organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3047-o3048

3-(2-Amino-1,3-thia­zol-4-yl)-6-bromo-2H-chromen-2-one

aDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 023, India, bChemistry Group, Birla Institute of Technology and Science, Pilani, 333 031, Rajasthan, India, cSchool of Chemistry, University of Kwazulu-Natal, Durban 4000, South Africa, dSchool of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa, and eSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: dchopra@iiserbhopal.ac.in

(Received 2 November 2009; accepted 5 November 2009; online 11 November 2009)

The mol­ecule of the title compound, C12H7BrN2O2S, is essentially planar with a maximum deviation of 0.234 (3) Å from the mean plane through all non-H atoms. The dihedral angle between the coumarin ring plane and that of the five-membered thia­zole ring is 12.9 (1)°. In the crystal, strong N—H⋯O, N—H⋯N and weak but highly directional C—H⋯O hydrogen bonds provide the links between the mol­ecules. In addition, C—H⋯π and ππ inter­actions [centroid–centroid distances = 3.950 (3)–4.024 (3) Å] provide additional stability to the inter­layer regions in the lattice.

Related literature

For applications of coumarin compounds in photochemistry, see: Vishnumurthy et al. (2001[Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2001). Molecular and Supramolecular Photochemistry, p. 427, New York: Marcel Dekker Inc.]). For their roles as dyes or laser dyes, see: Hooper et al. (1982[Hooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662-671.]); Nemkovich et al. (1997[Nemkovich, N. A., Reis, H. & Baumann, W. (1997). J. Lumin. 71, 255-263.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis of the title compound, see: Venugopala et al. (2004[Venugopala, K. N., Jayashree, B. S. & Attimarad, M. (2004). Asian J. Chem. 16, 872-876.]). For related structures see: Vishnumurthy et al. (2001[Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2001). Molecular and Supramolecular Photochemistry, p. 427, New York: Marcel Dekker Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7BrN2O2S

  • Mr = 323.17

  • Monoclinic, P 21 /n

  • a = 7.031 (4) Å

  • b = 13.804 (8) Å

  • c = 12.453 (7) Å

  • β = 90.047 (9)°

  • V = 1208.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.57 mm−1

  • T = 290 K

  • 0.32 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.641, Tmax = 0.675

  • 9232 measured reflections

  • 2431 independent reflections

  • 2017 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.03

  • 2431 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.32 3.141 (4) 160
N2—H2B⋯O1ii 0.86 2.47 3.058 (3) 127
C4—H4⋯O1iii 0.93 2.38 3.304 (4) 172
C7—H7⋯Cg1iv 0.93 2.74 3.587 (4) 151
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the thiazoyl ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are an important class of organic compounds and have been extensively studied. Such molecules of vast structural diversity find useful applications in several areas of synthetic chemistry, medicinal chemistry and photochemistry. The formation of [2 + 2] cycloaddition products upon irradiation (Vishnumurthy et al.,2001) of coumarin and its derivatives has contributed immensely to the area of solid-state chemistry. Several substituted coumarin derivatives find applications in the dye industry (Hooper et al., 1982 )and in the area of laser dyes (Nemkovich et al., 1997) based on the fact that such compounds show state dependent variations in their static dipole moments. The geometry and molecular packing patterns of several coumarins derivatives have been studied to evaluate the features of non-covalent interactions (Vishnumurthy et al., 2001). Against this background, and to obtain more information on such compounds the solid-state structure of the title compound is reported here.

The molecular structure consists of a bromo substituted coumarin ring attached to an amino thiazoyl moiety (Figure 1). This compound crystallizes in a monoclinic centrosymmetric space group with Z'=1. The molecule is approximately planar, with a dihedral angle between the two rings being 12.9 (1) °. An analysis of the weighted least-squares plane through the coumarin ring C1/O2 and the thiazoyl ring shows that it is planar with the largest displacement of -0.019 (2)Å for C9. A characteristic Br···S short contact with distance 3.411 (2)Å is observed in the crystal lattice. Strong N—H···N and N—H···O hydrogen bonds (involving both H2A and H2B of the amino group with the ring nitrogen N1 and keto oxygen O1) form R22(8) [Bernstein et al., 1995] molecular dimers. These are linked by C(8) molecular chains along the crystallographic b axis forming a characteristic "chain of dimers". Furthermore, C—H···π interactions (involving H7 and the aromatic thiazoyl ring) provide additional stability forming chains along 'b' axis. Two such one-dimensional chains are linked by intermolecular C—H···O hydrogen bonds (involving H4 and O1) forming C(7) molecular chains along 'n' glide leading to the formation of a two dimensional sheet-like structure (Figure 2). ππ Stacking interactions involving the C4/C9 aromatic ring, Cg···Cg distance 3.950 (3)Å [Symmetry code: -x + 1, -y, -z] and between the thiazoyl ring and the C4/C9 ring [Cg···Cg distance = 4.024 (3) Å] [Symmetry code: x - 1, y, z] provide additional stability linking the layers of molecules.

Related literature top

For applications of coumarin compounds in photochemistry, see: Vishnumurthy et al. (2001). For their roles as dyes or laser dyes, see: Hooper et al. (1982); Nemkovich et al. (1997). For graph-set motifs, see: Bernstein et al. (1995). For the synthesis of the title compound, see: Venugopala et al. (2004). For related structures see: Vishnumurthy et al. (2001). Cg1 is the centroid of the thiazoyl ring.

Experimental top

The compounds were synthesized in accordance with the procedure reported in the literature (Venugopala et al., 2004). Single crystals of the compound were grown both chloroform:methanol (1:1) by slow evaporation at 275–277 K.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic and 0.86Å, Uiso = 1.2Ueq (N) for the NH atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound drawn with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram highlighting N—H···N/O hydrogen bonds and C—H···O intermolecular interactions. Only participating H atoms have been shown, others have been omitted for clarity.
3-(2-Amino-1,3-thiazol-4-yl)-6-bromo-2H-chromen-2-one top
Crystal data top
C12H7BrN2O2SF(000) = 640
Mr = 323.17Dx = 1.776 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 895 reflections
a = 7.031 (4) Åθ = 1.5–25.8°
b = 13.804 (8) ŵ = 3.57 mm1
c = 12.453 (7) ÅT = 290 K
β = 90.047 (9)°Needle, yellow
V = 1208.6 (12) Å30.32 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2431 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 88
Tmin = 0.641, Tmax = 0.675k = 1717
9232 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.6906P]
where P = (Fo2 + 2Fc2)/3
2431 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C12H7BrN2O2SV = 1208.6 (12) Å3
Mr = 323.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.031 (4) ŵ = 3.57 mm1
b = 13.804 (8) ÅT = 290 K
c = 12.453 (7) Å0.32 × 0.12 × 0.11 mm
β = 90.047 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2431 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
2017 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.675Rint = 0.019
9232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
2431 reflectionsΔρmin = 0.56 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15344 (4)0.88591 (3)1.08569 (3)0.06615 (15)
S11.40939 (9)0.60168 (5)0.82189 (6)0.04711 (19)
N11.0835 (3)0.61538 (14)0.91596 (17)0.0384 (5)
N21.2684 (4)0.48369 (18)0.9743 (2)0.0507 (6)
O11.0382 (3)0.84207 (14)0.68021 (15)0.0525 (5)
O20.7679 (3)0.88987 (13)0.74985 (15)0.0489 (5)
C10.9241 (4)0.83052 (17)0.7517 (2)0.0407 (6)
C20.9369 (3)0.75986 (16)0.83941 (19)0.0368 (5)
C30.8015 (4)0.75970 (18)0.9159 (2)0.0405 (6)
C40.4977 (4)0.82387 (19)0.9903 (2)0.0445 (6)
C50.3471 (4)0.88597 (19)0.9794 (2)0.0463 (6)
C60.3340 (4)0.9488 (2)0.8935 (3)0.0552 (7)
C70.4756 (4)0.9503 (2)0.8172 (3)0.0560 (7)
C80.6280 (4)0.88711 (17)0.8272 (2)0.0412 (6)
C90.6421 (3)0.82394 (17)0.91312 (19)0.0383 (5)
C101.0974 (3)0.69189 (17)0.84259 (19)0.0373 (5)
C111.2368 (3)0.56253 (17)0.9130 (2)0.0382 (5)
C121.2599 (4)0.6948 (2)0.7847 (2)0.0445 (6)
H2A1.18200.46441.01830.060*
H2B1.37220.45180.96760.060*
H30.81230.71610.97280.048*
H40.50370.78191.04850.053*
H60.23030.99020.88750.066*
H70.46940.99290.75950.068*
H121.28760.74070.73240.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0496 (2)0.0818 (3)0.0671 (2)0.01305 (15)0.01552 (15)0.00836 (16)
S10.0350 (3)0.0504 (4)0.0559 (4)0.0006 (3)0.0136 (3)0.0006 (3)
N10.0351 (10)0.0393 (11)0.0408 (11)0.0034 (8)0.0086 (9)0.0015 (9)
N20.0430 (13)0.0463 (13)0.0628 (16)0.0119 (11)0.0172 (12)0.0071 (12)
O10.0600 (12)0.0502 (11)0.0474 (11)0.0031 (9)0.0160 (9)0.0069 (9)
O20.0570 (11)0.0453 (10)0.0445 (10)0.0075 (8)0.0061 (9)0.0110 (8)
C10.0488 (14)0.0358 (12)0.0374 (13)0.0036 (11)0.0051 (11)0.0033 (10)
C20.0408 (13)0.0321 (11)0.0374 (12)0.0021 (10)0.0029 (10)0.0008 (10)
C30.0445 (14)0.0371 (13)0.0399 (14)0.0044 (10)0.0036 (11)0.0048 (11)
C40.0452 (14)0.0455 (14)0.0429 (14)0.0055 (11)0.0039 (11)0.0011 (12)
C50.0425 (14)0.0498 (15)0.0466 (15)0.0068 (11)0.0029 (12)0.0077 (12)
C60.0507 (16)0.0538 (17)0.0610 (18)0.0174 (14)0.0025 (14)0.0001 (14)
C70.0622 (18)0.0512 (17)0.0547 (17)0.0134 (14)0.0053 (14)0.0085 (14)
C80.0441 (14)0.0401 (13)0.0396 (14)0.0026 (11)0.0024 (11)0.0013 (10)
C90.0409 (13)0.0354 (12)0.0386 (13)0.0031 (10)0.0011 (10)0.0009 (10)
C100.0396 (12)0.0347 (12)0.0376 (12)0.0029 (10)0.0045 (10)0.0026 (10)
C110.0344 (12)0.0380 (12)0.0423 (13)0.0000 (10)0.0064 (10)0.0054 (10)
C120.0402 (14)0.0444 (14)0.0489 (15)0.0025 (11)0.0083 (12)0.0036 (12)
Geometric parameters (Å, º) top
Br1—C51.900 (3)C3—C91.431 (4)
S1—C121.722 (3)C3—H30.9300
S1—C111.748 (3)C11—N21.344 (3)
N1—C111.303 (3)C5—C61.379 (4)
N1—C101.399 (3)C2—C11.469 (3)
O2—C11.370 (3)C8—C71.383 (4)
O2—C81.379 (3)C8—C91.384 (4)
C4—C51.369 (4)C6—C71.380 (4)
C4—C91.399 (4)C6—H60.9300
C4—H40.9300C7—H70.9300
O1—C11.209 (3)N2—H2A0.8600
C10—C121.353 (4)N2—H2B0.8600
C10—C21.468 (3)C12—H120.9300
C3—C21.348 (3)
C12—S1—C1188.97 (13)O2—C8—C7118.2 (2)
C11—N1—C10110.3 (2)O2—C8—C9120.4 (2)
C1—O2—C8123.0 (2)C7—C8—C9121.4 (3)
C5—C4—C9119.6 (3)O1—C1—O2116.3 (2)
C5—C4—H4120.2O1—C1—C2126.5 (2)
C9—C4—H4120.2O2—C1—C2117.3 (2)
C12—C10—N1115.4 (2)C5—C6—C7119.7 (3)
C12—C10—C2128.1 (2)C5—C6—H6120.2
N1—C10—C2116.5 (2)C7—C6—H6120.2
C2—C3—C9122.3 (2)C6—C7—C8119.2 (3)
C2—C3—H3118.8C6—C7—H7120.4
C9—C3—H3118.8C8—C7—H7120.4
N1—C11—N2124.9 (2)C8—C9—C4118.6 (2)
N1—C11—S1114.80 (19)C8—C9—C3117.8 (2)
N2—C11—S1120.32 (19)C4—C9—C3123.5 (2)
C4—C5—C6121.4 (3)C11—N2—H2A120.0
C4—C5—Br1119.0 (2)C11—N2—H2B120.0
C6—C5—Br1119.5 (2)H2A—N2—H2B120.0
C3—C2—C10121.5 (2)C10—C12—S1110.5 (2)
C3—C2—C1119.1 (2)C10—C12—H12124.7
C10—C2—C1119.4 (2)S1—C12—H12124.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.323.141 (4)160
N2—H2B···O1ii0.862.473.058 (3)127
C4—H4···O1iii0.932.383.304 (4)172
C7—H7···Cg1iv0.932.743.587 (4)151
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+5/2, y1/2, z+3/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H7BrN2O2S
Mr323.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)7.031 (4), 13.804 (8), 12.453 (7)
β (°) 90.047 (9)
V3)1208.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.57
Crystal size (mm)0.32 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.641, 0.675
No. of measured, independent and
observed [I > 2σ(I)] reflections
9232, 2431, 2017
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.03
No. of reflections2431
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.56

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.323.141 (4)160
N2—H2B···O1ii0.862.473.058 (3)127
C4—H4···O1iii0.932.383.304 (4)172
C7—H7···Cg1iv0.932.743.587 (4)151
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+5/2, y1/2, z+3/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India for data collection on the CCD facility under the IRHPA–DST program.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662–671.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNemkovich, N. A., Reis, H. & Baumann, W. (1997). J. Lumin. 71, 255–263.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopala, K. N., Jayashree, B. S. & Attimarad, M. (2004). Asian J. Chem. 16, 872–876.  CAS Google Scholar
First citationVishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2001). Molecular and Supramolecular Photochemistry, p. 427, New York: Marcel Dekker Inc.  Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3047-o3048
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds