717
5381 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0862P)2 + 13.1795P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5381 reflectionsΔρmax = 0.91 e Å3
482 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0128 (8)
Crystal data top
C42H36N4O5·0.25C2H3NV = 7188 (3) Å3
Mr = 687.01Z = 8
Monoclinic, C2/cSynchrotron radiation, λ = 0.77300 Å
a = 29.374 (6) ŵ = 0.08 mm1
b = 15.825 (3) ÅT = 100 K
c = 16.317 (3) Å0.26 × 0.08 × 0.04 mm
β = 108.61 (3)°
Data collection top
ADSC Quantum 210r CCD
diffractometer
4076 reflections with I > 2σ(I)
38733 measured reflectionsRint = 0.098
5381 independent reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0862P)2 + 13.1795P]
where P = (Fo2 + 2Fc2)/3
5381 reflectionsΔρmax = 0.91 e Å3
482 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17400 (7)0.94070 (11)0.02908 (12)0.0290 (5)
O30.11459 (9)0.63005 (13)0.23553 (15)0.0475 (7)
O40.03753 (7)0.32537 (12)0.37018 (13)0.0330 (5)
O50.00478 (8)0.60170 (12)0.42819 (14)0.0361 (5)
N10.22209 (10)0.92896 (14)0.22501 (16)0.0329 (6)
N20.19059 (12)1.12873 (16)0.0685 (2)0.0538 (9)
N30.19800 (10)0.73140 (14)0.16212 (16)0.0324 (6)
N40.21359 (9)0.36102 (13)0.10782 (15)0.0278 (6)
C10.21038 (11)0.94562 (16)0.16563 (19)0.0256 (7)
C20.19611 (11)0.96943 (16)0.09403 (18)0.0267 (7)
C30.19290 (12)1.05714 (18)0.0795 (2)0.0354 (8)
C40.17049 (10)0.79170 (16)0.02949 (17)0.0241 (6)
C50.16325 (11)0.86922 (16)0.07822 (18)0.0255 (7)
C60.18610 (10)0.91040 (16)0.03864 (18)0.0257 (7)
C70.18566 (10)0.82216 (16)0.04015 (17)0.0234 (6)
C80.11152 (12)0.88153 (18)0.0772 (2)0.0331 (7)
H8A0.10250.83520.10880.050*
H8B0.09000.88180.01720.050*
H8C0.10880.93550.10470.050*
C90.19856 (12)0.87367 (17)0.16911 (18)0.0335 (8)
H9A0.19680.92960.19370.050*
H9B0.23120.86390.16730.050*
H9C0.19050.83040.20510.050*
C100.19329 (11)0.77332 (16)0.10791 (18)0.0243 (7)
C110.16310 (11)0.71102 (16)0.05218 (18)0.0292 (7)
H110.14960.70330.09740.035*
C120.17441 (11)0.63825 (16)0.01213 (18)0.0265 (7)
H120.19220.64820.02630.032*
C130.16333 (13)0.55628 (17)0.0211 (2)0.0395 (9)
C140.18049 (11)0.48951 (17)0.02358 (19)0.0305 (7)
C150.20573 (12)0.50609 (17)0.08233 (19)0.0331 (8)
H150.21140.56300.09470.040*
C160.22209 (11)0.44259 (16)0.12181 (19)0.0305 (7)
H160.23980.45600.15980.037*
C170.18892 (11)0.34164 (16)0.05347 (18)0.0282 (7)
H170.18270.28410.04440.034*
C180.17278 (11)0.40315 (17)0.01131 (19)0.0294 (7)
H180.15590.38750.02730.035*
C190.23173 (14)0.29362 (18)0.1516 (2)0.0420 (9)
H19A0.26520.28090.11830.063*
H19B0.23000.31250.20980.063*
H19C0.21210.24270.15590.063*
C220.10633 (14)0.55612 (19)0.2443 (2)0.0465 (9)
C230.07702 (11)0.52344 (18)0.29680 (18)0.0309 (7)
C240.07207 (11)0.43685 (18)0.30567 (18)0.0300 (7)
H240.08670.39790.27760.036*
C250.04542 (10)0.40880 (17)0.35614 (18)0.0262 (7)
C260.02430 (11)0.46596 (18)0.39724 (18)0.0288 (7)
H260.00640.44610.43260.035*
C270.02924 (10)0.55180 (17)0.38689 (18)0.0275 (7)
C280.05616 (10)0.58211 (18)0.33736 (17)0.0278 (7)
H280.06020.64110.33130.033*
C290.05841 (11)0.26294 (18)0.32904 (19)0.0311 (7)
H29A0.09380.26830.34990.037*
H29B0.04710.27180.26570.037*
C300.04418 (11)0.17648 (18)0.34973 (18)0.0289 (7)
C310.06809 (12)0.10686 (19)0.33084 (19)0.0346 (7)
H310.09300.11500.30620.041*
C320.05569 (12)0.02574 (19)0.3477 (2)0.0404 (8)
H320.07230.02140.33500.048*
C330.01922 (12)0.01313 (19)0.3829 (2)0.0400 (8)
H330.01080.04250.39460.048*
C340.00487 (12)0.08144 (18)0.4010 (2)0.0344 (7)
H340.03010.07280.42480.041*
C350.00742 (11)0.16279 (18)0.38470 (19)0.0313 (7)
H350.00940.20960.39750.038*
C360.01009 (12)0.69126 (18)0.4277 (2)0.0373 (8)
H36A0.01750.71780.44010.045*
H36B0.00910.70920.36900.045*
C370.05594 (11)0.72330 (17)0.4923 (2)0.0310 (7)
C380.07674 (13)0.79806 (19)0.4777 (2)0.0419 (9)
H380.06450.82570.42340.050*
C390.11551 (14)0.8330 (2)0.5421 (3)0.0510 (10)
H390.12910.88480.53170.061*
C400.13430 (13)0.7930 (2)0.6206 (2)0.0452 (9)
H400.16040.81750.66470.054*
C410.11505 (11)0.71712 (19)0.6349 (2)0.0365 (8)
H410.12870.68810.68800.044*
C420.07586 (11)0.68318 (17)0.5719 (2)0.0306 (7)
H420.06230.63170.58310.037*
O2A0.12743 (10)0.49113 (14)0.21304 (16)0.0282 (9)0.780 (6)
C20A0.12933 (15)0.5332 (2)0.0708 (2)0.0250 (10)0.780 (6)
H20A0.10700.58060.06870.030*0.780 (6)
H20B0.11020.48300.04450.030*0.780 (6)
C21A0.15854 (14)0.5148 (2)0.1632 (3)0.0282 (10)0.780 (6)
H21A0.18130.46820.16480.034*0.780 (6)
H21B0.17740.56540.18930.034*0.780 (6)
O2B0.0926 (3)0.5060 (5)0.1643 (5)0.019 (2)*0.220 (6)
C20B0.1638 (5)0.5335 (8)0.1196 (10)0.019 (2)*0.220 (6)
H20C0.17820.47780.14020.022*0.220 (6)
H20D0.17860.57820.16220.022*0.220 (6)
C21B0.1100 (4)0.5333 (7)0.0924 (7)0.019 (2)*0.220 (6)
H21C0.09780.59080.07350.022*0.220 (6)
H21D0.09730.49460.04270.022*0.220 (6)
C1S0.0950 (4)0.8005 (7)0.2786 (7)0.082 (2)*0.25
H1S10.11100.81280.33990.122*0.25
H1S20.10980.83400.24340.122*0.25
H1S30.09840.74020.26790.122*0.25
C2S0.0488 (7)0.8199 (13)0.2578 (13)0.082 (2)*0.25
N2S0.00000.8254 (7)0.25000.082 (2)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0542 (14)0.0113 (9)0.0335 (11)0.0014 (8)0.0307 (10)0.0023 (8)
O30.0843 (19)0.0267 (13)0.0502 (14)0.0171 (11)0.0479 (14)0.0105 (10)
O40.0472 (13)0.0229 (11)0.0416 (12)0.0021 (9)0.0320 (11)0.0020 (9)
O50.0417 (13)0.0275 (11)0.0486 (13)0.0024 (9)0.0275 (11)0.0090 (9)
N10.0529 (17)0.0207 (12)0.0339 (15)0.0020 (11)0.0264 (14)0.0032 (11)
N20.096 (3)0.0168 (15)0.075 (2)0.0010 (14)0.065 (2)0.0018 (13)
N30.0564 (18)0.0185 (12)0.0320 (14)0.0034 (11)0.0278 (13)0.0006 (11)
N40.0481 (16)0.0150 (12)0.0299 (13)0.0032 (10)0.0262 (12)0.0014 (10)
C10.0384 (17)0.0120 (13)0.0318 (16)0.0006 (12)0.0190 (15)0.0062 (12)
C20.0480 (19)0.0128 (13)0.0292 (15)0.0002 (12)0.0261 (15)0.0002 (11)
C30.059 (2)0.0188 (17)0.0429 (19)0.0017 (14)0.0372 (17)0.0035 (13)
C40.0392 (17)0.0157 (14)0.0232 (14)0.0017 (12)0.0182 (13)0.0006 (11)
C50.0445 (18)0.0148 (13)0.0254 (15)0.0025 (12)0.0226 (14)0.0012 (11)
C60.0379 (17)0.0176 (14)0.0273 (15)0.0007 (12)0.0185 (14)0.0025 (11)
C70.0391 (17)0.0131 (13)0.0246 (15)0.0012 (11)0.0192 (13)0.0016 (11)
C80.051 (2)0.0228 (15)0.0374 (18)0.0002 (13)0.0306 (16)0.0021 (13)
C90.056 (2)0.0209 (15)0.0295 (17)0.0008 (14)0.0217 (16)0.0040 (12)
C100.0417 (18)0.0124 (13)0.0253 (15)0.0008 (12)0.0196 (14)0.0043 (12)
C110.053 (2)0.0178 (14)0.0268 (15)0.0027 (13)0.0268 (15)0.0001 (12)
C120.0448 (18)0.0183 (14)0.0241 (15)0.0001 (12)0.0219 (14)0.0010 (11)
C130.075 (2)0.0164 (15)0.0474 (19)0.0038 (15)0.0483 (19)0.0002 (13)
C140.052 (2)0.0167 (14)0.0342 (17)0.0028 (13)0.0292 (16)0.0011 (12)
C150.064 (2)0.0126 (13)0.0368 (17)0.0090 (13)0.0352 (17)0.0036 (12)
C160.052 (2)0.0177 (14)0.0328 (16)0.0078 (13)0.0293 (16)0.0025 (12)
C170.0458 (19)0.0138 (13)0.0318 (16)0.0041 (12)0.0220 (15)0.0003 (12)
C180.0470 (19)0.0186 (14)0.0325 (16)0.0055 (13)0.0268 (15)0.0003 (12)
C190.076 (3)0.0174 (15)0.050 (2)0.0004 (15)0.045 (2)0.0058 (14)
C220.085 (3)0.0296 (19)0.044 (2)0.0158 (17)0.047 (2)0.0121 (15)
C230.0440 (19)0.0305 (16)0.0248 (15)0.0070 (14)0.0201 (15)0.0043 (13)
C240.0406 (18)0.0285 (16)0.0298 (16)0.0040 (13)0.0236 (15)0.0066 (13)
C250.0327 (17)0.0228 (15)0.0269 (15)0.0044 (12)0.0150 (14)0.0004 (12)
C260.0322 (17)0.0306 (16)0.0300 (16)0.0060 (13)0.0188 (14)0.0026 (13)
C270.0303 (17)0.0283 (16)0.0260 (15)0.0002 (12)0.0120 (14)0.0044 (12)
C280.0378 (18)0.0256 (15)0.0225 (15)0.0055 (13)0.0131 (14)0.0007 (12)
C290.0403 (18)0.0289 (16)0.0316 (16)0.0023 (13)0.0223 (15)0.0007 (13)
C300.0345 (17)0.0289 (16)0.0278 (16)0.0013 (13)0.0163 (14)0.0012 (12)
C310.0413 (19)0.0351 (17)0.0341 (17)0.0027 (14)0.0216 (15)0.0026 (14)
C320.053 (2)0.0279 (17)0.046 (2)0.0078 (15)0.0244 (18)0.0046 (14)
C330.053 (2)0.0254 (16)0.045 (2)0.0016 (15)0.0217 (18)0.0003 (14)
C340.0448 (19)0.0296 (17)0.0358 (17)0.0023 (14)0.0229 (16)0.0019 (13)
C350.0394 (18)0.0291 (16)0.0327 (17)0.0048 (13)0.0216 (15)0.0001 (13)
C360.044 (2)0.0261 (16)0.049 (2)0.0071 (14)0.0245 (17)0.0001 (14)
C370.0404 (18)0.0198 (14)0.0454 (19)0.0050 (13)0.0314 (16)0.0027 (13)
C380.060 (2)0.0276 (17)0.051 (2)0.0024 (16)0.0357 (19)0.0044 (15)
C390.063 (2)0.0293 (18)0.080 (3)0.0146 (17)0.050 (2)0.0101 (18)
C400.048 (2)0.043 (2)0.054 (2)0.0058 (16)0.0307 (19)0.0148 (18)
C410.0397 (19)0.0334 (17)0.0434 (19)0.0032 (14)0.0233 (16)0.0057 (15)
C420.0396 (18)0.0209 (14)0.0422 (18)0.0020 (13)0.0285 (16)0.0024 (13)
O2A0.045 (2)0.0226 (13)0.0289 (16)0.0052 (12)0.0292 (15)0.0001 (11)
C20A0.039 (3)0.0168 (17)0.028 (2)0.0010 (16)0.023 (2)0.0015 (15)
C21A0.042 (2)0.025 (2)0.026 (2)0.0020 (17)0.0231 (19)0.0012 (16)
Geometric parameters (Å, º) top
O1—C61.352 (3)C24—H240.9500
O1—C51.478 (3)C25—C261.385 (4)
O3—C221.212 (4)C26—C271.382 (4)
O4—C251.372 (3)C26—H260.9500
O4—C291.437 (3)C27—C281.384 (4)
O5—C271.380 (3)C28—H280.9500
O5—C361.426 (3)C29—C301.500 (4)
N1—C11.157 (3)C29—H29A0.9900
N2—C31.152 (4)C29—H29B0.9900
N3—C101.149 (3)C30—C351.390 (4)
N4—C171.347 (4)C30—C311.393 (4)
N4—C161.348 (3)C31—C321.386 (4)
N4—C191.475 (3)C31—H310.9500
C1—C21.412 (4)C32—C331.382 (5)
C2—C61.395 (4)C32—H320.9500
C2—C31.417 (4)C33—C341.374 (4)
C4—C111.366 (4)C33—H330.9500
C4—C71.430 (4)C34—C351.385 (4)
C4—C51.513 (4)C34—H340.9500
C5—C91.516 (4)C35—H350.9500
C5—C81.527 (4)C36—C371.508 (5)
C6—C71.397 (4)C36—H36A0.9900
C7—C101.424 (4)C36—H36B0.9900
C8—H8A0.9800C37—C381.386 (4)
C8—H8B0.9800C37—C421.396 (4)
C8—H8C0.9800C38—C391.394 (5)
C9—H9A0.9800C38—H380.9500
C9—H9B0.9800C39—C401.378 (5)
C9—H9C0.9800C39—H390.9500
C11—C121.415 (4)C40—C411.378 (5)
C11—H110.9500C40—H400.9500
C12—C131.357 (4)C41—C421.383 (4)
C12—H120.9500C41—H410.9500
C13—C141.462 (4)C42—H420.9500
C13—C20A1.518 (5)O2A—C21A1.452 (5)
C13—C20B1.643 (15)C20A—C21A1.507 (6)
C14—C181.410 (4)C20A—H20A0.9900
C14—C151.411 (4)C20A—H20B0.9900
C15—C161.361 (4)C21A—H21A0.9900
C15—H150.9500C21A—H21B0.9900
C16—H160.9500O2B—C21B1.486 (14)
C17—C181.362 (4)C20B—C21B1.498 (17)
C17—H170.9500C20B—H20C0.9900
C18—H180.9500C20B—H20D0.9900
C19—H19A0.9800C21B—H21C0.9900
C19—H19B0.9800C21B—H21D0.9900
C19—H19C0.9800C1S—C2S1.33 (2)
C22—O2A1.380 (4)C1S—H1S10.9800
C22—O2B1.470 (9)C1S—H1S20.9800
C22—C231.488 (4)C1S—H1S30.9800
C23—C241.390 (4)C2S—N2S1.40 (2)
C23—C281.391 (4)N2S—C2Si1.40 (2)
C24—C251.378 (4)
C6—O1—C5109.24 (19)C27—C26—C25120.1 (3)
C25—O4—C29117.6 (2)C27—C26—H26119.9
C27—O5—C36119.4 (2)C25—C26—H26119.9
C17—N4—C16119.8 (2)O5—C27—C26114.3 (2)
C17—N4—C19120.5 (2)O5—C27—C28124.8 (3)
C16—N4—C19119.7 (2)C26—C27—C28120.9 (3)
N1—C1—C2177.7 (3)C27—C28—C23117.8 (3)
C6—C2—C1122.5 (2)C27—C28—H28121.1
C6—C2—C3120.5 (2)C23—C28—H28121.1
C1—C2—C3117.0 (2)O4—C29—C30109.3 (2)
N2—C3—C2179.0 (3)O4—C29—H29A109.8
C11—C4—C7130.3 (2)C30—C29—H29A109.8
C11—C4—C5123.7 (2)O4—C29—H29B109.8
C7—C4—C5106.0 (2)C30—C29—H29B109.8
O1—C5—C4104.19 (19)H29A—C29—H29B108.3
O1—C5—C9107.3 (2)C35—C30—C31118.7 (3)
C4—C5—C9112.6 (2)C35—C30—C29122.9 (3)
O1—C5—C8106.3 (2)C31—C30—C29118.4 (3)
C4—C5—C8113.8 (2)C32—C31—C30120.4 (3)
C9—C5—C8111.9 (2)C32—C31—H31119.8
O1—C6—C2117.2 (2)C30—C31—H31119.8
O1—C6—C7111.5 (2)C33—C32—C31120.3 (3)
C2—C6—C7131.4 (2)C33—C32—H32119.9
C6—C7—C10123.6 (2)C31—C32—H32119.9
C6—C7—C4109.1 (2)C34—C33—C32119.7 (3)
C10—C7—C4126.9 (2)C34—C33—H33120.1
C5—C8—H8A109.5C32—C33—H33120.1
C5—C8—H8B109.5C33—C34—C35120.4 (3)
H8A—C8—H8B109.5C33—C34—H34119.8
C5—C8—H8C109.5C35—C34—H34119.8
H8A—C8—H8C109.5C34—C35—C30120.5 (3)
H8B—C8—H8C109.5C34—C35—H35119.8
C5—C9—H9A109.5C30—C35—H35119.8
C5—C9—H9B109.5O5—C36—C37113.9 (2)
H9A—C9—H9B109.5O5—C36—H36A108.8
C5—C9—H9C109.5C37—C36—H36A108.8
H9A—C9—H9C109.5O5—C36—H36B108.8
H9B—C9—H9C109.5C37—C36—H36B108.8
N3—C10—C7177.0 (3)H36A—C36—H36B107.7
C4—C11—C12123.7 (2)C38—C37—C42118.1 (3)
C4—C11—H11118.2C38—C37—C36120.7 (3)
C12—C11—H11118.2C42—C37—C36120.9 (3)
C13—C12—C11129.0 (3)C37—C38—C39120.6 (3)
C13—C12—H12115.5C37—C38—H38119.7
C11—C12—H12115.5C39—C38—H38119.7
C12—C13—C14120.3 (3)C40—C39—C38120.5 (3)
C12—C13—C20A120.6 (3)C40—C39—H39119.8
C14—C13—C20A118.9 (3)C38—C39—H39119.8
C12—C13—C20B112.8 (5)C39—C40—C41119.6 (3)
C14—C13—C20B115.7 (5)C39—C40—H40120.2
C18—C14—C15114.8 (2)C41—C40—H40120.2
C18—C14—C13122.2 (2)C40—C41—C42120.1 (3)
C15—C14—C13123.0 (2)C40—C41—H41119.9
C16—C15—C14121.7 (3)C42—C41—H41119.9
C16—C15—H15119.1C41—C42—C37121.1 (3)
C14—C15—H15119.1C41—C42—H42119.4
N4—C16—C15120.9 (3)C37—C42—H42119.4
N4—C16—H16119.5C22—O2A—C21A116.9 (2)
C15—C16—H16119.5C21A—C20A—C13108.7 (3)
N4—C17—C18121.1 (2)C21A—C20A—H20A110.0
N4—C17—H17119.4C13—C20A—H20A110.0
C18—C17—H17119.4C21A—C20A—H20B110.0
C17—C18—C14121.6 (3)C13—C20A—H20B110.0
C17—C18—H18119.2H20A—C20A—H20B108.3
C14—C18—H18119.2O2A—C21A—C20A110.6 (3)
N4—C19—H19A109.5O2A—C21A—H21A109.5
N4—C19—H19B109.5C20A—C21A—H21A109.5
H19A—C19—H19B109.5O2A—C21A—H21B109.5
N4—C19—H19C109.5C20A—C21A—H21B109.5
H19A—C19—H19C109.5H21A—C21A—H21B108.1
H19B—C19—H19C109.5C22—O2B—C21B118.6 (7)
O3—C22—O2A123.0 (3)C21B—C20B—C1391.8 (9)
O3—C22—O2B115.1 (4)C21B—C20B—H20C113.3
O2A—C22—O2B45.3 (3)C13—C20B—H20C113.3
O3—C22—C23125.3 (3)C21B—C20B—H20D113.3
O2A—C22—C23111.4 (3)C13—C20B—H20D113.3
O2B—C22—C23106.2 (4)H20C—C20B—H20D110.6
C24—C23—C28122.1 (3)O2B—C21B—C20B111.3 (10)
C24—C23—C22120.1 (3)O2B—C21B—H21C109.4
C28—C23—C22117.8 (3)C20B—C21B—H21C109.4
C25—C24—C23118.5 (3)O2B—C21B—H21D109.4
C25—C24—H24120.7C20B—C21B—H21D109.4
C23—C24—H24120.7H21C—C21B—H21D108.0
O4—C25—C24124.6 (2)C1S—C2S—N2S166.3 (18)
O4—C25—C26114.9 (2)C2Si—N2S—C2S172.9 (19)
C24—C25—C26120.4 (3)
C6—O1—C5—C40.3 (3)C28—C23—C24—C250.2 (5)
C6—O1—C5—C9119.3 (2)C22—C23—C24—C25178.8 (3)
C6—O1—C5—C8120.8 (2)C29—O4—C25—C240.2 (4)
C11—C4—C5—O1178.4 (3)C29—O4—C25—C26179.8 (3)
C7—C4—C5—O11.6 (3)C23—C24—C25—O4179.8 (3)
C11—C4—C5—C965.7 (4)C23—C24—C25—C260.3 (4)
C7—C4—C5—C9114.4 (3)O4—C25—C26—C27179.1 (3)
C11—C4—C5—C863.0 (4)C24—C25—C26—C270.9 (4)
C7—C4—C5—C8116.9 (3)C36—O5—C27—C26175.3 (3)
C5—O1—C6—C2178.2 (3)C36—O5—C27—C285.9 (4)
C5—O1—C6—C71.2 (3)C25—C26—C27—O5177.3 (3)
C1—C2—C6—O1178.3 (3)C25—C26—C27—C281.6 (5)
C3—C2—C6—O10.8 (4)O5—C27—C28—C23177.3 (3)
C1—C2—C6—C72.5 (5)C26—C27—C28—C231.5 (4)
C3—C2—C6—C7178.4 (3)C24—C23—C28—C270.9 (5)
O1—C6—C7—C10174.9 (3)C22—C23—C28—C27179.4 (3)
C2—C6—C7—C104.3 (5)C25—O4—C29—C30178.0 (2)
O1—C6—C7—C42.3 (4)O4—C29—C30—C3514.4 (4)
C2—C6—C7—C4177.0 (3)O4—C29—C30—C31167.4 (3)
C11—C4—C7—C6177.6 (3)C35—C30—C31—C320.8 (5)
C5—C4—C7—C62.3 (3)C29—C30—C31—C32179.1 (3)
C11—C4—C7—C105.3 (5)C30—C31—C32—C330.5 (5)
C5—C4—C7—C10174.7 (3)C31—C32—C33—C340.2 (5)
C7—C4—C11—C126.6 (5)C32—C33—C34—C350.5 (5)
C5—C4—C11—C12173.4 (3)C33—C34—C35—C300.1 (5)
C4—C11—C12—C13170.8 (3)C31—C30—C35—C340.5 (5)
C11—C12—C13—C14177.2 (3)C29—C30—C35—C34178.7 (3)
C11—C12—C13—C20A8.4 (6)C27—O5—C36—C3778.9 (3)
C11—C12—C13—C20B35.0 (7)O5—C36—C37—C38152.5 (3)
C12—C13—C14—C18175.4 (3)O5—C36—C37—C4234.0 (4)
C20A—C13—C14—C1810.1 (5)C42—C37—C38—C391.9 (4)
C20B—C13—C14—C1834.2 (7)C36—C37—C38—C39171.8 (3)
C12—C13—C14—C155.0 (5)C37—C38—C39—C401.2 (5)
C20A—C13—C14—C15169.6 (3)C38—C39—C40—C411.1 (5)
C20B—C13—C14—C15146.1 (6)C39—C40—C41—C422.6 (5)
C18—C14—C15—C161.5 (5)C40—C41—C42—C371.9 (4)
C13—C14—C15—C16178.8 (3)C38—C37—C42—C410.4 (4)
C17—N4—C16—C150.6 (5)C36—C37—C42—C41173.3 (3)
C19—N4—C16—C15179.9 (3)O3—C22—O2A—C21A3.8 (5)
C14—C15—C16—N41.8 (5)C23—C22—O2A—C21A177.8 (3)
C16—N4—C17—C180.8 (4)C12—C13—C20A—C21A93.6 (4)
C19—N4—C17—C18178.7 (3)C14—C13—C20A—C21A91.9 (4)
N4—C17—C18—C141.0 (5)C22—O2A—C21A—C20A82.2 (4)
C15—C14—C18—C170.2 (5)C13—C20A—C21A—O2A179.1 (2)
C13—C14—C18—C17179.9 (3)O3—C22—O2B—C21B26.8 (9)
O3—C22—C23—C24176.7 (4)C23—C22—O2B—C21B170.0 (7)
O2A—C22—C23—C242.8 (5)C12—C13—C20B—C21B104.1 (7)
O2B—C22—C23—C2445.0 (5)C14—C13—C20B—C21B111.9 (7)
O3—C22—C23—C281.9 (6)C22—O2B—C21B—C20B60.6 (11)
O2A—C22—C23—C28175.8 (3)C13—C20B—C21B—O2B174.5 (7)
O2B—C22—C23—C28136.4 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N1ii0.982.593.529 (4)161
C9—H9B···N3iii0.982.593.497 (5)153
C16—H16···N1iv0.952.513.406 (4)156
C17—H17···N2v0.952.513.380 (4)152
C19—H19C···N2v0.982.503.340 (4)143
C26—H26···O5vi0.952.513.398 (4)155
C8—H8B···Cg1vii0.982.543.515 (3)171
Symmetry codes: (ii) x, y+2, z+1/2; (iii) x+1/2, y+3/2, z; (iv) x+1/2, y1/2, z1/2; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC42H36N4O5·0.25C2H3N
Mr687.01
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)29.374 (6), 15.825 (3), 16.317 (3)
β (°) 108.61 (3)
V3)7188 (3)
Z8
Radiation typeSynchrotron, λ = 0.77300 Å
µ (mm1)0.08
Crystal size (mm)0.26 × 0.08 × 0.04
Data collection
DiffractometerADSC Quantum 210r CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
38733, 5381, 4076
Rint0.098
θmax (°)26.0
(sin θ/λ)max1)0.567
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.167, 1.04
No. of reflections5381
No. of parameters482
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0862P)2 + 13.1795P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.91, 0.50

Computer programs: ADSC Quantum 210r software (ADSC, 2009), XDS (Kabsch, 1993), locally modified software and XPREP (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N1i0.982.593.529 (4)161
C9—H9B···N3ii0.982.593.497 (5)153
C16—H16···N1iii0.952.513.406 (4)156
C17—H17···N2iv0.952.513.380 (4)152
C19—H19C···N2iv0.982.503.340 (4)143
C26—H26···O5v0.952.513.398 (4)155
C8—H8B···Cg1vi0.982.543.515 (3)171
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y1/2, z1/2; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x, y+1, z1/2.
Interplanar angles of the planar entities (°) top
PlaneC1–C12,N1–N3,O1C12–C19,N4C22–C30,O3–O4C29–C35C37–C42SIGPa
C1–C12,N1–N3,O114.59 (10)18.77 (7)31.92 (12)64.58 (13)0.025 (3)
C12–C19,N414.59 (10)4.90 (9)18.33 (13)75.25 (15)0.033 (3)
C22–C30,O3–O418.77 (7)4.90 (9)13.48 (11)80.11 (12)0.026 (3)
C29–C35b31.92 (12)18.33 (13)13.48 (11)86.94 (16)0.004 (3)
Notes: (a) Sqrt(Sum(j=1:N)(D(j)**2/(N-3)) (Spek, 2009); (b) SIGP for plane C37–C42 is 0.014 (3) Å.
 

Acknowledgements

The structural study was supported by the New Zealand Synchrotron Group and the Australian Synchrotron, Victoria, Australia. We thank Drs Adams, Huyton and Williamson of the Australian Synchrotron for their assistance and the New Zealand Foundation for Research, Science and Technology and New Zealand Pharmaceuticals Ltd for financial support. The diffraction data was collected on the PX1 beamline (McPhillips et al., 2002[ McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401-406.]) at the Australian Synchrotron, Victoria, Australia. The views expressed herein are those of the authors and are not necessarily those of the owner or operator of the Australian Synchrotron. We thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance with the conventional data collection.

References

First citation ADSC (2009). ADSC Quantum 210r software. http://www.adsc-xray.com/  Google Scholar
First citation Bruker (2001). XPREP for UNIX. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Clarke, D. J., Teshome, A., Bhuiyan, M. D. H., Ashraf, M., Middleton, A. P., Gainsford, G. J., Asselberghs, I., Clays, K., Smith, G. J. & Kay, A. J. (2009). Proc AIP Conference Proceedings, AMN-4, Dunedin, New Zealand, pp. 92–93.  Google Scholar
First citation Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citation Kay, A. J., Gainsford, G. J. & Bhuiyan, D. (2008). Poster 8, ICONO10 Conference Abstracts, p. 141.  Google Scholar
First citation Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.  Web of Science CrossRef CAS Google Scholar
First citation Kim, T.-D., Kang, J.-W., Luo, J., Jang, S.-H., Ka, J.-W., Tucker, N., Benedict, J. B., Dalton, L. R., Gray, T., Overney, R. M., Park, D. H., Herman, W. N. & Jen, A. K.-Y. (2007). J. Am. Chem. Soc. 129, 488–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citation Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526.  CSD CrossRef CAS Web of Science Google Scholar
First citation McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Spek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3261-o3262
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds