organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-[4-(2-Methoxyphenyl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-diyl]di­ethanone

aOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, cMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India, and dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 21 September 2009; accepted 19 October 2009; online 28 October 2009)

In the title compound, C18H21NO3, the 1,4-dihydro­pyridine ring exhibits a flattened boat conformation. The methoxy­phenyl ring is nearly planar [r.m.s. deviation = 0.0723 (1) Å] and is perpendicular to the base of the boat [dihedral angle = 88.98 (4)°]. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds exist in the crystal structure.

Related literature

For the biological importance of the 1,4-dihydro­pyridine ring, see: Gaudio et al. (1994[Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 83, 1110-1115.]); Böcker & Guengerich, (1986[Böcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.]); Gordeev et al. (1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]); Cooper et al. (1992[Cooper, K. M., Fray, J. M., Parry, J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115-3129.]). For hydrogen-bonding inter­actions, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO3

  • Mr = 299.36

  • Monoclinic, C 2/c

  • a = 26.5512 (6) Å

  • b = 7.5077 (1) Å

  • c = 17.0818 (3) Å

  • β = 114.904 (1)°

  • V = 3088.44 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.987

  • 21137 measured reflections

  • 4722 independent reflections

  • 3203 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.05

  • 4722 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 (2) 2.11 (2) 2.9749 (16) 163 (2)
C7—H7B⋯O1i 0.96 2.57 3.367 (2) 141
C15—H15⋯O3ii 0.93 2.50 3.381 (2) 158
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,4-dihydropyridines (1,4-DHPs) are biologically active compounds which include various vasodilator, antihypertensive, bronchodilator, heptaprotective, antitumor, antimutagenic, geroprotective and antidiabetic agents (Gaudio et al., 1994). Nifedipine, Nitrendipine and Nimodipine etc., have found commercial utility as calcium channel blockers (Böcker & Guengerich, 1986; Gordeev et al., 1996). For the treatment of congestive heart failure a number of DHP calcium antagonists have been introduced (Vo et al., 1995). Some of DHPs have been introduced as a neuroprotectant and cognition enhancer. In addition, a number of DHPs with platelet antiaggregatory activity have also been discovered (Cooper et al., 1992).

The configuration and conformation of the title compound, (I) and the atom numbering scheme are shown in the ORTEP drawing (Fig. 1). The 1,4-DHP ring exhibits a flattened boat conformation, with atoms N1 and C4 displaced by -0.165 (2) and -0.420 (2) Å, respectively, from the least-squares plane defined by the remaining four atoms of the DHP ring. The maximum deviation of these latter four atoms (C2/C3/C5/C6) from their mean plane is 0.015 (1) Å. The methoxy phenyl ring is nearly planar and is approximately perpendicular to the 1,4-DHP ring; the dihedral angle between the plane of the methoxyphenyl ring and the plane of the base of the boat(C2/C3/C5/C6) is 88.98 (4)°. Each carbonyl group is oriented in a synperiplanar (cis) or antiperiplanar (trans) conformation with respect to the adjacent C=C double bond of the 1,4-DHP ring. The observed torsion angles are C6/C5/C11/O3 [7.2 (3)°] and C2/C3/C10/O1 [174.3 (3)°], indicating cis and trans conformations, respectively. The carbonyl C10=O1 bond length of 1.226 (1)Å is somewhat longer than typical carbonyl bonds, possibly due to the involvement of atom O1 in an intermolecular N—H···O hydrogen bond.

In the crystal structure, intermolecular N—H···O, C—H···O hydrogen bonds (Table 1; Fig. 2) are observed, where the N—H···O bond generates a graph set motif of C(6) (Bernstein et al., 1995), forming an infinite chain along the b axis.

Related literature top

For the biological importance of the 1,4-dihydropyridine ring, see: Gaudio et al. (1994); Böcker & Guengerich, (1986); Gordeev et al. (1996); Vo et al. (1995); Cooper et al. (1992). For hydrogen-bonding interactions, see: Bernstein et al. (1995).

Experimental top

3,5-diacetyl-2,6-dimethyl-1,4-dihydro-4-(2-methoxyphenyl)-pyridine was prepared according to the Hantzsch pyridine synthesis. 2-methoxybenzaldehyde (10 mmol), acetylacetone (20 mmol) and ammonium acetate (10 mmol) are taken in 1: 2: 1 mole ratio along with ethanol (25 ml) as a solvent in a RB-flask and refluxed in steam-bath until the color of the solution changes to reddish-orange (approximately 2 h). This mixture is kept under ice cold conditions to obtain the solid product, which is extracted using diethyl ether and acetone, then excess solvent was distilled off. The purity of the crude product was checked through TLC and recrystallized using an acetone and diethyl ether (1:1) solvent mixture. Yield 89.7%, M.P. 185–187 °C.

Refinement top

The N-bound H atom was located in a difference Fourier map and its positional parameters were refined. The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å.Uiso = 1.2Ueq(C) for CH and Uiso = 1.5Ueq(C) for CH3 groups.

Structure description top

1,4-dihydropyridines (1,4-DHPs) are biologically active compounds which include various vasodilator, antihypertensive, bronchodilator, heptaprotective, antitumor, antimutagenic, geroprotective and antidiabetic agents (Gaudio et al., 1994). Nifedipine, Nitrendipine and Nimodipine etc., have found commercial utility as calcium channel blockers (Böcker & Guengerich, 1986; Gordeev et al., 1996). For the treatment of congestive heart failure a number of DHP calcium antagonists have been introduced (Vo et al., 1995). Some of DHPs have been introduced as a neuroprotectant and cognition enhancer. In addition, a number of DHPs with platelet antiaggregatory activity have also been discovered (Cooper et al., 1992).

The configuration and conformation of the title compound, (I) and the atom numbering scheme are shown in the ORTEP drawing (Fig. 1). The 1,4-DHP ring exhibits a flattened boat conformation, with atoms N1 and C4 displaced by -0.165 (2) and -0.420 (2) Å, respectively, from the least-squares plane defined by the remaining four atoms of the DHP ring. The maximum deviation of these latter four atoms (C2/C3/C5/C6) from their mean plane is 0.015 (1) Å. The methoxy phenyl ring is nearly planar and is approximately perpendicular to the 1,4-DHP ring; the dihedral angle between the plane of the methoxyphenyl ring and the plane of the base of the boat(C2/C3/C5/C6) is 88.98 (4)°. Each carbonyl group is oriented in a synperiplanar (cis) or antiperiplanar (trans) conformation with respect to the adjacent C=C double bond of the 1,4-DHP ring. The observed torsion angles are C6/C5/C11/O3 [7.2 (3)°] and C2/C3/C10/O1 [174.3 (3)°], indicating cis and trans conformations, respectively. The carbonyl C10=O1 bond length of 1.226 (1)Å is somewhat longer than typical carbonyl bonds, possibly due to the involvement of atom O1 in an intermolecular N—H···O hydrogen bond.

In the crystal structure, intermolecular N—H···O, C—H···O hydrogen bonds (Table 1; Fig. 2) are observed, where the N—H···O bond generates a graph set motif of C(6) (Bernstein et al., 1995), forming an infinite chain along the b axis.

For the biological importance of the 1,4-dihydropyridine ring, see: Gaudio et al. (1994); Böcker & Guengerich, (1986); Gordeev et al. (1996); Vo et al. (1995); Cooper et al. (1992). For hydrogen-bonding interactions, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atom numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing view showing N—H···O bonding (dashed lines) generating a graph set motif of C(6). Atoms that do not take part in the hydrogen bonding have been omitted for clarity.
1,1'-[4-(2-Methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-diyl]diethanone top
Crystal data top
C18H21NO3F(000) = 1280
Mr = 299.36Dx = 1.288 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2500 reflections
a = 26.5512 (6) Åθ = 2–30°
b = 7.5077 (1) ŵ = 0.09 mm1
c = 17.0818 (3) ÅT = 293 K
β = 114.904 (1)°Block, colourless
V = 3088.44 (10) Å30.19 × 0.17 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
4722 independent reflections
Radiation source: fine-focus sealed tube3203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω–scansθmax = 30.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 3737
Tmin = 0.984, Tmax = 0.987k = 109
21137 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0675P)2 + 1.5117P]
where P = (Fo2 + 2Fc2)/3
4722 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H21NO3V = 3088.44 (10) Å3
Mr = 299.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.5512 (6) ŵ = 0.09 mm1
b = 7.5077 (1) ÅT = 293 K
c = 17.0818 (3) Å0.19 × 0.17 × 0.15 mm
β = 114.904 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3203 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.032
21137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.26 e Å3
4722 reflectionsΔρmin = 0.23 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.0342 (8)0.604 (3)0.1642 (13)0.057 (6)*
C20.01518 (6)0.35160 (18)0.13007 (9)0.0323 (3)
C30.03718 (6)0.18412 (16)0.14901 (8)0.0281 (3)
C40.09866 (6)0.16431 (16)0.20952 (8)0.0269 (3)
H40.10370.04900.23870.032*
C50.11627 (6)0.30983 (18)0.27839 (8)0.0303 (3)
C60.09083 (7)0.47109 (18)0.25781 (9)0.0347 (3)
C70.10550 (9)0.6384 (2)0.31085 (12)0.0535 (5)
H7A0.08150.65130.33960.080*
H7B0.10110.73910.27390.080*
H7C0.14340.63190.35300.080*
C80.03908 (7)0.4093 (2)0.05923 (11)0.0460 (4)
H8A0.04680.33830.00870.069*
H8B0.03680.53240.04590.069*
H8C0.06830.39400.07780.069*
C90.05561 (8)0.0130 (2)0.06598 (14)0.0566 (5)
H9A0.06530.05260.00800.085*
H9B0.07260.08970.09290.085*
H9C0.06860.10670.06500.085*
C100.00627 (6)0.01838 (18)0.11610 (9)0.0336 (3)
C110.16218 (7)0.2748 (2)0.36344 (10)0.0389 (3)
C120.19213 (7)0.1016 (2)0.37945 (10)0.0468 (4)
H12A0.22490.10770.43280.070*
H12B0.20240.07680.33300.070*
H12C0.16840.00850.38290.070*
C130.13442 (6)0.16523 (18)0.15858 (8)0.0300 (3)
C140.13751 (7)0.3174 (2)0.11442 (9)0.0386 (3)
H140.11780.41820.11670.046*
C150.16912 (8)0.3240 (3)0.06698 (11)0.0512 (4)
H150.17060.42780.03830.061*
C160.19800 (8)0.1756 (3)0.06301 (12)0.0568 (5)
H160.21910.17870.03130.068*
C170.19603 (8)0.0222 (3)0.10549 (12)0.0512 (4)
H170.21560.07790.10200.061*
C180.16491 (6)0.0155 (2)0.15384 (10)0.0376 (3)
C190.20059 (10)0.2704 (3)0.21025 (18)0.0742 (7)
H19A0.19340.32450.15560.111*
H19B0.19720.35850.24850.111*
H19C0.23750.22200.23480.111*
N10.04566 (6)0.49206 (16)0.17923 (8)0.0379 (3)
O10.03123 (5)0.12395 (14)0.13193 (9)0.0566 (4)
O20.16203 (5)0.13353 (15)0.19817 (8)0.0498 (3)
O30.17653 (7)0.3810 (2)0.42269 (9)0.0909 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0344 (7)0.0271 (6)0.0361 (7)0.0036 (5)0.0156 (6)0.0036 (5)
C30.0280 (7)0.0241 (6)0.0309 (6)0.0009 (5)0.0113 (5)0.0010 (5)
C40.0284 (6)0.0228 (5)0.0282 (6)0.0007 (5)0.0106 (5)0.0012 (4)
C50.0337 (7)0.0288 (6)0.0300 (6)0.0035 (5)0.0151 (6)0.0026 (5)
C60.0457 (9)0.0275 (6)0.0341 (7)0.0048 (6)0.0201 (7)0.0025 (5)
C70.0843 (14)0.0299 (7)0.0480 (9)0.0072 (8)0.0295 (10)0.0090 (7)
C80.0389 (9)0.0404 (8)0.0526 (9)0.0123 (7)0.0131 (7)0.0094 (7)
C90.0359 (9)0.0457 (9)0.0747 (13)0.0091 (7)0.0100 (9)0.0078 (9)
C100.0327 (7)0.0281 (6)0.0371 (7)0.0018 (5)0.0119 (6)0.0002 (5)
C110.0363 (8)0.0468 (8)0.0329 (7)0.0009 (7)0.0139 (6)0.0057 (6)
C120.0450 (9)0.0475 (9)0.0361 (8)0.0033 (7)0.0056 (7)0.0043 (7)
C130.0266 (7)0.0340 (7)0.0268 (6)0.0012 (5)0.0085 (5)0.0027 (5)
C140.0392 (8)0.0424 (8)0.0336 (7)0.0014 (6)0.0149 (6)0.0030 (6)
C150.0555 (11)0.0641 (11)0.0377 (8)0.0147 (9)0.0231 (8)0.0014 (7)
C160.0535 (11)0.0810 (14)0.0478 (10)0.0131 (10)0.0329 (9)0.0147 (9)
C170.0432 (10)0.0629 (11)0.0534 (10)0.0005 (8)0.0262 (8)0.0162 (8)
C180.0326 (8)0.0416 (8)0.0358 (7)0.0017 (6)0.0117 (6)0.0070 (6)
C190.0605 (13)0.0437 (10)0.121 (2)0.0168 (9)0.0409 (14)0.0013 (11)
N10.0481 (8)0.0208 (5)0.0426 (7)0.0047 (5)0.0170 (6)0.0023 (5)
O10.0459 (7)0.0242 (5)0.0809 (9)0.0005 (5)0.0083 (6)0.0021 (5)
O20.0494 (7)0.0395 (6)0.0653 (8)0.0147 (5)0.0288 (6)0.0060 (5)
O30.0914 (12)0.0885 (11)0.0508 (8)0.0342 (9)0.0110 (8)0.0358 (8)
Geometric parameters (Å, º) top
C2—C31.3667 (18)C10—O11.2260 (17)
C2—N11.3783 (19)C11—O31.2166 (19)
C2—C81.503 (2)C11—C121.488 (2)
C3—C101.4662 (18)C12—H12A0.9600
C3—C41.5278 (18)C12—H12B0.9600
C4—C51.5274 (17)C12—H12C0.9600
C4—C131.5346 (19)C13—C141.390 (2)
C4—H40.9800C13—C181.407 (2)
C5—C61.358 (2)C14—C151.392 (2)
C5—C111.475 (2)C14—H140.9300
C6—N11.382 (2)C15—C161.371 (3)
C6—C71.501 (2)C15—H150.9300
C7—H7A0.9600C16—C171.374 (3)
C7—H7B0.9600C16—H160.9300
C7—H7C0.9600C17—C181.394 (2)
C8—H8A0.9600C17—H170.9300
C8—H8B0.9600C18—O21.3708 (19)
C8—H8C0.9600C19—O21.403 (2)
C9—C101.500 (2)C19—H19A0.9600
C9—H9A0.9600C19—H19B0.9600
C9—H9B0.9600C19—H19C0.9600
C9—H9C0.9600N1—H10.89 (2)
C3—C2—N1118.48 (13)C3—C10—C9122.92 (13)
C3—C2—C8128.68 (13)O3—C11—C5122.83 (15)
N1—C2—C8112.82 (12)O3—C11—C12117.63 (15)
C2—C3—C10125.14 (13)C5—C11—C12119.53 (13)
C2—C3—C4118.56 (11)C11—C12—H12A109.5
C10—C3—C4116.29 (11)C11—C12—H12B109.5
C5—C4—C3110.16 (11)H12A—C12—H12B109.5
C5—C4—C13111.83 (11)C11—C12—H12C109.5
C3—C4—C13110.85 (10)H12A—C12—H12C109.5
C5—C4—H4108.0H12B—C12—H12C109.5
C3—C4—H4108.0C14—C13—C18117.30 (13)
C13—C4—H4108.0C14—C13—C4120.21 (12)
C6—C5—C11121.91 (13)C18—C13—C4122.49 (12)
C6—C5—C4118.72 (12)C13—C14—C15122.19 (16)
C11—C5—C4119.29 (12)C13—C14—H14118.9
C5—C6—N1119.11 (12)C15—C14—H14118.9
C5—C6—C7127.97 (15)C16—C15—C14119.16 (17)
N1—C6—C7112.92 (13)C16—C15—H15120.4
C6—C7—H7A109.5C14—C15—H15120.4
C6—C7—H7B109.5C15—C16—C17120.58 (16)
H7A—C7—H7B109.5C15—C16—H16119.7
C6—C7—H7C109.5C17—C16—H16119.7
H7A—C7—H7C109.5C16—C17—C18120.49 (16)
H7B—C7—H7C109.5C16—C17—H17119.8
C2—C8—H8A109.5C18—C17—H17119.8
C2—C8—H8B109.5O2—C18—C17122.79 (14)
H8A—C8—H8B109.5O2—C18—C13116.94 (13)
C2—C8—H8C109.5C17—C18—C13120.26 (15)
H8A—C8—H8C109.5O2—C19—H19A109.5
H8B—C8—H8C109.5O2—C19—H19B109.5
C10—C9—H9A109.5H19A—C19—H19B109.5
C10—C9—H9B109.5O2—C19—H19C109.5
H9A—C9—H9B109.5H19A—C19—H19C109.5
C10—C9—H9C109.5H19B—C19—H19C109.5
H9A—C9—H9C109.5C2—N1—C6123.47 (12)
H9B—C9—H9C109.5C2—N1—H1120.1 (13)
O1—C10—C3119.46 (13)C6—N1—H1116.0 (13)
O1—C10—C9117.58 (13)C18—O2—C19118.17 (15)
N1—C2—C3—C10166.44 (14)C4—C5—C11—C122.6 (2)
C8—C2—C3—C1015.2 (2)C5—C4—C13—C1457.93 (16)
N1—C2—C3—C413.2 (2)C3—C4—C13—C1465.43 (16)
C8—C2—C3—C4165.14 (14)C5—C4—C13—C18122.36 (14)
C2—C3—C4—C534.57 (16)C3—C4—C13—C18114.29 (14)
C10—C3—C4—C5145.08 (12)C18—C13—C14—C150.1 (2)
C2—C3—C4—C1389.74 (15)C4—C13—C14—C15179.60 (14)
C10—C3—C4—C1390.61 (14)C13—C14—C15—C160.4 (3)
C3—C4—C5—C631.67 (17)C14—C15—C16—C170.2 (3)
C13—C4—C5—C692.08 (15)C15—C16—C17—C180.5 (3)
C3—C4—C5—C11151.55 (12)C16—C17—C18—O2179.28 (16)
C13—C4—C5—C1184.71 (15)C16—C17—C18—C131.0 (3)
C11—C5—C6—N1175.72 (13)C14—C13—C18—O2179.44 (13)
C4—C5—C6—N17.6 (2)C4—C13—C18—O20.8 (2)
C11—C5—C6—C74.3 (2)C14—C13—C18—C170.8 (2)
C4—C5—C6—C7172.37 (15)C4—C13—C18—C17178.91 (14)
C2—C3—C10—O1174.28 (15)C3—C2—N1—C615.2 (2)
C4—C3—C10—O16.1 (2)C8—C2—N1—C6166.19 (14)
C2—C3—C10—C98.1 (2)C5—C6—N1—C218.3 (2)
C4—C3—C10—C9171.54 (15)C7—C6—N1—C2161.78 (15)
C6—C5—C11—O37.2 (3)C17—C18—O2—C1913.7 (2)
C4—C5—C11—O3176.16 (17)C13—C18—O2—C19166.57 (17)
C6—C5—C11—C12174.06 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (2)2.11 (2)2.9749 (16)163 (2)
C7—H7B···O1i0.962.573.367 (2)141
C15—H15···O3ii0.932.503.381 (2)158
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC18H21NO3
Mr299.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)26.5512 (6), 7.5077 (1), 17.0818 (3)
β (°) 114.904 (1)
V3)3088.44 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
21137, 4722, 3203
Rint0.032
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.05
No. of reflections4722
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (2)2.11 (2)2.9749 (16)163 (2)
C7—H7B···O1i0.962.573.367 (2)141
C15—H15···O3ii0.932.503.381 (2)158
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2.
 

Acknowledgements

VV thanks the DST-India for funding through the Young Scientist-Fast Track Proposal.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBöcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.  PubMed Web of Science Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, K. M., Fray, J. M., Parry, J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115–3129.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 83, 1110–1115.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds