metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido­octa­kis(2-chloro­benz­yl)di-μ2-hydroxido-di-μ3-oxido-tetra­tin(IV)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 21 October 2009; accepted 28 October 2009; online 31 October 2009)

The title tetra­nuclear SnIV compound, [Sn4(C7H6Cl)8Cl2O2(OH)2], has site symmetry [\overline{1}]. Two O2− and two OH anions bridge four SnIV cations to form the tetra­nuclear compound. The two independent SnIV cations assume SnO3C2 and SnO2C2Cl distorted trigonal-bipyramidal coordination geometries. Intra­molecular O—H⋯Cl hydrogen bonding is present in the structure. One Cl atom of a chloro­benzyl ligand is disordered over two sites with an occupancy ratio of 0.693 (2):0.307 (2).

Related literature

For a related structure, see: Li et al. (2006[Li, G., Yin, H. & Wang, D. (2006). Acta Cryst. E62, m366-m368.]). For the corresponding bond distances in an organotin compound, see: Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m593.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C7H6Cl)8Cl2O2(OH)2]

  • Mr = 1616.22

  • Triclinic, [P \overline 1]

  • a = 10.986 (2) Å

  • b = 11.227 (2) Å

  • c = 13.573 (3) Å

  • α = 74.656 (2)°

  • β = 67.942 (2)°

  • γ = 75.753 (2)°

  • V = 1475.9 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 298 K

  • 0.44 × 0.37 × 0.33 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.449, Tmax = 0.535

  • 7669 measured reflections

  • 5112 independent reflections

  • 3865 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.04

  • 5112 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.148 (3)
Sn1—O2 2.050 (3)
Sn1—O2i 2.146 (3)
Sn1—C1 2.126 (5)
Sn1—C8 2.146 (5)
Sn2—O1 2.276 (3)
Sn2—O2 2.025 (3)
Sn2—C15 2.147 (5)
Sn2—C22 2.149 (5)
Sn2—Cl1 2.4376 (13)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2 0.86 2.80 3.386 (4) 127

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), was obtained as an adventitious product of the partial hydrolysis of di(2-chlorobenzyl)dichloridotin(IV) during the attempted preparation of adducts of this tin precursor complex with 5-chlorosalicylaldehyde benzoyldrazone in benzene and ethanol. It crystallizes from dichloromethane and ethanol. From Fig. 1, it can be seen that complex (I) contains two independent penta-coordinated Sn atoms. It is a centrosymmetric complex, where one half of the molecule comprises the crystallographic asymmetric unit and the other half is generated by an inversion centre. Each of the two independent Sn atoms is five-coordinate, adopting approximate trigonal bipyramidal coordination (Table 1). These are similar to those in the related organotin compound (Li et al., 2006). The molecular conformation is stabilized by O1—H1···Cl2 hydrogen bond (Table 2). The Sn—C distances lie in the rather narrow range 2.126 (5)–2.149 (5) Å, which are closed to the corresponding distances reported in the organotin compound (Lo & Ng, 2009).

Related literature top

For a related structure, see: Li et al. (2006). For the corresponding bond distances in an organotin compound, see: Lo & Ng (2009).

Experimental top

Di(2-chlorobenzyl)dichloridotin(IV) (2 mmol) and 5-chlorosalicylaldehyde benzoyldrazone(2 mmol) was added to a solution of sodium methoxide (3 mmol) in benzene (15 ml) and ethanol (15 ml, 95%). The mixture was then heated under reflux with stirring for 5 h and the solvent was removed by evaporation in vacuo. The crude adduct was recrystallized from dichloromethane/ethanol and colourless crystals suitable for X-ray diffraction were obtained.

Refinement top

The H atoms were positioned geometrically, with methylene C—H distances of 0.97 Å, aromatic C—H distances of 0.93 Å, O—H distances of 0.862 Å and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C,O). The Cl2 atom is disordered, the C2-phenyl part was refined as a rigid hexagon and the temperature factors of the carbon atoms were restrained to be nearly isotropic. The highest peak in the difference map is 1.21 Å apart from Cl1 atom.

Structure description top

The title compound, (I), was obtained as an adventitious product of the partial hydrolysis of di(2-chlorobenzyl)dichloridotin(IV) during the attempted preparation of adducts of this tin precursor complex with 5-chlorosalicylaldehyde benzoyldrazone in benzene and ethanol. It crystallizes from dichloromethane and ethanol. From Fig. 1, it can be seen that complex (I) contains two independent penta-coordinated Sn atoms. It is a centrosymmetric complex, where one half of the molecule comprises the crystallographic asymmetric unit and the other half is generated by an inversion centre. Each of the two independent Sn atoms is five-coordinate, adopting approximate trigonal bipyramidal coordination (Table 1). These are similar to those in the related organotin compound (Li et al., 2006). The molecular conformation is stabilized by O1—H1···Cl2 hydrogen bond (Table 2). The Sn—C distances lie in the rather narrow range 2.126 (5)–2.149 (5) Å, which are closed to the corresponding distances reported in the organotin compound (Lo & Ng, 2009).

For a related structure, see: Li et al. (2006). For the corresponding bond distances in an organotin compound, see: Lo & Ng (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound showing 50% probability displacement ellipsoids [symmetry code: (A) = 1-x, 1-y, 1-z].
Dichloridooctakis(2-chlorobenzyl)di-µ2-hydroxido-di-µ3-oxido-tetratin(IV) top
Crystal data top
[Sn4(C7H6Cl)8Cl2O2(OH)2]Z = 1
Mr = 1616.22F(000) = 788
Triclinic, P1Dx = 1.818 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.986 (2) ÅCell parameters from 4036 reflections
b = 11.227 (2) Åθ = 2.6–27.4°
c = 13.573 (3) ŵ = 2.17 mm1
α = 74.656 (2)°T = 298 K
β = 67.942 (2)°Block, colourless
γ = 75.753 (2)°0.44 × 0.37 × 0.33 mm
V = 1475.9 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5112 independent reflections
Radiation source: fine-focus sealed tube3865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.449, Tmax = 0.535k = 1313
7669 measured reflectionsl = 1610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0262P)2 + 2.2448P]
where P = (Fo2 + 2Fc2)/3
5112 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 1.27 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Sn4(C7H6Cl)8Cl2O2(OH)2]γ = 75.753 (2)°
Mr = 1616.22V = 1475.9 (6) Å3
Triclinic, P1Z = 1
a = 10.986 (2) ÅMo Kα radiation
b = 11.227 (2) ŵ = 2.17 mm1
c = 13.573 (3) ÅT = 298 K
α = 74.656 (2)°0.44 × 0.37 × 0.33 mm
β = 67.942 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5112 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3865 reflections with I > 2σ(I)
Tmin = 0.449, Tmax = 0.535Rint = 0.015
7669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.04Δρmax = 1.27 e Å3
5112 reflectionsΔρmin = 0.57 e Å3
338 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.59257 (3)0.37338 (3)0.44839 (2)0.03438 (10)
Sn20.49384 (3)0.58881 (3)0.25330 (2)0.03713 (10)
Cl10.35586 (14)0.79133 (11)0.28147 (11)0.0516 (3)
Cl20.6318 (2)0.0780 (2)0.34868 (19)0.0704 (6)0.693 (2)
Cl2'0.2326 (5)0.3325 (5)0.5648 (4)0.0704 (6)0.307 (2)
Cl30.96390 (18)0.40745 (16)0.17259 (15)0.0897 (6)
Cl40.09931 (19)0.5877 (2)0.36984 (14)0.0927 (6)
Cl50.6057 (2)0.72167 (16)0.03870 (14)0.0908 (6)
O10.6121 (3)0.3933 (3)0.2815 (2)0.0444 (8)
H10.64080.32970.25030.053*
O20.4776 (3)0.5414 (3)0.4119 (2)0.0365 (7)
C10.4860 (7)0.2203 (6)0.5202 (5)0.077 (2)
H1A0.54860.14460.53140.092*
H1B0.42380.23360.59080.092*
C20.4103 (7)0.2003 (5)0.4555 (5)0.0597 (16)
C30.4702 (6)0.1302 (5)0.3739 (5)0.0646 (17)
H3A0.56050.09820.35880.077*0.307 (2)
C40.4013 (7)0.1078 (6)0.3160 (5)0.0697 (18)
H40.44400.05920.26290.084*
C50.2691 (8)0.1581 (7)0.3376 (6)0.078 (2)
H50.22100.14310.29980.093*
C60.2087 (7)0.2301 (6)0.4146 (6)0.0775 (19)
H60.11970.26630.42770.093*
C70.2776 (8)0.2497 (6)0.4731 (5)0.0724 (18)
H7A0.23350.29800.52630.087*0.693 (2)
C80.8018 (5)0.3527 (5)0.4200 (4)0.0541 (14)
H8A0.83370.42960.37660.065*
H8B0.81660.33770.48870.065*
C90.8788 (5)0.2460 (5)0.3625 (4)0.0469 (12)
C100.9489 (5)0.2595 (5)0.2531 (4)0.0510 (13)
C111.0141 (5)0.1589 (6)0.2019 (5)0.0630 (16)
H111.05980.17190.12780.076*
C121.0104 (6)0.0399 (6)0.2620 (6)0.080 (2)
H121.05240.02870.22850.096*
C130.9448 (7)0.0222 (6)0.3713 (7)0.086 (2)
H130.94500.05870.41210.103*
C140.8791 (6)0.1218 (6)0.4213 (5)0.0666 (16)
H140.83370.10740.49550.080*
C150.3720 (6)0.5022 (5)0.2102 (4)0.0541 (14)
H15A0.43080.45230.15680.065*
H15B0.32870.44460.27400.065*
C160.2673 (6)0.5833 (5)0.1664 (4)0.0488 (13)
C170.1427 (6)0.6287 (5)0.2294 (5)0.0596 (15)
C180.0470 (7)0.7033 (6)0.1868 (6)0.0728 (18)
H180.03570.73430.23230.087*
C190.0748 (7)0.7312 (6)0.0775 (6)0.080 (2)
H190.01100.78120.04800.096*
C200.1997 (8)0.6846 (6)0.0096 (5)0.0760 (19)
H200.21850.70220.06500.091*
C210.2924 (6)0.6141 (5)0.0526 (5)0.0632 (16)
H210.37540.58460.00650.076*
C220.6829 (5)0.6492 (5)0.1629 (4)0.0546 (14)
H22A0.73180.63460.21260.066*
H22B0.73220.59570.11030.066*
C230.6833 (5)0.7819 (4)0.1041 (4)0.0445 (12)
C240.6538 (5)0.8249 (5)0.0094 (4)0.0491 (13)
C250.6586 (6)0.9448 (5)0.0481 (4)0.0566 (14)
H250.63750.96970.11160.068*
C260.6952 (6)1.0277 (5)0.0102 (5)0.0672 (17)
H260.70001.10930.04870.081*
C270.7244 (7)0.9914 (6)0.0830 (5)0.0712 (18)
H270.74871.04800.10850.085*
C280.7178 (6)0.8692 (6)0.1404 (5)0.0666 (16)
H280.73700.84540.20470.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0413 (2)0.02862 (17)0.03475 (19)0.00165 (14)0.01569 (15)0.00788 (13)
Sn20.0458 (2)0.03431 (18)0.03224 (19)0.00562 (15)0.01628 (15)0.00401 (14)
Cl10.0610 (8)0.0372 (6)0.0546 (8)0.0030 (6)0.0240 (7)0.0085 (6)
Cl20.0727 (14)0.0590 (12)0.0858 (15)0.0032 (10)0.0315 (12)0.0237 (10)
Cl2'0.0727 (14)0.0590 (12)0.0858 (15)0.0032 (10)0.0315 (12)0.0237 (10)
Cl30.0743 (11)0.0692 (11)0.0932 (13)0.0020 (9)0.0141 (10)0.0080 (9)
Cl40.0917 (13)0.1304 (16)0.0571 (10)0.0280 (12)0.0216 (9)0.0155 (10)
Cl50.1487 (18)0.0662 (10)0.0763 (12)0.0408 (11)0.0494 (12)0.0049 (8)
O10.054 (2)0.0381 (18)0.0397 (19)0.0030 (16)0.0209 (16)0.0015 (14)
O20.0440 (19)0.0304 (16)0.0341 (17)0.0006 (14)0.0169 (15)0.0051 (13)
C10.137 (6)0.064 (4)0.056 (4)0.059 (4)0.052 (4)0.014 (3)
C20.097 (5)0.048 (3)0.048 (3)0.043 (3)0.034 (3)0.011 (3)
C30.081 (5)0.060 (4)0.067 (4)0.028 (3)0.041 (4)0.003 (3)
C40.099 (5)0.068 (4)0.063 (4)0.032 (4)0.038 (4)0.013 (3)
C50.093 (6)0.082 (5)0.084 (5)0.041 (4)0.051 (4)0.002 (4)
C60.074 (5)0.074 (4)0.090 (5)0.029 (4)0.031 (4)0.003 (4)
C70.101 (6)0.065 (4)0.061 (4)0.042 (4)0.027 (4)0.000 (3)
C80.047 (3)0.063 (4)0.064 (4)0.000 (3)0.022 (3)0.033 (3)
C90.035 (3)0.054 (3)0.055 (3)0.001 (2)0.019 (2)0.016 (3)
C100.039 (3)0.058 (3)0.058 (4)0.003 (3)0.020 (3)0.013 (3)
C110.045 (3)0.075 (4)0.068 (4)0.005 (3)0.015 (3)0.031 (3)
C120.062 (4)0.068 (4)0.108 (6)0.004 (3)0.016 (4)0.044 (4)
C130.069 (5)0.052 (4)0.112 (6)0.008 (3)0.016 (4)0.003 (4)
C140.051 (4)0.064 (4)0.069 (4)0.004 (3)0.014 (3)0.007 (3)
C150.065 (4)0.048 (3)0.060 (4)0.013 (3)0.029 (3)0.013 (3)
C160.061 (4)0.045 (3)0.055 (3)0.013 (3)0.030 (3)0.014 (2)
C170.063 (4)0.067 (4)0.057 (4)0.013 (3)0.026 (3)0.015 (3)
C180.064 (4)0.079 (4)0.085 (5)0.005 (3)0.038 (4)0.020 (4)
C190.082 (5)0.077 (5)0.095 (6)0.004 (4)0.057 (5)0.005 (4)
C200.106 (6)0.083 (5)0.058 (4)0.030 (4)0.045 (4)0.005 (3)
C210.066 (4)0.063 (4)0.074 (4)0.011 (3)0.030 (3)0.025 (3)
C220.047 (3)0.046 (3)0.058 (3)0.004 (2)0.016 (3)0.005 (3)
C230.033 (3)0.041 (3)0.048 (3)0.006 (2)0.006 (2)0.002 (2)
C240.049 (3)0.044 (3)0.047 (3)0.008 (2)0.009 (3)0.006 (2)
C250.064 (4)0.046 (3)0.048 (3)0.005 (3)0.013 (3)0.002 (3)
C260.072 (4)0.039 (3)0.070 (4)0.002 (3)0.007 (3)0.007 (3)
C270.089 (5)0.065 (4)0.062 (4)0.033 (4)0.011 (4)0.016 (3)
C280.065 (4)0.076 (4)0.061 (4)0.020 (3)0.024 (3)0.005 (3)
Geometric parameters (Å, º) top
Sn1—O12.148 (3)C9—C141.412 (7)
Sn1—O22.050 (3)C10—C111.385 (8)
Sn1—O2i2.146 (3)C11—C121.370 (8)
Sn1—C12.126 (5)C11—H110.9300
Sn1—C82.146 (5)C12—C131.368 (9)
Sn2—O12.276 (3)C12—H120.9300
Sn2—O22.025 (3)C13—C141.367 (9)
Sn2—C152.147 (5)C13—H130.9300
Sn2—C222.149 (5)C14—H140.9300
Sn2—Cl12.4376 (13)C15—C161.489 (7)
Cl2—C31.658 (7)C15—H15A0.9700
Cl2—H3A0.7301C15—H15B0.9700
Cl2'—C71.606 (8)C16—C171.368 (8)
Cl2'—H7A0.7242C16—C211.424 (7)
Cl3—C101.737 (6)C17—C181.381 (8)
Cl4—C171.742 (6)C18—C191.361 (9)
Cl5—C241.735 (5)C18—H180.9300
O1—H10.8590C19—C201.399 (9)
C1—C21.503 (7)C19—H190.9300
C1—H1A0.9700C20—C211.345 (8)
C1—H1B0.9700C20—H200.9300
C2—C71.379 (9)C21—H210.9300
C2—C31.391 (8)C22—C231.492 (6)
C3—C41.379 (7)C22—H22A0.9700
C3—H3A0.9301C22—H22B0.9700
C4—C51.371 (9)C23—C241.377 (7)
C4—H40.9300C23—C281.388 (7)
C5—C61.359 (9)C24—C251.369 (7)
C5—H50.9300C25—C261.374 (8)
C6—C71.371 (8)C25—H250.9300
C6—H60.9300C26—C271.355 (8)
C7—H7A0.9300C26—H260.9300
C8—C91.502 (7)C27—C281.391 (8)
C8—H8A0.9700C27—H270.9300
C8—H8B0.9700C28—H280.9300
C9—C101.379 (7)
O2—Sn1—C1114.2 (2)C10—C9—C8124.6 (5)
O2—Sn1—O2i73.49 (12)C14—C9—C8119.6 (5)
C1—Sn1—O2i97.25 (19)C9—C10—C11123.1 (5)
O2—Sn1—C8123.37 (17)C9—C10—Cl3120.6 (4)
C1—Sn1—C8122.4 (3)C11—C10—Cl3116.3 (5)
O2i—Sn1—C897.54 (16)C12—C11—C10119.1 (6)
O2—Sn1—O174.51 (12)C12—C11—H11120.5
C1—Sn1—O1100.54 (17)C10—C11—H11120.5
O2i—Sn1—O1147.55 (11)C13—C12—C11119.8 (6)
C8—Sn1—O195.50 (17)C13—C12—H12120.1
O2—Sn2—C15114.44 (17)C11—C12—H12120.1
O2—Sn2—C22108.14 (17)C14—C13—C12120.9 (6)
C15—Sn2—C22131.7 (2)C14—C13—H13119.6
O2—Sn2—O172.21 (11)C12—C13—H13119.6
C15—Sn2—O185.91 (16)C13—C14—C9121.3 (6)
C22—Sn2—O186.30 (16)C13—C14—H14119.4
O2—Sn2—Cl190.33 (9)C9—C14—H14119.4
C15—Sn2—Cl1102.16 (15)C16—C15—Sn2118.8 (3)
C22—Sn2—Cl199.22 (15)C16—C15—H15A107.6
O1—Sn2—Cl1162.53 (9)Sn2—C15—H15A107.6
C3—Cl2—H3A3.0C16—C15—H15B107.6
C7—Cl2'—H7A15.7Sn2—C15—H15B107.6
Sn1—O1—Sn2100.13 (13)H15A—C15—H15B107.0
Sn1—O1—H1120.9C17—C16—C21115.9 (5)
Sn2—O1—H1137.0C17—C16—C15124.1 (5)
Sn2—O2—Sn1112.76 (14)C21—C16—C15119.9 (5)
Sn2—O2—Sn1i139.33 (14)C16—C17—C18123.0 (6)
Sn1—O2—Sn1i106.51 (12)C16—C17—Cl4119.2 (4)
C2—C1—Sn1114.9 (3)C18—C17—Cl4117.8 (5)
C2—C1—H1A108.5C19—C18—C17119.4 (6)
Sn1—C1—H1A108.5C19—C18—H18120.3
C2—C1—H1B108.5C17—C18—H18120.3
Sn1—C1—H1B108.5C18—C19—C20119.8 (6)
H1A—C1—H1B107.5C18—C19—H19120.1
C7—C2—C3115.8 (5)C20—C19—H19120.1
C7—C2—C1122.3 (6)C21—C20—C19119.8 (6)
C3—C2—C1121.9 (6)C21—C20—H20120.1
C4—C3—C2122.6 (6)C19—C20—H20120.1
C4—C3—Cl2121.9 (6)C20—C21—C16122.0 (6)
C2—C3—Cl2115.4 (5)C20—C21—H21119.0
C4—C3—H3A119.9C16—C21—H21119.0
C2—C3—H3A117.5C23—C22—Sn2118.1 (3)
Cl2—C3—H3A2.4C23—C22—H22A107.8
C5—C4—C3119.1 (6)Sn2—C22—H22A107.8
C5—C4—H4120.5C23—C22—H22B107.8
C3—C4—H4120.5Sn2—C22—H22B107.8
C6—C5—C4119.7 (6)H22A—C22—H22B107.1
C6—C5—H5120.2C24—C23—C28115.7 (5)
C4—C5—H5120.2C24—C23—C22122.7 (5)
C5—C6—C7120.7 (7)C28—C23—C22121.5 (5)
C5—C6—H6119.7C25—C24—C23123.7 (5)
C7—C6—H6119.7C25—C24—Cl5118.1 (4)
C6—C7—C2122.1 (7)C23—C24—Cl5118.1 (4)
C6—C7—Cl2'130.8 (7)C24—C25—C26118.6 (5)
C2—C7—Cl2'107.1 (5)C24—C25—H25120.7
C6—C7—H7A119.0C26—C25—H25120.7
C2—C7—H7A119.0C27—C26—C25120.4 (5)
Cl2'—C7—H7A12.1C27—C26—H26119.8
C9—C8—Sn1111.3 (3)C25—C26—H26119.8
C9—C8—H8A109.4C26—C27—C28119.8 (6)
Sn1—C8—H8A109.4C26—C27—H27120.1
C9—C8—H8B109.4C28—C27—H27120.1
Sn1—C8—H8B109.4C23—C28—C27121.7 (6)
H8A—C8—H8B108.0C23—C28—H28119.2
C10—C9—C14115.9 (5)C27—C28—H28119.2
O2—Sn1—O1—Sn24.51 (11)Sn1—C8—C9—C10100.7 (5)
C1—Sn1—O1—Sn2116.9 (2)Sn1—C8—C9—C1477.6 (5)
O2i—Sn1—O1—Sn25.2 (3)C14—C9—C10—C111.2 (8)
C8—Sn1—O1—Sn2118.63 (17)C8—C9—C10—C11177.1 (5)
O2—Sn2—O1—Sn14.61 (11)C14—C9—C10—Cl3176.6 (4)
C15—Sn2—O1—Sn1121.91 (19)C8—C9—C10—Cl35.0 (7)
C22—Sn2—O1—Sn1105.78 (19)C9—C10—C11—C120.5 (9)
Cl1—Sn2—O1—Sn13.5 (4)Cl3—C10—C11—C12177.4 (5)
C15—Sn2—O2—Sn182.0 (2)C10—C11—C12—C131.2 (10)
C22—Sn2—O2—Sn174.7 (2)C11—C12—C13—C142.0 (11)
O1—Sn2—O2—Sn15.17 (13)C12—C13—C14—C91.3 (10)
Cl1—Sn2—O2—Sn1174.49 (13)C10—C9—C14—C130.3 (8)
C15—Sn2—O2—Sn1i114.1 (3)C8—C9—C14—C13178.1 (6)
C22—Sn2—O2—Sn1i89.3 (3)O2—Sn2—C15—C16118.1 (4)
O1—Sn2—O2—Sn1i169.1 (3)C22—Sn2—C15—C1692.2 (5)
Cl1—Sn2—O2—Sn1i10.5 (2)O1—Sn2—C15—C16173.6 (4)
C1—Sn1—O2—Sn2100.2 (2)Cl1—Sn2—C15—C1622.1 (5)
O2i—Sn1—O2—Sn2169.2 (2)Sn2—C15—C16—C1783.9 (6)
C8—Sn1—O2—Sn281.0 (2)Sn2—C15—C16—C2198.5 (5)
O1—Sn1—O2—Sn25.41 (13)C21—C16—C17—C182.0 (8)
C1—Sn1—O2—Sn1i90.6 (2)C15—C16—C17—C18179.7 (5)
O2i—Sn1—O2—Sn1i0.000 (1)C21—C16—C17—Cl4176.0 (4)
C8—Sn1—O2—Sn1i88.2 (2)C15—C16—C17—Cl41.6 (7)
O1—Sn1—O2—Sn1i174.57 (16)C16—C17—C18—C191.9 (9)
O2—Sn1—C1—C255.6 (6)Cl4—C17—C18—C19176.2 (5)
O2i—Sn1—C1—C2130.8 (5)C17—C18—C19—C200.2 (10)
C8—Sn1—C1—C2125.5 (5)C18—C19—C20—C211.1 (10)
O1—Sn1—C1—C222.0 (6)C19—C20—C21—C160.9 (9)
Sn1—C1—C2—C794.6 (6)C17—C16—C21—C200.6 (8)
Sn1—C1—C2—C385.5 (6)C15—C16—C21—C20178.4 (5)
C7—C2—C3—C41.9 (8)O2—Sn2—C22—C23116.2 (4)
C1—C2—C3—C4178.0 (5)C15—Sn2—C22—C2392.7 (5)
C7—C2—C3—Cl2176.7 (4)O1—Sn2—C22—C23173.9 (4)
C1—C2—C3—Cl23.4 (7)Cl1—Sn2—C22—C2322.8 (4)
C2—C3—C4—C51.3 (9)Sn2—C22—C23—C2474.9 (6)
Cl2—C3—C4—C5177.2 (5)Sn2—C22—C23—C28107.0 (5)
C3—C4—C5—C60.7 (9)C28—C23—C24—C250.8 (8)
C4—C5—C6—C72.0 (10)C22—C23—C24—C25177.4 (5)
C5—C6—C7—C21.3 (9)C28—C23—C24—Cl5178.4 (4)
C5—C6—C7—Cl2'177.9 (6)C22—C23—C24—Cl53.5 (7)
C3—C2—C7—C60.6 (8)C23—C24—C25—C260.2 (9)
C1—C2—C7—C6179.3 (5)Cl5—C24—C25—C26179.3 (4)
C3—C2—C7—Cl2'176.7 (4)C24—C25—C26—C270.8 (9)
C1—C2—C7—Cl2'3.3 (7)C25—C26—C27—C280.3 (10)
O2—Sn1—C8—C9131.3 (3)C24—C23—C28—C271.3 (8)
C1—Sn1—C8—C950.0 (5)C22—C23—C28—C27176.9 (5)
O2i—Sn1—C8—C9153.6 (4)C26—C27—C28—C230.7 (10)
O1—Sn1—C8—C956.2 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl20.862.803.386 (4)127

Experimental details

Crystal data
Chemical formula[Sn4(C7H6Cl)8Cl2O2(OH)2]
Mr1616.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.986 (2), 11.227 (2), 13.573 (3)
α, β, γ (°)74.656 (2), 67.942 (2), 75.753 (2)
V3)1475.9 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.44 × 0.37 × 0.33
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.449, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
7669, 5112, 3865
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.04
No. of reflections5112
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 0.57

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn1—O12.148 (3)Sn2—O12.276 (3)
Sn1—O22.050 (3)Sn2—O22.025 (3)
Sn1—O2i2.146 (3)Sn2—C152.147 (5)
Sn1—C12.126 (5)Sn2—C222.149 (5)
Sn1—C82.146 (5)Sn2—Cl12.4376 (13)
O2—Sn1—O1—Sn24.51 (11)O2i—Sn1—O2—Sn2169.2 (2)
O1—Sn2—O2—Sn15.17 (13)O1—Sn1—O2—Sn25.41 (13)
Cl1—Sn2—O2—Sn1174.49 (13)O2i—Sn1—O2—Sn1i0.000 (1)
O1—Sn2—O2—Sn1i169.1 (3)O1—Sn1—O2—Sn1i174.57 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl20.862.803.386 (4)127.4
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (20771053) and the Natural Science Foundation of Shandong Province, China (Y2008B48) for financial support.

References

First citationLi, G., Yin, H. & Wang, D. (2006). Acta Cryst. E62, m366–m368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds