metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1606-m1607

Carbonyl[4-(2,6-di­methyl­phenyl­amino)pent-3-en-2-onato-κ2N,O](tri­phenyl­phosphine-κP)rhodium(I) acetone hemi­solvate

aDepartment of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: truidie@hotmail.com

(Received 23 October 2009; accepted 13 November 2009; online 18 November 2009)

In the title compound, [Rh(C13H16NO)(C18H15P)(CO)]·0.5C3H6O, the Rh atom exhibits a square-planar coordination geometry, being coordinated by the N and O atoms of the bidentate β-diketonato ligand, a P atom from the triphenyl­phosphine unit and a C atom from the carbonyl group. The asymmetric unit also contains a disordered half-mol­ecule, lying about an inversion center, of the acetone solvate. Inter­molecular C—H⋯O hydrogen bonds are observed between a C—H group of the triphenyl­phosphine unit and a carbonyl O atom and between the methyl group of the enamino­ketonato backbone and the solvent O atom. In addition, an intra­molecular inter­action is observed between a C—H group of the triphenyl­phosphine unit and the O atom of the enamino­ketonato ligand.

Related literature

For synthetic background, see: Shaheen et al. (2006[Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873-o874.]); Cornils & Hermann (1996); Bonati & Wilkinson (1964[Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156-3160.]). For appplications of rhodium(I) dicarbonyl complexes, see: Cornils & Herrmann (1996[Cornils, B. & Herrmann, W. A. (1996). Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook, pp. 412-413. Weinheim: VCH.]); Trzeciak & Ziolkowski (1994[Trzeciak, A. M. & Ziolkowski, J. J. (1994). J. Organomet. Chem. 464, 107-111.]); Van Rooy et al. (1995[Van Rooy, A., Orji, E. N., Kramer, P. G. J. & Van Leeuwen, P. W. M. N. (1995). Organometallics 14, 34-43.]). For related structures, see: Damoense et al. (1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]); Varshavsky et al. (2001[Varshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziolkowski, J. J. (2001). J. Organomet. Chem. 628, 195-210.]); Venter et al. (2009[Venter, G. J. S., Steyl, G. & Roodt, A. (2009). Acta Cryst. E65, m1321-m1322.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C13H16NO)(C18H15P)(CO)]·0.5C3H6O

  • Mr = 624.5

  • Monoclinic, P 21 /c

  • a = 16.8558 (8) Å

  • b = 11.4028 (5) Å

  • c = 16.4059 (8) Å

  • β = 108.733 (1)°

  • V = 2986.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.31 × 0.15 × 0.11 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.822, Tmax = 0.931

  • 23158 measured reflections

  • 7425 independent reflections

  • 6081 reflections with > 2σI)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.09

  • 7425 reflections

  • 354 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C332—H332⋯O12 0.95 2.38 3.201 (3) 144
C334—H334⋯O14i 0.95 2.51 3.201 (4) 130
C1—H1B⋯O01ii 0.98 2.54 3.372 (9) 142
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Comparative geometrical parameters (Å, °) for similar [Rh(N,O-bid)(CO)(PPh3)] complexes

Parameters (I)a (II)b (III)c (IV)d
Rh1—N11 2.077 (2) 2.069 (2) 2.045 (4) 2.045 (3)
Rh1—O12 2.027 (2) 2.028 (2) 2.044 (3) 2.045 (2)
Rh1—P13 2.2704 (7) 2.2635 (6) 2.275 (1) 2.281 (2)
Rh1—C14 1.812 (3) 1.807 (2) 1.784 (5) 1.804 (3)
C14—O14 1.147 (3) 1.152 (3) 1.142 (7) 1.148 (4)
N11⋯O12 2.885 (3) 2.885 (3) 2.826 (6) 2.841 (3)
N11—Rh1—O12 89.31 (9) 89.54 (8) 87.4 (1) 87.95 (8)
O12—Rh1—P13 85.95 (6) 84.97 (5) 89.7 (1) 89.91 (5)
P13—Rh1—C14 91.57 (9) 91.87 (7) 90.3 (2) 89.48 (9)
N11—Rh1—C14 93.1 (1) 93.6 (1) 92.6 (2) 92.6 (1)
N11—C2—C4—O12 −2.6 (2) 4.1 (2) 1.2 (4) 1.5 (2)
θEe 155.77 (2) 156.39 (3) 156.0 (2) 156.23 (4)
Notes: (a) This work; (b) N,O-bid = 4-(2,3-dimethyl phenylamino)pent-3-en-2-onato (Venter et al., 2009[Venter, G. J. S., Steyl, G. & Roodt, A. (2009). Acta Cryst. E65, m1321-m1322.]); (c) N,O-bid = 4-amino-pent-3-en-2-onato (Damoense et al., 1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]); (d) N,O-bid = 4-amino-1,1,1-trifluoro-pent-3-en-2-onato (Varshavsky et al., 2001[Varshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziolkowski, J. J. (2001). J. Organomet. Chem. 628, 195-210.]); (e) cone angle (Tolman, 1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]).

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Rhodium(I) dicarbonyl complexes of the type [Rh(L,L')(CO)2] containing chelating mono-anionic bidentate (L,L') ligands coordinated to rhodium via (O,O) donor atoms have been studied as catalyst precursors (Cornils & Herrmann, 1996; Trzeciak et al., 1994; Van Rooy et al., 1995). The investigation of these complexes is followed by complexes containing bidentate β-enaminoketonato ligands such as 4-(phenylamino)pent-3-en-2-onato (Phony) (Shaheen et al., 2006) coordinated to rhodium via (N,O) donor atoms. It was suggested that only one CO-group in a [Rh(N,O-bid)(CO)2]-type complex will be substituted by triphenyl phosphine, with the product being one of two possible isomers (Bonati & Wilkinson, 1964). Since the N-donor atom has a larger trans-influence than the O-atom, the CO-group trans to the N-atom will be substituted. This is evident in the title compound, (I), where [Rh(2,6-diMe-Phony)(CO)(PPh3)] is formed by the substitution of the carbonyl ligand in the dicarbonyl rhodium(I) complex [Rh(2,6-diMe-Phony)(CO)2] by PPh3.

In the title complex (Fig. 1), the bond distances involving rhodium differ significantly from the distances in related complexes, with the exception of [Rh(2,3-diMe-Phony)(CO)(PPh3)] (Venter et al., 2009), wherein all angles and distances are comparable to (I) (Table 2). The distance, Rh—N, in (I) is longer than in similar complexes while the Rh—O bond distance is shorter. This is due to the steric influence of the phenyl group connected to nitrogen in the title compound, as opposed to the hydrogen in the related complexes. The Rh—C and the carbonyl C—O distances are comparable with those distances in the related complexes (Table 2). The N—Rh—O bite angle is slightly larger than that observed in similar complexes found in the literature. The effective cone angle, θE, (Tolman, 1977) of 155.77 (2)° is similar to the angles in the related compounds. The acetone solvate was disordered and was located about an inversion center. Intermolecular and intramolecular hydrogen bonds of the type C—H···O are observed in the structure.

Related literature top

For synthetic background, see: Shaheen et al. (2006); Cornils & Herrmann (1996); Bonati & Wilkinson (1964). For appplications of rhodium(I) dicarbonyl complexes, see: Cornils & Herrmann (1996); Trzeciak & Ziolkowski (1994); Van Rooy et al. (1995). For related structures, see: Damoense et al. (1994); Varshavsky et al. (2001); Venter et al. (2009).

Experimental top

To a 5 ml acetone solution of [Rh(2,6-diMe-Phony)(CO)2] (0.0302 g, 83.61 µmol) was added PPh3 (0.0219 g, 83.50 µmol) resulting in an immediate evolution of gas with the formation of the title compound. Crystallization from acetone produced yellow crystals of (I) in quantitative (0.0516 g, 100%) yield. IR (KBr): νCO 1971.1 s cm-1.

Refinement top

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The acetone solvate was disordered about inversion center. The highest residual electron- density peak in the final difference map was located 0.65Å from H316 and was essentially meaningless.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level. H atoms and disordered solvate molecule have been omitted for clarity.
[Figure 2] Fig. 2. A view of the unit cell of (I) illustrating the C—H···O interactions; hydrogen atoms have been omitted for clarity.
Carbonyl[4-(2,6-dimethylphenylamino)pent-3-en-2-onato- κ2N,O](triphenylphosphine-κP)rhodium(I) acetone hemisolvate top
Crystal data top
[Rh(C13H16NO)(C18H15P)(CO)]·0.5C3H6OF(000) = 1288
Mr = 624.5Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6670 reflections
a = 16.8558 (8) Åθ = 2.5–28.2°
b = 11.4028 (5) ŵ = 0.66 mm1
c = 16.4059 (8) ÅT = 100 K
β = 108.733 (1)°Cuboid, yellow
V = 2986.2 (2) Å30.31 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
7425 independent reflections
Radiation source: fine-focus sealed tube6081 reflections with > 2σI)
Graphite monochromatorRint = 0.042
ω and ϕ scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2122
Tmin = 0.822, Tmax = 0.931k = 1511
23158 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0577P)2 + 1.4787P]
where P = (Fo2 + 2Fc2)/3
7425 reflections(Δ/σ)max = 0.002
354 parametersΔρmax = 1.54 e Å3
1 restraintΔρmin = 1.32 e Å3
Crystal data top
[Rh(C13H16NO)(C18H15P)(CO)]·0.5C3H6OV = 2986.2 (2) Å3
Mr = 624.5Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8558 (8) ŵ = 0.66 mm1
b = 11.4028 (5) ÅT = 100 K
c = 16.4059 (8) Å0.31 × 0.15 × 0.11 mm
β = 108.733 (1)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
7425 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6081 reflections with > 2σI)
Tmin = 0.822, Tmax = 0.931Rint = 0.042
23158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.112H-atom parameters constrained
S = 1.09Δρmax = 1.54 e Å3
7425 reflectionsΔρmin = 1.32 e Å3
354 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to θ = 28.24° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7144 (2)0.7625 (3)0.4744 (2)0.0257 (7)
H1A0.76970.78070.51520.039*
H1B0.67120.78040.50070.039*
H1C0.70480.80970.42220.039*
C20.71032 (17)0.6337 (2)0.45128 (18)0.0168 (5)
C30.65757 (17)0.5637 (2)0.48382 (18)0.0183 (6)
H30.63240.60170.52090.022*
C40.63880 (17)0.4461 (2)0.46740 (19)0.0180 (6)
C50.57863 (19)0.3856 (3)0.5045 (2)0.0265 (7)
H5A0.52880.36090.45770.04*
H5B0.56210.43990.54250.04*
H5C0.60580.31670.53750.04*
C140.84522 (17)0.4446 (2)0.32802 (17)0.0166 (5)
C1110.80357 (17)0.6734 (2)0.37352 (18)0.0164 (5)
C1120.76869 (19)0.7250 (2)0.2919 (2)0.0223 (6)
C1130.8183 (2)0.8000 (3)0.2624 (2)0.0271 (7)
H1130.79520.83650.20780.033*
C1140.9008 (2)0.8226 (2)0.3109 (2)0.0292 (7)
H1140.93380.87460.28970.035*
C1150.93503 (19)0.7690 (2)0.3902 (2)0.0242 (6)
H1150.99190.78360.42280.029*
C1160.88743 (18)0.6938 (2)0.42310 (19)0.0194 (6)
C1170.6798 (2)0.6980 (3)0.2380 (2)0.0318 (7)
H11A0.66670.73850.18260.048*
H11B0.64140.72470.26820.048*
H11C0.67340.61320.22830.048*
C1180.92484 (19)0.6332 (3)0.5082 (2)0.0257 (7)
H11D0.98590.64130.52690.039*
H11E0.90990.54990.50210.039*
H11F0.90310.66890.5510.039*
C3110.82259 (17)0.1691 (2)0.27715 (17)0.0149 (5)
C3120.90839 (17)0.1910 (2)0.30147 (18)0.0168 (5)
H3120.93520.23080.3540.02*
C3130.95533 (17)0.1553 (2)0.24967 (19)0.0193 (6)
H3131.01380.17070.2670.023*
C3140.91660 (18)0.0976 (2)0.17315 (19)0.0212 (6)
H3140.94830.07360.13750.025*
C3150.83113 (18)0.0749 (2)0.14845 (19)0.0190 (6)
H3150.80450.0350.09590.023*
C3160.78449 (17)0.1103 (2)0.20019 (18)0.0168 (5)
H3160.72610.09430.18290.02*
C3210.66208 (17)0.1553 (2)0.30122 (17)0.0153 (5)
C3220.59944 (17)0.2176 (2)0.24164 (19)0.0202 (6)
H3220.60930.2960.22790.024*
C3230.52197 (18)0.1657 (3)0.2017 (2)0.0243 (6)
H3230.47990.2080.15940.029*
C3240.50573 (19)0.0534 (3)0.2231 (2)0.0260 (7)
H3240.45230.0190.19660.031*
C3250.5676 (2)0.0085 (3)0.2829 (2)0.0386 (9)
H3250.5570.0860.29790.046*
C3260.6459 (2)0.0424 (3)0.3217 (2)0.0335 (8)
H3260.68840.0010.36270.04*
C3310.81170 (17)0.1399 (2)0.44688 (17)0.0156 (5)
C3320.7927 (2)0.1752 (3)0.51929 (19)0.0266 (7)
H3320.75790.24160.51630.032*
C3330.8240 (2)0.1144 (3)0.5959 (2)0.0334 (8)
H3330.80910.13780.64470.04*
C3340.8770 (2)0.0196 (3)0.60188 (19)0.0263 (7)
H3340.89990.02050.6550.032*
C3350.89635 (18)0.0163 (2)0.53013 (19)0.0222 (6)
H3350.9320.0820.53390.027*
C3360.86407 (18)0.0429 (2)0.45242 (19)0.0196 (6)
H3360.87750.01760.40320.024*
N110.75420 (14)0.59212 (18)0.40401 (15)0.0148 (5)
O120.66821 (11)0.37910 (16)0.42069 (13)0.0174 (4)
O140.90058 (13)0.46375 (18)0.30306 (13)0.0225 (4)
P130.76530 (4)0.22182 (6)0.34722 (4)0.01315 (15)
Rh10.761010 (12)0.417429 (17)0.371227 (13)0.01263 (8)
O010.4759 (6)0.3631 (7)0.0331 (6)0.0963 (16)0.5
C010.4182 (4)0.5252 (5)0.0389 (4)0.0963 (16)
H01A0.3660.48130.04820.144*
H01B0.42360.54720.09460.144*
H01C0.41730.59610.00550.144*
C020.4899 (9)0.4513 (10)0.0086 (9)0.0963 (16)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (16)0.0158 (14)0.0378 (18)0.0010 (12)0.0183 (14)0.0024 (13)
C20.0145 (13)0.0149 (13)0.0204 (14)0.0019 (10)0.0049 (11)0.0014 (10)
C30.0165 (13)0.0185 (13)0.0215 (14)0.0041 (11)0.0082 (11)0.0009 (11)
C40.0127 (13)0.0192 (13)0.0220 (14)0.0039 (10)0.0056 (11)0.0037 (11)
C50.0233 (15)0.0239 (15)0.0378 (18)0.0002 (12)0.0176 (14)0.0045 (13)
C140.0190 (14)0.0134 (12)0.0157 (13)0.0017 (10)0.0032 (11)0.0036 (10)
C1110.0206 (14)0.0097 (12)0.0224 (14)0.0009 (10)0.0118 (12)0.0016 (10)
C1120.0273 (15)0.0152 (13)0.0279 (16)0.0027 (11)0.0137 (13)0.0022 (11)
C1130.0408 (19)0.0149 (13)0.0312 (17)0.0020 (13)0.0193 (15)0.0041 (12)
C1140.0410 (19)0.0138 (14)0.043 (2)0.0063 (13)0.0286 (16)0.0043 (13)
C1150.0243 (15)0.0173 (14)0.0375 (18)0.0055 (11)0.0189 (14)0.0117 (12)
C1160.0220 (14)0.0136 (12)0.0242 (15)0.0014 (11)0.0099 (12)0.0038 (11)
C1170.0293 (17)0.0335 (17)0.0289 (17)0.0046 (14)0.0043 (14)0.0104 (14)
C1180.0217 (15)0.0267 (16)0.0243 (16)0.0035 (12)0.0013 (13)0.0047 (12)
C3110.0186 (13)0.0098 (12)0.0171 (13)0.0012 (10)0.0066 (11)0.0014 (10)
C3120.0165 (13)0.0147 (12)0.0180 (13)0.0017 (10)0.0037 (11)0.0003 (10)
C3130.0138 (13)0.0189 (13)0.0249 (15)0.0030 (11)0.0059 (11)0.0037 (11)
C3140.0225 (15)0.0196 (14)0.0242 (15)0.0043 (11)0.0112 (13)0.0025 (11)
C3150.0211 (14)0.0176 (13)0.0180 (14)0.0002 (11)0.0060 (12)0.0023 (10)
C3160.0165 (13)0.0143 (12)0.0187 (14)0.0012 (10)0.0041 (11)0.0001 (10)
C3210.0159 (13)0.0149 (12)0.0163 (13)0.0011 (10)0.0067 (11)0.0025 (10)
C3220.0173 (14)0.0168 (13)0.0251 (15)0.0012 (11)0.0049 (12)0.0008 (11)
C3230.0155 (14)0.0265 (16)0.0261 (16)0.0030 (12)0.0001 (12)0.0001 (12)
C3240.0166 (14)0.0312 (16)0.0283 (16)0.0067 (12)0.0045 (13)0.0052 (13)
C3250.0317 (18)0.0261 (17)0.048 (2)0.0167 (14)0.0006 (16)0.0098 (15)
C3260.0249 (16)0.0237 (16)0.041 (2)0.0047 (13)0.0047 (15)0.0129 (14)
C3310.0162 (13)0.0134 (12)0.0147 (13)0.0016 (10)0.0014 (11)0.0017 (10)
C3320.0368 (18)0.0224 (15)0.0195 (15)0.0132 (13)0.0077 (13)0.0011 (12)
C3330.054 (2)0.0313 (17)0.0153 (15)0.0234 (16)0.0113 (15)0.0034 (13)
C3340.0340 (17)0.0214 (15)0.0188 (15)0.0074 (13)0.0022 (13)0.0031 (12)
C3350.0246 (15)0.0168 (14)0.0233 (15)0.0049 (11)0.0052 (12)0.0005 (11)
C3360.0220 (14)0.0160 (13)0.0213 (14)0.0013 (11)0.0075 (12)0.0017 (11)
N110.0142 (11)0.0107 (10)0.0191 (12)0.0009 (8)0.0049 (9)0.0012 (8)
O120.0152 (9)0.0148 (9)0.0242 (10)0.0008 (8)0.0091 (8)0.0014 (8)
O140.0261 (11)0.0180 (10)0.0280 (11)0.0059 (8)0.0152 (9)0.0034 (8)
P130.0123 (3)0.0117 (3)0.0142 (3)0.0008 (2)0.0027 (3)0.0002 (2)
Rh10.01250 (12)0.01060 (11)0.01490 (12)0.00047 (7)0.00457 (8)0.00021 (7)
O010.139 (5)0.057 (3)0.104 (4)0.010 (3)0.054 (4)0.007 (2)
C010.139 (5)0.057 (3)0.104 (4)0.010 (3)0.054 (4)0.007 (2)
C020.139 (5)0.057 (3)0.104 (4)0.010 (3)0.054 (4)0.007 (2)
Geometric parameters (Å, º) top
C1—C21.513 (4)C313—H3130.95
C1—H1A0.98C314—C3151.390 (4)
C1—H1B0.98C314—H3140.95
C1—H1C0.98C315—C3161.389 (4)
C2—N111.320 (4)C315—H3150.95
C2—C31.420 (4)C316—H3160.95
C3—C41.384 (4)C321—C3261.380 (4)
C3—H30.95C321—C3221.383 (4)
C4—O121.289 (3)C321—P131.824 (3)
C4—C51.507 (4)C322—C3231.391 (4)
C5—H5A0.98C322—H3220.95
C5—H5B0.98C323—C3241.378 (4)
C5—H5C0.98C323—H3230.95
C14—O141.154 (3)C324—C3251.375 (4)
C14—Rh11.805 (3)C324—H3240.95
C111—C1161.405 (4)C325—C3261.394 (4)
C111—C1121.406 (4)C325—H3250.95
C111—N111.439 (3)C326—H3260.95
C112—C1131.387 (4)C331—C3321.385 (4)
C112—C1171.507 (4)C331—C3361.400 (4)
C113—C1141.388 (5)C331—P131.827 (3)
C113—H1130.95C332—C3331.383 (4)
C114—C1151.385 (5)C332—H3320.95
C114—H1140.95C333—C3341.386 (4)
C115—C1161.396 (4)C333—H3330.95
C115—H1150.95C334—C3351.380 (4)
C116—C1181.503 (4)C334—H3340.95
C117—H11A0.98C335—C3361.390 (4)
C117—H11B0.98C335—H3350.95
C117—H11C0.98C336—H3360.95
C118—H11D0.98N11—Rh12.076 (2)
C118—H11E0.98O12—Rh12.0277 (19)
C118—H11F0.98P13—Rh12.2701 (7)
C311—C3161.391 (4)O01—C021.135 (12)
C311—C3121.394 (4)C01—C021.474 (13)
C311—P131.825 (3)C01—H01A0.98
C312—C3131.395 (4)C01—H01B0.98
C312—H3120.95C01—H01C0.98
C313—C3141.382 (4)C02—C01i1.492 (16)
C2—C1—H1A109.5C314—C315—H315119.8
C2—C1—H1B109.5C315—C316—C311120.5 (3)
H1A—C1—H1B109.5C315—C316—H316119.7
C2—C1—H1C109.5C311—C316—H316119.7
H1A—C1—H1C109.5C326—C321—C322119.0 (3)
H1B—C1—H1C109.5C326—C321—P13121.6 (2)
N11—C2—C3123.8 (2)C322—C321—P13119.3 (2)
N11—C2—C1120.5 (2)C321—C322—C323120.2 (3)
C3—C2—C1115.8 (2)C321—C322—H322119.9
C4—C3—C2127.1 (3)C323—C322—H322119.9
C4—C3—H3116.5C324—C323—C322120.6 (3)
C2—C3—H3116.5C324—C323—H323119.7
O12—C4—C3125.6 (3)C322—C323—H323119.7
O12—C4—C5113.9 (2)C325—C324—C323119.4 (3)
C3—C4—C5120.4 (3)C325—C324—H324120.3
C4—C5—H5A109.5C323—C324—H324120.3
C4—C5—H5B109.5C324—C325—C326120.1 (3)
H5A—C5—H5B109.5C324—C325—H325119.9
C4—C5—H5C109.5C326—C325—H325119.9
H5A—C5—H5C109.5C321—C326—C325120.6 (3)
H5B—C5—H5C109.5C321—C326—H326119.7
O14—C14—Rh1177.7 (2)C325—C326—H326119.7
C116—C111—C112121.1 (3)C332—C331—C336119.2 (3)
C116—C111—N11119.5 (2)C332—C331—P13117.9 (2)
C112—C111—N11119.3 (2)C336—C331—P13122.8 (2)
C113—C112—C111118.4 (3)C333—C332—C331120.5 (3)
C113—C112—C117121.2 (3)C333—C332—H332119.7
C111—C112—C117120.4 (3)C331—C332—H332119.7
C112—C113—C114121.3 (3)C332—C333—C334120.3 (3)
C112—C113—H113119.3C332—C333—H333119.9
C114—C113—H113119.3C334—C333—H333119.9
C115—C114—C113119.6 (3)C335—C334—C333119.6 (3)
C115—C114—H114120.2C335—C334—H334120.2
C113—C114—H114120.2C333—C334—H334120.2
C114—C115—C116121.2 (3)C334—C335—C336120.5 (3)
C114—C115—H115119.4C334—C335—H335119.7
C116—C115—H115119.4C336—C335—H335119.7
C115—C116—C111118.3 (3)C335—C336—C331119.8 (3)
C115—C116—C118121.3 (3)C335—C336—H336120.1
C111—C116—C118120.4 (3)C331—C336—H336120.1
C112—C117—H11A109.5C2—N11—C111118.0 (2)
C112—C117—H11B109.5C2—N11—Rh1125.79 (18)
H11A—C117—H11B109.5C111—N11—Rh1116.24 (17)
C112—C117—H11C109.5C4—O12—Rh1127.13 (18)
H11A—C117—H11C109.5C311—P13—C321103.27 (12)
H11B—C117—H11C109.5C311—P13—C331103.55 (12)
C116—C118—H11D109.5C321—P13—C331103.59 (12)
C116—C118—H11E109.5C311—P13—Rh1119.08 (9)
H11D—C118—H11E109.5C321—P13—Rh1113.64 (9)
C116—C118—H11F109.5C331—P13—Rh1112.06 (9)
H11D—C118—H11F109.5C14—Rh1—O12177.36 (10)
H11E—C118—H11F109.5C14—Rh1—N1193.02 (11)
C316—C311—C312118.7 (3)O12—Rh1—N1189.38 (8)
C316—C311—P13123.2 (2)C14—Rh1—P1391.59 (9)
C312—C311—P13118.1 (2)O12—Rh1—P1385.95 (6)
C311—C312—C313120.8 (3)N11—Rh1—P13174.36 (7)
C311—C312—H312119.6C02—C01—H01A109.5
C313—C312—H312119.6C02—C01—H01B109.5
C314—C313—C312119.8 (3)H01A—C01—H01B109.5
C314—C313—H313120.1C02—C01—H01C109.5
C312—C313—H313120.1H01A—C01—H01C109.5
C313—C314—C315119.8 (3)H01B—C01—H01C109.5
C313—C314—H314120.1O01—C02—C01117.7 (13)
C315—C314—H314120.1O01—C02—C01i110.6 (12)
C316—C315—C314120.3 (3)C01—C02—C01i131.4 (9)
C316—C315—H315119.8
N11—C2—C3—C44.8 (5)P13—C331—C336—C335179.2 (2)
C1—C2—C3—C4175.4 (3)C3—C2—N11—C111178.5 (3)
C2—C3—C4—O121.8 (5)C1—C2—N11—C1111.7 (4)
C2—C3—C4—C5177.6 (3)C3—C2—N11—Rh13.0 (4)
C116—C111—C112—C1132.1 (4)C1—C2—N11—Rh1176.8 (2)
N11—C111—C112—C113177.7 (3)C116—C111—N11—C291.5 (3)
C116—C111—C112—C117177.3 (3)C112—C111—N11—C292.9 (3)
N11—C111—C112—C1171.7 (4)C116—C111—N11—Rh187.2 (3)
C111—C112—C113—C1141.2 (4)C112—C111—N11—Rh188.5 (3)
C117—C112—C113—C114178.3 (3)C3—C4—O12—Rh19.0 (4)
C112—C113—C114—C1150.4 (5)C5—C4—O12—Rh1171.64 (18)
C113—C114—C115—C1161.1 (4)C316—C311—P13—C3219.9 (3)
C114—C115—C116—C1110.1 (4)C312—C311—P13—C321171.4 (2)
C114—C115—C116—C118178.5 (3)C316—C311—P13—C331117.7 (2)
C112—C111—C116—C1151.5 (4)C312—C311—P13—C33163.6 (2)
N11—C111—C116—C115177.1 (2)C316—C311—P13—Rh1117.1 (2)
C112—C111—C116—C118176.9 (3)C312—C311—P13—Rh161.6 (2)
N11—C111—C116—C1181.3 (4)C326—C321—P13—C31183.9 (3)
C316—C311—C312—C3130.3 (4)C322—C321—P13—C31193.4 (2)
P13—C311—C312—C313178.5 (2)C326—C321—P13—C33123.8 (3)
C311—C312—C313—C3140.1 (4)C322—C321—P13—C331158.9 (2)
C312—C313—C314—C3150.3 (4)C326—C321—P13—Rh1145.7 (2)
C313—C314—C315—C3160.2 (4)C322—C321—P13—Rh137.0 (2)
C314—C315—C316—C3110.1 (4)C332—C331—P13—C311168.3 (2)
C312—C311—C316—C3150.4 (4)C336—C331—P13—C31112.7 (3)
P13—C311—C316—C315178.3 (2)C332—C331—P13—C32184.2 (2)
C326—C321—C322—C3231.5 (4)C336—C331—P13—C32194.8 (3)
P13—C321—C322—C323175.9 (2)C332—C331—P13—Rh138.7 (3)
C321—C322—C323—C3242.2 (5)C336—C331—P13—Rh1142.3 (2)
C322—C323—C324—C3251.5 (5)C4—O12—Rh1—N1111.8 (2)
C323—C324—C325—C3260.2 (6)C4—O12—Rh1—P13165.0 (2)
C322—C321—C326—C3250.2 (5)C2—N11—Rh1—C14170.1 (2)
P13—C321—C326—C325177.2 (3)C111—N11—Rh1—C148.5 (2)
C324—C325—C326—C3210.5 (6)C2—N11—Rh1—O128.8 (2)
C336—C331—C332—C3330.9 (5)C111—N11—Rh1—O12172.62 (19)
P13—C331—C332—C333178.1 (3)C311—P13—Rh1—C1414.40 (13)
C331—C332—C333—C3342.0 (5)C321—P13—Rh1—C14136.42 (13)
C332—C333—C334—C3352.0 (5)C331—P13—Rh1—C14106.57 (13)
C333—C334—C335—C3360.9 (5)C311—P13—Rh1—O12166.55 (12)
C334—C335—C336—C3310.2 (4)C321—P13—Rh1—O1244.53 (11)
C332—C331—C336—C3350.2 (4)C331—P13—Rh1—O1272.48 (11)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C332—H332···O120.952.383.201 (3)144
C334—H334···O14ii0.952.513.201 (4)130
C1—H1B···O01iii0.982.543.372 (9)142
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Rh(C13H16NO)(C18H15P)(CO)]·0.5C3H6O
Mr624.5
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.8558 (8), 11.4028 (5), 16.4059 (8)
β (°) 108.733 (1)
V3)2986.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.31 × 0.15 × 0.11
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.822, 0.931
No. of measured, independent and
observed ( > 2σI)) reflections
23158, 7425, 6081
Rint0.042
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.09
No. of reflections7425
No. of parameters354
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 1.32

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C332—H332···O120.952.383.201 (3)144
C334—H334···O14i0.952.513.201 (4)130
C1—H1B···O01ii0.982.543.372 (9)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Comparative geometrical parameters (Å, °) for similar [Rh(N,O-bid)(CO)(PPh3)] complexes top
Parameters(I)a(II)b(III)c(IV)d
Rh1—N112.077 (2)2.069 (2)2.045 (4)2.045 (3)
Rh1—O122.027 (2)2.028 (2)2.044 (3)2.045 (2)
Rh1—P132.2704 (7)2.2635 (6)2.275 (1)2.281 (2)
Rh1—C141.812 (3)1.807 (2)1.784 (5)1.804 (3)
C14—O141.147 (3)1.152 (3)1.142 (7)1.148 (4)
N11···O122.885 (3)2.885 (3)2.826 (6)2.841 (3)
N11—Rh1—O1289.31 (9)89.54 (8)87.4 (1)87.95 (8)
O12—Rh1—P1385.95 (6)84.97 (5)89.7 (1)89.91 (5)
P13—Rh1—C1491.57 (9)91.87 (7)90.3 (2)89.48 (9)
N11—Rh1—C1493.1 (1)93.6 (1)92.6 (2)92.6 (1)
N11—C2—C4—O12-2.6 (2)4.1 (2)1.2 (4)1.5 (2)
θEe155.77 (2)156.39 (3)156.0 (2)156.23 (4)
Notes: (a) This work; (b) N,O-bid = 4-(2,3-dimethyl phenylamino)pent-3-en-2-onato (Venter et al., 2009); (c) N,O-bid = 4-amino-pent-3-en-2-onato (Damoense et al., 1994); (d) N,O-bid = 4-amino-1,1,1-trifluoro-pent-3-en-2-onato (Varshavsky et al., 2001); (e) Tolman (1977).
 

Acknowledgements

Financial assistance from the University of the Free State is gratefully acknowledged, while Mr Leo Kirsten is thanked for the data collection. We also express our gratitude to SASOL and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCornils, B. & Herrmann, W. A. (1996). Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook, pp. 412–413. Weinheim: VCH.  Google Scholar
First citationDamoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationTrzeciak, A. M. & Ziolkowski, J. J. (1994). J. Organomet. Chem. 464, 107–111.  CrossRef CAS Web of Science Google Scholar
First citationVan Rooy, A., Orji, E. N., Kramer, P. G. J. & Van Leeuwen, P. W. M. N. (1995). Organometallics 14, 34–43.  CrossRef CAS Web of Science Google Scholar
First citationVarshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziolkowski, J. J. (2001). J. Organomet. Chem. 628, 195–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009). Acta Cryst. E65, m1321–m1322.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1606-m1607
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds