organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3227-o3228

2-Methyl-6-(6-methyl-1H-benzimidazol-2-yl)phenol–2-methyl-6-(5-methyl-1H-benzimidazol-2-yl)phenol (3/1)

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 16 November 2009; accepted 20 November 2009; online 28 November 2009)

The title compound, 0.75C15H14N2O·0.25C15H14N2O, is a co-crystal of 2-methyl-6-(6-methyl-1H-benzimidazol-2-yl)phenol as the major component and 2-methyl-6-(5-methyl-1H-benz­imidazol-2-yl)phenol as the minor component. The refined site-occupancy ratio is 0.746 (4)/0.254 (4). The conformations of both components are identical except for that of the methyl substituent on the benzene ring of the benzimidazole unit which is positionally disordered over two positions. The mol­ecule is essentially planar, the dihedral angle between the benzimidazole plane and the benzene ring being 3.49 (4)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal packing, mol­ecules are linked through N—H⋯O hydrogen bonds into chains along [201]. These chains are stacked approximately along the a-axis direction. The crystal packing is further stabilized by weak N—H⋯O and O⋯H⋯N hydrogen bonds, together with weak inter­molecular C—H⋯π inter­actions. A ππ inter­action with a centroid–centroid distance of 3.6241 (6) Å is also observed between the substituted phenyl ring and that of the benzimidazole system.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to benzimidazoles and their bioactivity, see: Demirayak et al. (2002[Demirayak, S., Abu Mohsen, U. & Iagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255-260.]); Guven et al. (2007[Guven, O. O., Erdogan, T., Goker, H. & Yi/'ldiz, S. (2007). Bioorg. Med. Chem. Lett. 17, 2233-2236.]); Minoura et al. (2004[Minoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharm. 494, 273-281.]); Pawar et al. (2005[Pawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2005). Eur. J. Pharm. Sci. 21, 115-118.]); Thakurdesai et al. (2007[Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharm. Online, 1, 314-329.]); Tomei et al. (2003[Tomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol. 77, 13225-13231.]). For related structures, see: Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141-o4142.], 2009a[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009a). Acta Cryst. E65, o1613-o1614.],b[Eltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009b). Acta Cryst. E65, o1374-o1375.]); Xiao et al. (2009[Xiao, H.-Q., Zhang, M.-Z. & Wang, W. (2009). Acta Cryst. E65, o1256.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 0.75C15H14N2O·0.25C15H14N2O

  • Mr = 238.28

  • Monoclinic, P 21 /c

  • a = 4.9231 (1) Å

  • b = 19.8900 (6) Å

  • c = 12.3199 (3) Å

  • β = 105.085 (1)°

  • V = 1164.80 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.59 × 0.17 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.992

  • 34431 measured reflections

  • 3703 independent reflections

  • 3165 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.07

  • 3703 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.936 (19) 2.095 (19) 2.9916 (12) 160.1 (18)
O1—H1O1⋯N1 0.93 (2) 1.74 (2) 2.6040 (12) 153 (2)
C15—H15CCg3ii 0.96 2.66 3.5731 (16) 160
C15A—H15FCg2iii 0.96 2.96 3.780 (4) 144
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 and Cg3 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazoles are regarded as a promising class of bioactive heterocyclic compounds that exhibit a variety of bioactivities displaying antidiabetic (Minoura et al., 2004), antimicrobial, antifungal (Guven et al., 2007; Pawar et al., 2005), antiviral (Tomei et al., 2003); anti-inflammatory (Thakurdesai et al., 2007) and anticancer (Demirayak et al., 2002) properties. As part of our research on screening benzimidazoles for their biological activities, we have previously reported the synthesis and crystal structures of some benzimidazoles (Eltayeb et al., 2007; 2009a,b). In continuation of this research the title compound (I) was synthesized and its crystal structure is reported here.

The asymmetric unit of the title compound (Fig. 1) consists of [2-methyl-6-(6-methyl-1H-benzimidazol-2-yl)phenol] as a major component and [2-methyl-6-(5-methyl-1H-benzimidazol-2-yl)phenol] as a minor component. The refined site-occupancy ratio of the major and the minor components is 0.746 (4)/0.254 (4). The conformation of both components are identical except the benzimidazole methyl group is positionally disordered over two positions on atoms C10 and C11 (Fig. 1). The molecule is essentially planar with the dihedral angle between the benzimidazole and benzene ring being 3.49 (4)°. The benzimidazole ring system (N1/N2/C7–C13) is planar with an rms deviation of 0.008 (1)Å. The imidazole ring (N1/N2/C7–C8/C13) makes the dihedral angles of 1.28 (6) and 3.01 (6)° with the C8–C13 and C1–C6 benzene rings, respectively. An intramolecular O—H···N hydrogen bond (Fig. 1) generates an S(6) ring motif (Bernstein et al., 1995) and helps to maintain the planarity of the molecule. Bond lengths in (I) are in normal ranges (Allen et al., 1987) and comparable with those in related structures (Eltayeb et al., 2007; 2009a, b; Xiao et al., 2009).

The crystal packing of the major component was shown in Fig. 2, the molecules being linked in an antiparallel manner through an N—H···O hydrogen bond into chains along the [2 0 1] direction. These chains are stacked approximately along the a axis (Table 1). C—H···π (Table 1) and ππ interactions were also present with the distance Cg1···Cg2 = 3.6241 (6) Å (symmetry code -1+x, y, z); Cg1, Cg2 and Cg3 are the centroids of the N1/N2/C7–C8/C13, C1–C6 and C8–C13 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to benzimidazoles and their bioactivity, see: Demirayak et al. (2002); Guven et al. (2007); Minoura et al. (2004); Pawar et al. (2005); Thakurdesai et al. (2007); Tomei et al. (2003). For related structures, see: Eltayeb et al. (2007, 2009a,b); Xiao et al. (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986). Cg2 and Cg3 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Experimental top

3-Methylsalicylaldehyde (0.5 g, 4 mmol) was added to a solution of 4-methyl-1,2-phenylenediamine (0.244 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were obtained by slow evaporation of the filtrate at room temperature over several days.

Refinement top

Hydroxy and amide H atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from C8 and the deepest hole is located at 1.17 Å from C7. One methyl group is positionally disordered over two positions with occupancies 0.746 (4) (for the methyl group bound to C10) and 0.254 (4) (for the methyl group bound to C11), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor disorder component
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines and only the major disorder component is shown.
2-Methyl-6-(6-methyl-1H-benzimidazol-2-yl)phenol– 2-methyl-6-(5-methyl-1H-benzimidazol-2-yl)phenol (3/1) top
Crystal data top
0.75C15H14N2O·0.25C15H14N2OF(000) = 504
Mr = 238.28Dx = 1.359 Mg m3
Monoclinic, P21/cMelting point: ?' K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.9231 (1) ÅCell parameters from 3703 reflections
b = 19.8900 (6) Åθ = 2.0–31.0°
c = 12.3199 (3) ŵ = 0.09 mm1
β = 105.085 (1)°T = 100 K
V = 1164.80 (5) Å3Needle, yellow
Z = 40.59 × 0.17 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3703 independent reflections
Radiation source: sealed tube3165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 31.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.951, Tmax = 0.992k = 2828
34431 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.4392P]
where P = (Fo2 + 2Fc2)/3
3703 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
0.75C15H14N2O·0.25C15H14N2OV = 1164.80 (5) Å3
Mr = 238.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.9231 (1) ŵ = 0.09 mm1
b = 19.8900 (6) ÅT = 100 K
c = 12.3199 (3) Å0.59 × 0.17 × 0.10 mm
β = 105.085 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3165 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.992Rint = 0.030
34431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.61 e Å3
3703 reflectionsΔρmin = 0.20 e Å3
184 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.19279 (16)0.73306 (4)0.38129 (6)0.01798 (17)
N10.75983 (18)0.80945 (5)0.29676 (7)0.01616 (18)
N20.51410 (19)0.79954 (5)0.11676 (8)0.01659 (18)
C11.1529 (2)0.70454 (5)0.27765 (8)0.01503 (19)
C21.3414 (2)0.65397 (5)0.26490 (9)0.0167 (2)
C31.3081 (2)0.62518 (6)0.15941 (10)0.0202 (2)
H3A1.43260.59180.15010.024*
C41.0927 (2)0.64511 (6)0.06716 (10)0.0226 (2)
H4A1.07560.62560.00290.027*
C50.9042 (2)0.69426 (6)0.08074 (9)0.0189 (2)
H5A0.75910.70730.01960.023*
C60.9303 (2)0.72445 (5)0.18570 (8)0.01520 (19)
C70.7363 (2)0.77685 (5)0.20056 (8)0.01523 (19)
C80.3873 (2)0.85056 (5)0.16229 (9)0.0164 (2)
C90.1586 (2)0.89213 (5)0.11465 (9)0.0187 (2)
H9A0.05870.88760.03980.022*
C100.0862 (2)0.94063 (6)0.18357 (10)0.0197 (2)
H10A0.06920.97020.15370.024*0.254 (4)
C110.2396 (2)0.94650 (6)0.29702 (10)0.0202 (2)
H11A0.18530.98010.34320.024*0.746 (4)
C120.4672 (2)0.90501 (6)0.34381 (9)0.0199 (2)
H12A0.56650.90940.41880.024*
C130.5427 (2)0.85640 (5)0.27486 (9)0.0163 (2)
C141.5751 (2)0.63299 (6)0.36352 (9)0.0208 (2)
H14A1.68600.59880.34050.031*
H14B1.49730.61560.42160.031*
H14C1.69180.67110.39160.031*
C150.1576 (3)0.98865 (7)0.13834 (13)0.0201 (3)0.746 (4)
H15A0.21190.98660.05770.030*0.746 (4)
H15B0.10061.03360.16200.030*0.746 (4)
H15C0.31420.97600.16680.030*0.746 (4)
C15A0.1355 (10)0.9949 (2)0.3651 (5)0.0267 (11)0.254 (4)
H15D0.25930.99590.43950.040*0.254 (4)
H15E0.04960.98200.36890.040*0.254 (4)
H15F0.12821.03870.33170.040*0.254 (4)
H1N20.445 (4)0.7809 (10)0.0451 (16)0.041 (5)*
H1O11.058 (5)0.7671 (11)0.3717 (19)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0181 (4)0.0218 (4)0.0123 (3)0.0025 (3)0.0008 (3)0.0007 (3)
N10.0156 (4)0.0180 (4)0.0141 (4)0.0009 (3)0.0025 (3)0.0006 (3)
N20.0152 (4)0.0189 (4)0.0138 (4)0.0011 (3)0.0005 (3)0.0000 (3)
C10.0143 (4)0.0174 (4)0.0126 (4)0.0020 (3)0.0021 (3)0.0010 (3)
C20.0149 (4)0.0180 (4)0.0164 (5)0.0004 (3)0.0026 (3)0.0014 (4)
C30.0183 (5)0.0219 (5)0.0196 (5)0.0025 (4)0.0037 (4)0.0019 (4)
C40.0211 (5)0.0272 (5)0.0181 (5)0.0024 (4)0.0030 (4)0.0046 (4)
C50.0174 (5)0.0238 (5)0.0137 (4)0.0013 (4)0.0007 (4)0.0014 (4)
C60.0142 (4)0.0174 (4)0.0133 (4)0.0003 (3)0.0024 (3)0.0001 (3)
C70.0136 (4)0.0175 (4)0.0136 (4)0.0005 (3)0.0019 (3)0.0018 (3)
C80.0148 (4)0.0172 (4)0.0163 (5)0.0010 (3)0.0024 (3)0.0008 (3)
C90.0157 (4)0.0201 (5)0.0184 (5)0.0001 (4)0.0010 (4)0.0022 (4)
C100.0162 (4)0.0194 (5)0.0228 (5)0.0002 (4)0.0037 (4)0.0032 (4)
C110.0197 (5)0.0195 (5)0.0216 (5)0.0008 (4)0.0060 (4)0.0005 (4)
C120.0201 (5)0.0220 (5)0.0172 (5)0.0007 (4)0.0040 (4)0.0007 (4)
C130.0152 (4)0.0174 (4)0.0157 (5)0.0002 (3)0.0027 (3)0.0020 (3)
C140.0177 (5)0.0234 (5)0.0192 (5)0.0033 (4)0.0012 (4)0.0023 (4)
C150.0167 (6)0.0179 (7)0.0243 (7)0.0024 (5)0.0027 (5)0.0019 (5)
C15A0.023 (2)0.024 (2)0.035 (3)0.0009 (17)0.0110 (19)0.0034 (18)
Geometric parameters (Å, º) top
O1—C11.3639 (12)C9—H9A0.9300
O1—H1O10.93 (2)C10—C111.4100 (16)
N1—C71.3291 (13)C10—C151.5217 (18)
N1—C131.3919 (13)C10—H10A0.9599
N2—C71.3706 (13)C11—C121.3902 (15)
N2—C81.3842 (14)C11—C15A1.454 (5)
N2—H1N20.936 (19)C11—H11A0.9600
C1—C21.4045 (14)C12—C131.3996 (15)
C1—C61.4124 (14)C12—H12A0.9300
C2—C31.3904 (15)C14—H14A0.9600
C2—C141.4990 (15)C14—H14B0.9600
C3—C41.3951 (16)C14—H14C0.9600
C3—H3A0.9300C15—H10A0.5624
C4—C51.3877 (15)C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
C5—C61.4009 (14)C15—H15C0.9600
C5—H5A0.9300C15A—H11A0.5030
C6—C71.4572 (14)C15A—H15D0.9600
C8—C91.3970 (14)C15A—H15E0.9600
C8—C131.4035 (14)C15A—H15F0.9600
C9—C101.3915 (16)
C1—O1—H1O1105.0 (14)C9—C10—C15120.98 (11)
C7—N1—C13105.67 (8)C11—C10—C15118.62 (11)
C7—N2—C8106.97 (9)C9—C10—H10A119.8
C7—N2—H1N2127.1 (12)C11—C10—H10A119.8
C8—N2—H1N2125.5 (12)C12—C11—C10121.86 (10)
O1—C1—C2117.66 (9)C12—C11—C15A121.4 (2)
O1—C1—C6121.79 (9)C10—C11—C15A116.6 (2)
C2—C1—C6120.55 (9)C12—C11—H11A119.1
C3—C2—C1118.62 (10)C10—C11—H11A119.0
C3—C2—C14121.45 (10)C11—C12—C13118.11 (10)
C1—C2—C14119.92 (9)C11—C12—H12A120.9
C2—C3—C4121.60 (10)C13—C12—H12A120.9
C2—C3—H3A119.2N1—C13—C12131.12 (10)
C4—C3—H3A119.2N1—C13—C8109.24 (9)
C5—C4—C3119.50 (10)C12—C13—C8119.63 (10)
C5—C4—H4A120.2C2—C14—H14A109.5
C3—C4—H4A120.2C2—C14—H14B109.5
C4—C5—C6120.63 (10)H14A—C14—H14B109.5
C4—C5—H5A119.7C2—C14—H14C109.5
C6—C5—H5A119.7H14A—C14—H14C109.5
C5—C6—C1119.07 (9)H14B—C14—H14C109.5
C5—C6—C7121.12 (9)C10—C15—H15A109.5
C1—C6—C7119.80 (9)H10A—C15—H15A107.6
N1—C7—N2112.23 (9)C10—C15—H15B109.5
N1—C7—C6123.58 (9)H10A—C15—H15B111.4
N2—C7—C6124.17 (9)C10—C15—H15C109.5
N2—C8—C9131.51 (10)H10A—C15—H15C109.4
N2—C8—C13105.89 (9)C11—C15A—H15D109.5
C9—C8—C13122.58 (10)C11—C15A—H15E109.5
C10—C9—C8117.42 (10)H15D—C15A—H15E109.5
C10—C9—H9A121.3C11—C15A—H15F109.5
C8—C9—H9A121.3H15D—C15A—H15F109.5
C9—C10—C11120.40 (10)H15E—C15A—H15F109.5
O1—C1—C2—C3178.69 (9)C1—C6—C7—N2179.91 (9)
C6—C1—C2—C31.56 (15)C7—N2—C8—C9178.20 (11)
O1—C1—C2—C140.27 (14)C7—N2—C8—C130.17 (11)
C6—C1—C2—C14179.49 (9)N2—C8—C9—C10178.36 (11)
C1—C2—C3—C40.34 (17)C13—C8—C9—C100.22 (16)
C14—C2—C3—C4179.28 (10)C8—C9—C10—C110.31 (16)
C2—C3—C4—C50.80 (18)C8—C9—C10—C15179.22 (11)
C3—C4—C5—C60.73 (17)C9—C10—C11—C120.42 (17)
C4—C5—C6—C10.46 (16)C15—C10—C11—C12179.13 (11)
C4—C5—C6—C7179.02 (10)C9—C10—C11—C15A175.2 (2)
O1—C1—C6—C5178.63 (9)C15—C10—C11—C15A5.2 (3)
C2—C1—C6—C51.62 (15)C10—C11—C12—C130.03 (17)
O1—C1—C6—C70.06 (15)C15A—C11—C12—C13175.5 (2)
C2—C1—C6—C7179.81 (9)C7—N1—C13—C12178.89 (11)
C13—N1—C7—N20.43 (12)C7—N1—C13—C80.31 (11)
C13—N1—C7—C6177.88 (9)C11—C12—C13—N1178.57 (10)
C8—N2—C7—N10.39 (12)C11—C12—C13—C80.56 (16)
C8—N2—C7—C6177.91 (9)N2—C8—C13—N10.08 (11)
C5—C6—C7—N1176.56 (10)C9—C8—C13—N1178.63 (9)
C1—C6—C7—N11.98 (15)N2—C8—C13—C12179.22 (9)
C5—C6—C7—N21.55 (16)C9—C8—C13—C120.67 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.936 (19)2.095 (19)2.9916 (12)160.1 (18)
O1—H1O1···N10.93 (2)1.74 (2)2.6040 (12)153 (2)
C15—H15C···Cg3ii0.962.663.5731 (16)160
C15A—H15F···Cg2iii0.962.963.780 (4)144
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula0.75C15H14N2O·0.25C15H14N2O
Mr238.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.9231 (1), 19.8900 (6), 12.3199 (3)
β (°) 105.085 (1)
V3)1164.80 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.59 × 0.17 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.951, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
34431, 3703, 3165
Rint0.030
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.07
No. of reflections3703
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.936 (19)2.095 (19)2.9916 (12)160.1 (18)
O1—H1O1···N10.93 (2)1.74 (2)2.6040 (12)153 (2)
C15—H15C···Cg3ii0.962.663.5731 (16)160
C15A—H15F···Cg2iii0.962.963.780 (4)144
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Footnotes

On study leave from: Department of Chemistry, International University of Africa, Khartoum, Sudan. E-mail: nasertaha90@hotmail.com.

§Thomson Reuters ResearcherID: A-3561-2009.

Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Malaysian Government, Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the FRGS, RU research grants (PKIMIA/613308, PKIMIA/815002, and PKIMIA/811120) and the University Golden Goose grant No. 1001/PFIZIK/811012. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirayak, S., Abu Mohsen, U. & Iagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141–o4142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009b). Acta Cryst. E65, o1374–o1375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009a). Acta Cryst. E65, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuven, O. O., Erdogan, T., Goker, H. & Yi/'ldiz, S. (2007). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Google Scholar
First citationMinoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharm. 494, 273–281.  CrossRef CAS Google Scholar
First citationPawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2005). Eur. J. Pharm. Sci. 21, 115–118.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharm. Online, 1, 314–329.  Google Scholar
First citationTomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol. 77, 13225–13231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, H.-Q., Zhang, M.-Z. & Wang, W. (2009). Acta Cryst. E65, o1256.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3227-o3228
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds