organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium nitrate

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar, 2092 Tunis, Tunisia
*Correspondence e-mail: donia_zgolli@hotmail.com

(Received 4 October 2009; accepted 11 October 2009; online 17 October 2009)

The title structure, C5H6ClN2+·NO3, is held together by extensive hydrogen bonding between the NO3 ions and 2-amino-5-chloro­pyridinium H atoms. The cation–anion N—H⋯O hydrogen bonds link the ions into a zigzag- chain which develops parallel to the b axis. The structure may be compared with that of the related 2-amino-5-cyano­pyridinium nitrate.

Related literature

For metal-organic frameworks involving amine derivatives, see: Manzur et al. (2007[Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500-5510.]); Ismayilov et al. (2007[Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898-2907.]); Austria et al. (2007[Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283-6290.]). For related structures, see: Pourayoubi et al. (2007[Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.]); Rademeyer (2005[Rademeyer, M. (2005). Acta Cryst. E61, o2496-o2498.], 2007[Rademeyer, M. (2007). Acta Cryst. E63, o545-o546.]); Dai (2008[Dai, J. (2008). Acta Cryst. E64, o1899.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·NO3

  • Mr = 191.58

  • Monoclinic, P 21 /c

  • a = 4.788 (4) Å

  • b = 13.029 (3) Å

  • c = 12.779 (2) Å

  • β = 101.445 (18)°

  • V = 781.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 299 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.838, Tmax = 0.914

  • 2057 measured reflections

  • 1691 independent reflections

  • 1312 reflections with I > 2σ(I)

  • Rint = 0.017

  • 2 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.02

  • 1691 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 2.05 2.900 (2) 169
N2—H2B⋯O1i 0.86 2.06 2.912 (2) 174
N3—H3⋯O2 0.86 1.94 2.800 (2) 179
Symmetry code: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Derivatives of the aminoacid are of considerable interest in biological activities and there has been an increased interest in the chemistry of amine derivatives because of the construction of novel metal-organic frameworks (Manzur et al., 2007; Ismayilov et al., 2007; Austria et al., 2007). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007) and their 2-Amino-5-cyanopyridinium nitrate (Dai, 2008) and 2-Aminopyridinium nitrate (Rademeyer, 2007) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2- Amino-5-chloropyridinium nitrate (I).

The title compound (I) contains an organic cation and a (NO3)- anion (Fig1). The cation is roughly planar with the largest deviation from the mean plane being 0.0553 (9)Å. The NO3 anion is slightly twisted with respect to the pyridinium ring making a dihedral angle of 17.2 (1)°

The monoprotonated chloropyridinium cation (C5H6ClN2)+ and the nitrate anion (NO3)- are linked by N-H···O which forms a zig-zag like chain parallel to the b axis (Table 1, Fig 2).

The crystal structure of 2-Amino-5-cyanopyridinium nitrate (II) (Dai, 2008) was recently published. The title compound (I) and this related compound (II) are isostructural. In both molecules, the asymmetric unit contains an organic cation 2-Amino-5-Xpyridinium (X: chloride (I), CN nitrile (II)) and a nitrate anion. They have the same space group (P21/c) and they are characterized by two-dimensional hydrogen-bonded networks.

The distances and angles of the present 2-amino-5-chloropyridinium nitrate molecule are consistent with the values reported in the literature of 2-aminopyridinium nitrate and 4-aminopyridinium nitrate molecules (Rademeyer 2005;2007).

Related literature top

For metal-organic frameworks involving amine derivatives, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007). For related structures, see: Pourayoubi et al. (2007); Rademeyer (2005, 2007); Dai (2008).

Experimental top

2-Amino-5-chloropridine was dissolved in the solution of methanol and nitric acid (0.5 ml). Yellow crystals were obtained after a month on slow evaporation.

Refinement top

All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.93Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N).

Structure description top

Derivatives of the aminoacid are of considerable interest in biological activities and there has been an increased interest in the chemistry of amine derivatives because of the construction of novel metal-organic frameworks (Manzur et al., 2007; Ismayilov et al., 2007; Austria et al., 2007). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007) and their 2-Amino-5-cyanopyridinium nitrate (Dai, 2008) and 2-Aminopyridinium nitrate (Rademeyer, 2007) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2- Amino-5-chloropyridinium nitrate (I).

The title compound (I) contains an organic cation and a (NO3)- anion (Fig1). The cation is roughly planar with the largest deviation from the mean plane being 0.0553 (9)Å. The NO3 anion is slightly twisted with respect to the pyridinium ring making a dihedral angle of 17.2 (1)°

The monoprotonated chloropyridinium cation (C5H6ClN2)+ and the nitrate anion (NO3)- are linked by N-H···O which forms a zig-zag like chain parallel to the b axis (Table 1, Fig 2).

The crystal structure of 2-Amino-5-cyanopyridinium nitrate (II) (Dai, 2008) was recently published. The title compound (I) and this related compound (II) are isostructural. In both molecules, the asymmetric unit contains an organic cation 2-Amino-5-Xpyridinium (X: chloride (I), CN nitrile (II)) and a nitrate anion. They have the same space group (P21/c) and they are characterized by two-dimensional hydrogen-bonded networks.

The distances and angles of the present 2-amino-5-chloropyridinium nitrate molecule are consistent with the values reported in the literature of 2-aminopyridinium nitrate and 4-aminopyridinium nitrate molecules (Rademeyer 2005;2007).

For metal-organic frameworks involving amine derivatives, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007). For related structures, see: Pourayoubi et al. (2007); Rademeyer (2005, 2007); Dai (2008).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the asymetric unit of 2-amino-5-chloropyridinium nitrate with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view showing the formation of the zigzag chain parallel to the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry code: (i) -x-1, y+1/2, -z+3/2].
2-Amino-5-chloropyridinium nitrate top
Crystal data top
C5H6ClN2+·NO3F(000) = 392.0
Mr = 191.58Dx = 1.620 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.788 (4) Åθ = 10–15°
b = 13.029 (3) ŵ = 0.46 mm1
c = 12.779 (2) ÅT = 299 K
β = 101.445 (18)°Prism, yellow
V = 781.3 (7) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1312 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
Nonprofiled ω/2θ scansh = 16
Absorption correction: ψ scan
(North et al., 1968)
k = 161
Tmin = 0.838, Tmax = 0.914l = 1615
2057 measured reflections2 standard reflections every 120 min
1691 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1965P]
where P = (Fo2 + 2Fc2)/3
1691 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C5H6ClN2+·NO3V = 781.3 (7) Å3
Mr = 191.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.788 (4) ŵ = 0.46 mm1
b = 13.029 (3) ÅT = 299 K
c = 12.779 (2) Å0.40 × 0.40 × 0.20 mm
β = 101.445 (18)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1312 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.838, Tmax = 0.9142 standard reflections every 120 min
2057 measured reflections intensity decay: none
1691 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
1691 reflectionsΔρmin = 0.25 e Å3
109 parameters
Special details top

Experimental. Number of psi-scan sets used was 3 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied (North et al., 1968).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35469 (12)0.37026 (4)0.42068 (4)0.0558 (2)
N10.4403 (4)0.03452 (11)0.63887 (12)0.0404 (4)
N20.2955 (4)0.22776 (13)0.73365 (13)0.0484 (4)
H2A0.34870.16460.73010.058*
H2B0.34400.26790.78040.058*
N30.0639 (3)0.19881 (11)0.59367 (12)0.0373 (3)
H30.11530.13560.59430.045*
C10.1377 (4)0.26344 (13)0.66666 (13)0.0349 (4)
C20.0428 (4)0.36615 (14)0.66731 (15)0.0399 (4)
H20.08540.41220.71750.048*
C30.1112 (4)0.39778 (15)0.59430 (15)0.0411 (4)
H3A0.17510.46520.59500.049*
C40.1737 (4)0.32811 (14)0.51762 (14)0.0373 (4)
C50.0878 (4)0.22883 (14)0.51921 (14)0.0383 (4)
H50.13180.18190.47010.046*
O10.5381 (3)0.12309 (10)0.62043 (12)0.0545 (4)
O20.2376 (3)0.00614 (11)0.59683 (13)0.0523 (4)
O30.5384 (4)0.02366 (12)0.70018 (14)0.0635 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0681 (4)0.0477 (3)0.0615 (3)0.0101 (2)0.0366 (3)0.0017 (2)
N10.0517 (9)0.0326 (8)0.0380 (8)0.0009 (7)0.0115 (7)0.0026 (6)
N20.0649 (10)0.0414 (9)0.0454 (9)0.0019 (8)0.0269 (8)0.0030 (7)
N30.0455 (8)0.0264 (7)0.0427 (8)0.0034 (6)0.0156 (7)0.0047 (6)
C10.0387 (9)0.0339 (8)0.0324 (8)0.0019 (7)0.0081 (7)0.0013 (7)
C20.0495 (10)0.0318 (9)0.0389 (9)0.0003 (7)0.0098 (8)0.0077 (7)
C30.0495 (10)0.0290 (8)0.0445 (10)0.0039 (7)0.0088 (8)0.0051 (7)
C40.0384 (9)0.0362 (9)0.0396 (9)0.0013 (7)0.0136 (7)0.0006 (7)
C50.0444 (9)0.0333 (9)0.0406 (9)0.0005 (7)0.0171 (8)0.0082 (7)
O10.0784 (10)0.0347 (7)0.0552 (8)0.0152 (7)0.0251 (8)0.0006 (6)
O20.0590 (9)0.0369 (7)0.0685 (9)0.0069 (6)0.0308 (8)0.0010 (6)
O30.0788 (11)0.0513 (9)0.0708 (10)0.0089 (8)0.0403 (9)0.0158 (8)
Geometric parameters (Å, º) top
Cl1—C41.7358 (19)N3—H30.8600
N1—O31.247 (2)C1—C21.413 (3)
N1—O11.250 (2)C2—C31.363 (3)
N1—O21.255 (2)C2—H20.9300
N2—C11.333 (2)C3—C41.411 (3)
N2—H2A0.8600C3—H3A0.9300
N2—H2B0.8600C4—C51.359 (3)
N3—C11.355 (2)C5—H50.9300
N3—C51.364 (2)
O3—N1—O1120.41 (17)C3—C2—C1119.96 (16)
O3—N1—O2120.64 (16)C3—C2—H2120.0
O1—N1—O2118.93 (16)C1—C2—H2120.0
C1—N2—H2A120.0C2—C3—C4119.95 (17)
C1—N2—H2B120.0C2—C3—H3A120.0
H2A—N2—H2B120.0C4—C3—H3A120.0
C1—N3—C5123.36 (15)C5—C4—C3119.70 (17)
C1—N3—H3118.3C5—C4—Cl1120.49 (14)
C5—N3—H3118.3C3—C4—Cl1119.80 (14)
N2—C1—N3118.95 (16)C4—C5—N3119.23 (16)
N2—C1—C2123.31 (16)C4—C5—H5120.4
N3—C1—C2117.74 (15)N3—C5—H5120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.052.900 (2)169
N2—H2B···O1i0.862.062.912 (2)174
N3—H3···O20.861.942.800 (2)179
Symmetry code: (i) x1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·NO3
Mr191.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)4.788 (4), 13.029 (3), 12.779 (2)
β (°) 101.445 (18)
V3)781.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.838, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
2057, 1691, 1312
Rint0.017
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.02
No. of reflections1691
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.052.900 (2)169.2
N2—H2B···O1i0.862.062.912 (2)173.5
N3—H3···O20.861.942.800 (2)178.9
Symmetry code: (i) x1, y+1/2, z+3/2.
 

References

First citationAustria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283–6290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDai, J. (2008). Acta Cryst. E64, o1899.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Germany.  Google Scholar
First citationIsmayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898–2907.  Web of Science CSD CrossRef PubMed Google Scholar
First citationManzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500–5510.  Web of Science CSD CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRademeyer, M. (2005). Acta Cryst. E61, o2496–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRademeyer, M. (2007). Acta Cryst. E63, o545–o546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds